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1. Introduction

T he concept of a fuzzy subset of a nonempty set was introduced by Zadeh in 1965 [1] as a function from
a nonempty set X into the unit real interval I = [0, 1]. Rosenfeld [2] extended the idea of Zadeh to

the theory of groupoids and groups. The concepts of fuzzy field and fuzzy linear space over fuzzy field were
introduced by Nanda [3]. In 1977, Katsaras and Liu [4] studied the notion of fuzzy vector subspaces over
the field of real or complex numbers. After Katsaras and Liu [4], many scholars investigated properties and
characteristics of fuzzy vector subspaces [5–8]. Hohle [9] and Alsina et al., [10] introduced T-norm in fuzzy set
theory and proved that the T-norm can be used for the intersection of fuzzy sets. Since then, many researchers
presented various types of T-norms for particular purposes [11,12].

The author by using norms, investigated some properties of fuzzy algebraic structures [13–18]. This work
is an attempt to study purely algebraic properties of anti fuzzy vector spaces under t-conorms. In this paper,
the author introduce anti fuzzy vector spaces under t-conorms and investigate relationship between anti fuzzy
vector spaces under t-conorms and vector subspaces. Also the author introduce sum, union, direct sum of anti
fuzzy vector spaces under t-conorms and prove that sum, union, direct sum of them is also anti fuzzy vector
spaces under t-conorms. Later, the author define normal anti fuzzy vector spaces under t-conorm and obtain
some results about them. Finally, the author investigate linear transformations over anti fuzzy vector spaces
(normal anti fuzzy vector spaces) under t-conorms and show that image and pre image of them is also anti
fuzzy vector space (normal anti fuzzy vector spaces) under t-conorms.

2. Preliminaries and main result

2.1. Preliminaries

This section recalls some of the fundamental concepts and definitions necessary for this paper.

Definition 1. ([19]) A vector space or a linear space consists of the following:

(1) a field F of scalars.
(2) a set V of objects called vectors.
(3) a rule (or operation) called vector addition: associates with each pair of vectors α, β ∈ V; α + β ∈ V,

called the sum of α and β in such a way that

(a) addition is commutative α + β = β + α,
(b) addition is associative α + (β + γ) = (α + β) + γ,
(c) there is a unique vector 0 ∈ V, called the zero vector, such that α + 0 = α for all α ∈ V,
(d) for each vector α ∈ V there is a unique vector(−α) in V such that α + (−α) = 0,
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(e) a rule (or operation), called scalar multiplication, associates with each scalar c in F and a vector α

in V, a vector c • α in V, called the product of c and α, in such a way that 1 • α = α, (c1 • c2) • α =

c1 • (c2 • α), c • (α+ β) = c • α+ c • β, (c1 + c2) • α = (c1 • α)+ (c2 • α) for α, β ∈ V and c, c1, c2 ∈ F.
It is important to note as the definition states that a vector space is a composite object consisting of
a field, a set of a vector space and two operations with certain special properties. The same set of
vectors may be part of a number of distinct vectors. We simply use the notation, V a vector space
over the field F and call elements of V as vectors.

Throughout this section, F is any field of characteristic zero.

Example 1. Let V = R× R× R. Then V is a vector space over R or Q but V is not a vector space over the
complex field C.

Definition 2. [19] Let V be a vector space over the field F. A subspace of V is a subset W of V which is itself a
vector space over F with the same operations of vector addition and scalar multiplication as on V.

We have the following nice characterization theorem for subspaces.

Theorem 1. [19] Let W be a non-empty subset of a vector V over the field F. Then W is a subspace of V if and only if
for each pair α, β ∈W and each scalar c ∈ F the vector cα + β ∈W.

Example 2. Let Mn×n = {(aij) | aij ∈ Q} be the vector space over Q. Let Dn×n = {(aii) | aii ∈ Q} be the set of
all diagonal matrices with entries from Q. Then Dn×n is a subspace of Mn×n.

Definition 3. [19] Let V and W be two vector spaces over the field of F. A map f : V → W is called a linear
transformation if f (ax + y) = a f (x) + f (y) for all x, y ∈ V and a ∈ F.

Definition 4. [20] Let X be a non-empty set. A fuzzy subset µ of X is a function µ : X → [0, 1].

The set of all fuzzy subsets of X is denoted by [0, 1]X

Definition 5. [21] A t-conorm C is a function C : [0, 1]× [0, 1]→ [0, 1] having the following four properties:

(C1) C(x, 0) = x,
(C2) C(x, y) ≤ C(x, z) if y ≤ z,
(C3) C(x, y) = C(y, x),
(C4) C(x, C(y, z)) = C(C(x, y), z),

for all x, y, z ∈ [0, 1].

Corollary 2. [21] Let C be a C-conorm, then for all x ∈ [0, 1], we have

(1) C(x, 1) = 1,
(2) C(0, 0) = 0.

Example 3. [21]

(1) Standard union t-conorm Cm(x, y) = max{x, y}.
(2) Bounded sum t-conorm Cb(x, y) = min{1, x + y}.
(3) Algebraic sum t-conorm Cp(x, y) = x + y− xy.

(4) Drastic T-conorm CD(x, y) =


y if x = 0
x if y = 0
1 otherwise.

(5) Nilpotent maximum T-conorm: CnM(x, y) =

{
max{x, y} if x + y < 1

1 otherwise.

(6) Einstein sum (compare the velocity-addition formula under special relativity) CH2(x, y) =
x + y

1 + xy
. Note

that all t-conorms are bounded by the maximum and the drastic t-conorm: Cmax(x, y) ≤ C(x, y) ≤
CD(x, y) for any t-conorm C and all x, y ∈ [0, 1].
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Recall that t-conorm C is idempotent if for all x ∈ [0, 1], we have that C(x, x) = x.

Lemma 1. [21] Let C be a t-conorm, then C(C(x, y), C(w, z)) = C(C(x, w), C(y, z)), for all x, y, w, z ∈ [0, 1].

3. Anti fuzzy vector spaces under t-conorms

Throughout this section, V is a vector space on a field F unless otherwise specified.

Definition 6. A fuzzy set µ : V → [0, 1] is called a anti fuzzy vector space of V under t-conorm C, if for all
x, y ∈ V and a ∈ F the following conditions hold:

(1) µ(x + y) ≤ C(µ(x), µ(y)),
(2) µ(−x) ≤ µ(x),
(3) µ(ax) ≤ µ(x).

The set of all fuzzy vector spaces of V under t-conorm C is denoted by AFC(V).

Corollary 3. Let µ ∈ AFC(V), then µ(−x) = µ(x) for all x ∈ V.

Proof. Let x ∈ V then µ(−x) ≤ µ(x) = µ(−(−x)) ≤ µ(−x). Hence µ(−x) = µ(x).

Example 4. Let V = R×R×R be a vector space over a field F = R. Define µ : R×R×R→ [0, 1] as

µ(x, y, z) =

{
0.40 (x, y, z) ∈ {(0, y, 0) | y ∈ R}
0.55 otherwise.

.

Let C(a, b) = Cp(a, b) = a + b− ab for all a, b ∈ [0, 1], then µ ∈ AFC(V).

Theorem 4. Let V be a subspace over field F and W be a subset of V and µ : W → {0, 1} be the characteristic function
such that W be a subspace of V, then µ ∈ AFC(V).

Proof. Let x, y ∈ V and we investigate the following conditions:

(1) If x, y ∈W, then x + y ∈W and we have µ(x + y) = 1 ≤ 1 = C(1, 1) = C(µ(x), µ(y)).
(2) If x 6∈W and y ∈W, then x + y 6∈W and then µ(x + y) = 0 ≤ 0 = C(0, µ(y)) = C(µ(x), µ(y)).
(3) Finally, if x, y 6∈W, then µ(x + y) = 0 ≤ 0 = C(0, 0) = C(µ(x), µ(y)).

Thus from (1)− (3), we have µ(x + y) ≤ C(µ(x), µ(y)). Also, we have that the following conditions:

(4) If x ∈W, then −x ∈W and then µ(−x) = 1 ≤ 1 = µ(x).
(5) If x 6∈W, then −x 6∈W and then µ(−x) = 0 ≤ 0 = µ(x).

Thus from (4)− (5), we have that µ(−x) ≤ µ(x). Now, let a ∈ F :

(6) If x ∈W, then ax ∈W and so µ(ax) = 1 ≤ 1 = µ(x).
(7) If x 6∈W, then ax 6∈W so µ(ax) = 0 ≤ 0 = µ(x).

From (6) and (7), we obtain µ(ax) ≤ µ(x). Therefore, the above conditions gives µ ∈ AFC(V).

Theorem 5. Let µ ∈ AFC(V), then W = {x | x ∈ V : µ(x) = 0} is either empty or is a subspace of V.

Proof. Let x, y ∈ W and a ∈ F. Then µ(ax + y) ≤ C(µ(ax), µ(y)) ≤ C(µ(x), µ(y)) = C(0, 0) = 0 and µ(ax +

y) = 0 which means that ax + y ∈W and by Theorem 1, we get W is a subspace of V.

Theorem 6. If µ ∈ AFC(V) and C be an idempotent t-conorm, then µ(0) ≤ µ(x) for all x ∈ V.

Proof. As µ ∈ AFC(V) so µ(0) = µ(x− x) = µ(x + (−x)) ≤ C(µ(x), µ(−x)) ≤ C(µ(x), µ(x)) = µ(x). Thus
µ(0) ≤ µ(x).

Theorem 7. Let µ ∈ AFC(V) and C be an idempotent t-conorm. Then W = {x | x ∈ V : µ(x) = µ(0)} is either
empty or is a subspace of V.
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Proof. Let x, y ∈W and a ∈ F. Then by by Theorem 6, we have µ(ax + y) ≤ C(µ(ax), µ(y)) ≤ C(µ(x), µ(y)) =
C(µ(0), µ(0)) = µ(0) ≤ µ(ax + y). Thus µ(ax + y) = µ(0) and ax + y ∈ W. Hence Theorem 1 gives us that W
is a subspace of V.

Theorem 8. Let µ ∈ AFC(V) and C be an idempotent t-conorm. If µ(x − y) = µ(0), then µ(x) = µ(y) for all
x, y ∈ V.

Proof. Let µ ∈ AFC(V) then µ(x) = µ(x− y + y) ≤ C(µ(x− y), µ(y)) ≤ C(µ(0), µ(y)) ≤ C(µ(y), µ(y))
= µ(y) = µ(y + x− x) = µ(−(x− y) + x) ≤ C(µ(−(x− y)), µ(x)) ≤ C(µ(x− y), µ(x)) = C(µ(0), µ(x))
≤ C(µ(x), µ(x)) = µ(x). Therefore µ(x) = µ(y).

Theorem 9. Let C be an idempotent t-conorm. Then µ ∈ AFC(V) if and only if µ(x − y) ≤ C(µ(x), µ(y)) and
µ(ax) ≤ µ(x) for all x, y ∈ V and a ∈ F.

Proof. Let µ ∈ AFC(V), then µ(x− y) = µ(x + (−y)) ≤ C(µ(x), µ(−y)) ≤ C(µ(x), µ(y)).
Conversely, let µ(x− y) ≤ C(µ(x), µ(x)) and µ(ax) ≤ µ(x). Then

µ(0) = µ(x− x) ≤ C(µ(x), µ(x)) = µ(x),

and
µ(−x) = µ(0− x) ≤ C(µ(0), µ(x)) ≤ C(µ(x), µ(x)) = µ(x) .

Also
µ(x + y) = µ(x− (−y)) ≤ C(µ(x), µ(−y)) ≤ C(µ(x), µ(y)),

therefore, µ ∈ AFC(V).

Theorem 10. Let µ : V → [0, 1] be a fuzzy set. If µ(0) = 0, µ(x − y) ≤ C(µ(x), µ(y)) and µ(ax) ≤ µ(x), then
µ ∈ AFC(V) for all x, y ∈ V and a ∈ F.

Proof. We have µ(−x) = µ(0− x) ≤ C(µ(0), µ(x)) = C(0, µ(x)) = µ(x). Also µ(x + y) = µ(x − (−y)) ≤
C(µ(x), µ(−y)) ≤ C(µ(x), µ(y)). Thus µ ∈ AFC(V).

Theorem 11. Let µ ∈ AFC(V) and µ(x− y) = 0, then µ(x) = µ(y) for all x, y ∈ V.

Proof. Let x, y ∈ V, then by using Corollary 3, we have µ(x) = µ(x − y + y) ≤ C(µ(x − y), µ(y)) =

T(0, µ(y)) = µ(y) = µ(−y) = µ(x− x− y) = µ(x− y− x) ≤ C(µ(x− y), µ(−x)) = C(0, µ(−x)) = µ(−x) =
µ(x). Therefore µ(x) = µ(y).

Theorem 12. Let µ ∈ AFC(V) and µ(x− y) = 1. Then either µ(x) = 1 or µ(y) = 1 for all x, y ∈ V.

Proof. Let x, y ∈ V then 1 = µ(x− y) = µ(x + (−y)) ≤ C(µ(x), µ(−y)) ≤ C(µ(x), µ(y)) which implies that
either µ(x) = 1 or µ(y) = 1.

Theorem 13. Let µ ∈ AFC(V) and µ(x) < µ(y) for some x, y ∈ V. If C be an idempotent t-conorm, then µ(x + y) =
µ(y) for all x, y ∈ V.

Proof. Let µ ∈ AFC(V) and µ(x) < µ(y) which means that µ(x) < µ(x + y) for all x, y ∈ V. Then µ(x + y) ≤
C(µ(x), µ(y)) ≤ C(µ(y), µ(y)) = µ(y) = µ(x + y− x) ≤ C(µ(x + y), µ(−x)) ≤ C(µ(x + y), µ(x)) ≤ C(µ(x +

y), µ(x + y)) = µ(x + y). Thus µ(x + y) = µ(y).

Theorem 14. Let µ ∈ AFC(V) and µ(x) > µ(y) for some x, y ∈ V. If C be an idempotent t-conorm, then µ(x + y) =
µ(x) for all x, y ∈ V.

Proof. It is trivial.

Theorem 15. Let µ ∈ AFC(V) and C be an idempotent t-conorm. If µ(x) 6= µ(y), then µ(x + y) = C(µ(x), µ(y))
for all x, y ∈ V.
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Proof. (1) If µ(x) < µ(y), then µ(y) = C(µ(x), µ(y)) for all x, y ∈ V. Now from Theorem 13, we have
µ(x + y) = µ(y) and then µ(x + y) = µ(y) = C(µ(x), µ(y)).

(2) If µ(x) > µ(y), then µ(x) = C(µ(x), µ(y)) for all x, y ∈ V. Now from Theorem 14, we have µ(x + y) =
µ(x) and then µ(x + y) = µ(x) = C(µ(x), µ(y)).

The conditions (1) and (2) gives us: If µ(x) 6= µ(y), then µ(x + y) = C(µ(x), µ(y)) for all x, y ∈ V.

Theorem 16. Let µ ∈ AFC(V) and C be an idempotent t-conorm. Then µ(x− y) = µ(y) if and only if µ(x) = µ(0)
for all x, y ∈ V.

Proof. Let µ(x− y) = µ(y) and y = 0 we have µ(x) = µ(0).
Conversely, suppose that µ(x) = µ(0). From Theorem 6, we have µ(x) = µ(0) ≤ µ(x − y) and µ(x) =

µ(0) ≤ µ(−y).
Therefore, µ(x− y) = µ(x + (−y)) ≤ C(µ(x), µ(−y)) = C(µ(0), µ(−y)) ≤ C(µ(−y), µ(−y)) = µ(−y) =

µ(x− y− x) = µ(x− y + (−x)) ≤≤ C(µ(x− y), µ(−x)) ≤ C(µ(x− y), µ(x)) = C(µ(x− y), µ(0)) ≤ C(µ(x−
y), µ(x− y)) = µ(x− y) .

Hence, µ(x− y) = µ(−y) and by Corollary 3, we have µ(y) = µ(−y) = µ(x− y).

Theorem 17. Let µ ∈ AFC(V) and f : [0, µ(0)] → [0, 1] be a decreasing map. Define a fuzzy set µ f : V → [0, 1] by
µ f (x) = f (µ(x)). Then µ f ∈ AFC(V).

Proof. Let x, y ∈ V and a ∈ F. Then

(1) µ f (x + y) = f (µ(x + y)) ≤ f (C(µ(x), µ(y))) = C( f (µ(x)), f (µ(y))) = C(µ f (x), µ f (y)).
(2) µ f (−x) = f (µ(−x)) ≤ f (µ(x)) = µ f (x).
(3) µ f (ax) = f (µ(ax)) ≤ f (µ(x)) = µ f (x).

Therefore µ f ∈ AFC(V).

4. Sum, union, direct sum and nomality of anti fuzzy vector spaces under t-conorms

Definition 7. Let µ1, µ2 ∈ AFC(V). The sum of µ1 and µ2 is defined as follows:

(µ1 + µ2)(x) := sup{C(µ1(y), µ2(z))|x = y + z ∈ V}.

Proposition 1. Let µ1, µ2 ∈ AFC(V) and C be idempotent t-conorm. Then (µ1 + µ2) ∈ AFC(V).

Proof. (1) Let x1, x2, y1, y2, z1, z2 ∈ V. Then using Lemma 1, we have

(µ1 + µ2)(x1 + x2) = sup{C(µ1(y1 + y2), µ2(z1 + z2)) | x1 + x2 = y1 + y2 + z1 + z2}
≤ sup{C(C(µ1(y1), µ1(y2)), C(µ2(z1), µ2(z2))) | x1 + x2 = y1 + z1 + (y2 + z2)}
= sup{C(C(µ1(y1), µ2(z1)), C(µ1(y2), µ2(z2))) | x1 + x2 = y1 + z1 + (y2 + z2)}
= C(sup{C(µ1(y1), µ2(z1))|x1 = y1 + z1}, sup{C(µ1(y2), µ2(z2))|x2 = y2 + z2})
= C((µ1 + µ2)(x1), (µ1 + µ2)(x2)).

(2) Let x, y, z ∈ V, then

(µ1 + µ2)(−x) = sup{C(µ1(−y), µ2(−z)) | − x = −y + (−z)}
≤ sup{C(µ1(y), µ2(z)) | x = y + z}
= (µ1 + µ2)(x) .

(3) Let x, y, z ∈ V and a ∈ F, then

(µ1 + µ2)(ax) = sup{C(µ1(ay), µ2(az)) | ax = ay + az}
≤ sup{C(µ1(y), µ2(z)) | x = y + z}
= (µ1 + µ2)(x) .

Thus (µ1 + µ2) ∈ AFC(V).
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Definition 8. Let µ1, µ2 ∈ AFC(V) then by union of fuzzy subsets µ1 and µ1 with respect to a t-conorm C, we
mean the fuzzy subset µ = µ1 ∪ µ2 such that for any x ∈ V, µ(x) = (µ1 ∪ µ2)(x) = C(µ1(x), µ2(x)).

Theorem 18. If µ1, µ2 ∈ AFC(V), then µ1 ∪ µ2 ∈ AFC(V).

Proof. Let x, y ∈ V and a ∈ F. Then by using Lemma 1, we have

(1) (µ1 ∪ µ2)(x + y) = C(µ1(x + y), µ2)(x + y) ≤ C(C(µ1(x), µ1(y)), C(µ2(x), µ2(y)))
= C(C(µ1(x), µ2(x)), C(µ1(y), µ2(y))) = C((µ1 ∪ µ2)(x), (µ1 ∪ µ2)(y)) .

(2) (µ1 ∪ µ2)(−x) = C(µ1(−x), µ2(−x)) ≤ C(µ1(x), µ2(x)) = (µ1 ∪ µ2)(x).
(3) (µ1 ∪ µ2)(ax) = C(µ1(ax), µ2(ax)) ≤ C(µ1(x), µ2(x)) = (µ1 ∪ µ2)(x).

Thus µ1 ∪ µ2 ∈ AFC(V).

Definition 9. Let {µi}i∈I be a family of fuzzy subspaces of V under t-conorm C. Then their union µ = ∪i∈Iµi :
V → [0, 1] is defined by µ(x) = supi∈I µi(x) for all x ∈ V.

Theorem 19. Let {µi}i∈I ⊆ AFC(V), then µ = ∪i∈Iµi ∈ AFC(V).

Proof. Let x, y ∈ V and a ∈ F. Then

(1) µ(x + y) = supi∈I µi(x + y) ≤ supi∈I C(µi(x), µi(y)) = C(supi∈I µi(x), supi∈I µi(y)) = C(µ(x), µ(y)).
(2) µ(−x) = supi∈I µi(−x) ≤ supi∈I µi(x) = µ(x).
(3) µ(ax) = supi∈I µi(ax) ≤ supi∈I µi(x) = µ(x).

Therefore µ = ∪i∈Iµi ∈ AFC(V).

Definition 10. For µ1 ∈ AFC(V1) and µ2 ∈ AFC(V2), the direct sum of µ1 and µ2 is denoted by µ1 ⊕ µ2 :
V1 ⊕V2 → [0, 1] and is defined by (µ1 ⊕ µ2)(x1, x2) = C(µ1(x1), µ2(x2)) for all x1 ∈ V1 and x2 ∈ V2.

Theorem 20. Let µ1 ∈ AFC(V1) and µ2 ∈ AFC(V2), then µ1 ⊕ µ2 ∈ AFC(V1 ⊕V2).

Proof. Let (x1, y1), (x2, y2) ∈ V1 ⊕V2 and a ∈ F. Then by using Lemma 1, we have

(1) (µ1 ⊕ µ2)((x1, y1) + (x2, y2)) = (µ1 ⊕ µ2)(x1 + x2, y1 + y2) = C(µ1(x1 + x2), µ2(y1 + y2))

≤ C(C(µ1(x1), µ1(x2)), C(µ2(y1), µ2(y2))) = C(C(µ1(x1), µ2(y1)), C(µ1(x2), µ2(y2)))

= C((µ1 ⊕ µ2)(x1, y1), (µ1 ⊕ µ2)(x2, y2)).
(2) (µ1 ⊕ µ2)(−(x1, y1)) = (µ1 ⊕ µ2)(−x1,−y1) = C(µ1(−x1), µ2(−y1)) ≤ C(µ1(x1), µ2(y1))

= (µ1 ⊕ µ2)(x1, y1).
(3) (µ1 ⊕ µ2)(a(x1, y1)) = (µ1 ⊕ µ2)(ax1, ay1) = C(µ1(ax1), µ2(ay1)) ≤ C(µ1(x1), µ2(y1))

= (µ1 ⊕ µ2)(x1, y1).

Then µ1 ⊕ µ2 ∈ AFC(V1 ⊕V2).

Theorem 21. Let C be an idempotent t-conorm and 0V1 and 0V2 are identity elements of V1 and V2, respectively. If
µ1 ⊕ µ2 ∈ AFC(V1 ⊕V2), then (µ1 ⊕ µ2)(0V1 , 0V2) ≤ (µ1 ⊕ µ2)(x, y) for all (x, y) ∈ V1 ⊕V2.

Proof. Let (x, y) ∈ V1 ⊕ V2. Then by Theorem 6, we have (µ1 ⊕ µ2)(0V1 , 0V2) = C(µ1(0V1), µ2(0V2)) ≤
C(µ1(x), µ2(y)) = (µ1 ⊕ µ2)(x, y).

Theorem 22. Let µ1 : V1 → [0, 1] and µ2 : V2 → [0, 1] are two fuzzy subsets of the vector spaces V1 and V2,
respectively and 0V1 and 0V2 are the identity elements of V1 and V2, respectively. Let C be an idempotent t-conorm and
µ1 ⊕ µ2 ∈ AFC(V1 ⊕V2), then at least one of the following two statements must hold:

(1) µ2(0V2) ≤ µ1(x) for all x ∈ V1.
(2) µ1(0V1) ≤ µ2(y) for all y ∈ V2.

Proof. Let µ1 ⊕ µ2 ∈ AFC(V1 ⊕ V2). Suppose on contrary, none of the statement (1) and (2) holds. Then
we can find z ∈ V1 and t ∈ V2 such that µ1(z) < µ2(0V2) and µ2(t) < µ1(0V1). Then (µ1 ⊕ µ2)(z, t) =

C(µ1(z), µ2(t)) < C(µ2(0V2), µ1(0V1)) = C(µ1(0V1), µ2(0V2)) = (µ1 ⊕ µ2)(0V1 , 0V2).
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Now from Theorem 6, we get µ1⊕ µ2 /∈ AFC(V1⊕V2), a contradiction. Therefore, either µ2(0V2) ≤ µ1(x)
for all x ∈ V1 or µ1(0V1) ≤ µ2(y) for all y ∈ V2.

Theorem 23. Let µ1 : V1 → [0, 1] and µ2 : V2 → [0, 1] are two fuzzy subsets of the vector spaces V1 and V2,
respectively and 0V1 and 0V2 are the identity elements of V1 and V2, respectively. Let C be an idempotent t-conorm and
µ1 ⊕ µ2 ∈ AFC(V1 ⊕V2), then the following statements holds:

(1) if µ1(x) ≥ µ2(0V2) for all x ∈ V1, then µ1 ∈ AFC(V1);
(2) if µ2(x) ≥ µ1(0V1) for all x ∈ V2, then µ2 ∈ AFC(V2);
(3) either µ1 ∈ AFC(V1) or µ2 ∈ AFC(V2).

Proof. (1) Let x, y ∈ V1, a ∈ F and µ1 ⊕ µ2 ∈ AFC(V1 ⊕ V2). We will prove µ1 ∈ AFC(V1). As
µ1(x) ≥ µ2(0V2), so µ1(x + y) ≥ µ2(0V2) for all x, y ∈ V1. Now µ1(x + y) = C(µ1(x + y), µ2(0V2)) =

C(µ1(x + y), µ2(0V2 + 0V2)) = (µ1 ⊕ µ2)(x + y, 0V2 + 0V2) = (µ1 ⊕ µ2)((x, 0V2) + (y, 0V2)) ≤ C((µ1 ⊕
µ2)(x, 0V2), (µ1 ⊕ µ2)(y, 0V2)) = C(C(µ1(x), µ2(0V2)), (C(µ1(y), µ2(0V2))) = C(µ1(x), µ1(y)). Therefore,
µ1(x + y) ≤ C(µ1(x), µ1(y)).

Also, since µ1(x) ≥ µ2(0V2), so µ1(−x) ≥ µ2(0V2) for all x ∈ V1 and then µ1(−x) =

C(µ1(−x), µ2(0V2)) = (µ1 ⊕ µ2)(−x, 0V2) = (µ1 ⊕ µ2)(−(x, 0V2)) ≤ (µ1 ⊕ µ2)(x, 0V2) =

C(µ1(x), µ2(0V2)) = µ1(x).

Also, by using µ1(x) ≥ µ2(0V2), we get µ1(ax) ≥ µ2(0V2) for all x ∈ V1 and a ∈ F. Now
µ1(ax) = C(µ1(ax), µ2(0V2)) = (µ1 ⊕ µ2)(ax, 0V2) = (µ1 ⊕ µ2)(a(x, 0V2)) ≤ (µ1 ⊕ µ2)(x, 0V2) =

C(µ1(x), µ2(0V2)) = µ1(x) therefore, µ1(ax) ≤ µ1(x). Hence µ1 ∈ AFC(V1).
(2) The proof is similar as of (1).
(3) It is obvious.

Definition 11. Let V be a space over field F, W be a subspace of V and µW : W → [0, 1] be a fuzzy subspace.
Define µ V

W
: V

W → [0, 1] as:

µ V
W
(x + W) =

{
C(µW(x), µW(w)) if x 6= w

0 if x = w

for all x ∈ V and w ∈W.

Theorem 24. In definition 11, if C be idempotent t-conorm and µW ∈ AFC(W), then µ V
W
∈ AFC( V

W ).

Proof. Let x + W, y + W ∈ V
W such that x, y 6= w and a ∈ F. Then

(1) Since C is idempotent, so by Lemma 1, we have

µ V
W
((x + W) + (y + W)) = µ V

W
(x + y + W)

= C(µW(x + y), µW(w))

≤ C(C(µW(x), µW(y)), µW(w))

= C(C(µW(x), µW(y)), C(µW(w), µW(w)))

= C(C(µW(x), µW(w)), C(µW(y), µW(w)))

= C(µ V
W
(x + W), µ V

W
(y + W)).

(2) µ V
W
(−x + W) = C(µW(−x), µW(w)) ≤ C(µW(x), µW(w)) = µ V

W
(x + W).

(3) µ V
W
(ax + W) = C(µW(ax), µW(w)) ≤ C(µW(x), µW(w)) = µ V

W
(x + W).

Then µ V
W
∈ AFC( V

W ).

Definition 12. Let µ ∈ AFC(V), we say that µ is normal if there exists x ∈ V such that µ(x) = 1.

Note that if µ normal, then µ(0) = 1, hence µ is a normal if and only if µ(0) = 1. The set of all normal anti
fuzzy subspaces of V under t-conorm C is denoted by NAFC(V).
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Theorem 25. Let µ ∈ AFC(V) and µ́ : V → [0, 1] be a fuzzy set defined by µ̂(x) = µ(x) + 1− µ(0) for all x ∈ V.
Then µ̂ ∈ NFST(V).

Proof. Let x, y ∈ V and a ∈ F. Then

(1) µ̂(x + y) = µ(x + y) + 1− µ(0) ≤ C(µ(x), µ(y)) + 1− µ(0) = C(µ(x) + 1− µ(0), µ(y) + 1− µ(0))
= C(µ̂(x), µ̂(y)).

(2) µ̂(−x) = µ(−x) + 1− µ(0) ≤ µ(x) + 1− µ(0) = µ̂(x).
(3) µ̂(ax) = µ(ax) + 1− µ(0) ≤ µ(x) + 1− µ(0) = µ̂(x).

Thus µ̂ ∈ AFC(V). Also, µ̂(0) = µ(0) + 1− µ(0) = 1. Therefore µ̂ ∈ NAFC(V).

Theorem 26. Let µ ∈ AFC(V). Then µ ∈ NAFC(V) if and only if µ̂ = µ.

Proof. Let µ ∈ NAFC(V) then µ(0) = 1 and then µ̂(x) = µ(x) + 1− µ(0) = µ(x) + 1− 1 = µ(x) for all x ∈ V.
Conversely, let µ̂ = µ and from Theorem 17, we have that µ̂ ∈ NAFC(V) and so µ ∈ NAFC(V).

Theorem 27. Let µ ∈ AFC(V) and µ̄ : V → [0, 1] be a fuzzy set defined by µ̄(x) =
µ(x)
µ(0)

for all x ∈ V with µ(0) 6= 0.

Then µ̄ ∈ NAFC(V).

Proof. Let x, y ∈ V and a ∈ F. Then

(1) µ̄(x + y) = µ(x+y)
µ(0) ≤

C(µ(x), µ(y))
µ(0)

= C(
µ(x)
µ(0)

,
µ(y)
µ(0)

) = C(µ̄(x), µ̄(y)).

(2) µ̄(−x) = µ(−x)
µ(0) ≤

µ(x)
µ(0) = µ̄(x).

(3) µ̄(ax) = µ(ax)
µ(0) ≤

µ(x)
µ(0) = µ̄(x).

Thus µ̄ ∈ AFC(V). Also, µ̄(0) =
µ(0)
µ(0)

= 1. Hence µ̄ ∈ NAFC(V).

5. Linear transformations over anti fuzzy vector spaces under t-conorms

Definition 13. Let f : V → W be a linear transformation over the field F. Let µ ∈ [0, 1]V and ν ∈ [0, 1]W .
Define f (µ) ∈ [0, 1]W and f−1(ν) ∈ [0, 1]V as:

f (µ)(w) =

{
inf{µ(v) | v ∈ V, f (v) = w} if f−1(w) 6= ∅;

0 if f−1(w) = ∅.

Also f−1(ν)(v) = ν( f (v)).

Theorem 28. Let f be an epimorphism linear transformation from vector space V into vector space W over field F. If
µ ∈ AFC(V), then f (µ) ∈ AFC(W).

Proof. (1) Let w1, w2 ∈W. Then

f (µ)(w1 + w2) = inf{µ(v1 + v2) | v1, v2 ∈ V, f (v1) = w1, f (v2) = w2}
≤ inf{C(µ(v1), µ(v2)) | v1, v2 ∈ V, f (v1) = w1, f (v2) = w2}
= C(inf{µ(v1) | f (v1) = w1}, inf{µ(v2) | f (v2) = w2})
= C( f (µ)(w1), f (µ)(w2)).

(2)

f (µ)(−w) = inf{µ(−v) | v ∈ V, f (−v) = −w}
= inf{µ(−v) | v ∈ V,− f (v) = −w}
≤ inf{µ(v) | v ∈ V, f (v) = w} = f (µ)(w).
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(3) Let v ∈ V and a ∈ F. Now

f (µ)(aw) = inf{µ(av) | av ∈ V, f (av) = aw}
≤ inf{µ(v) | v ∈ V, a f (v) = aw}
= inf{µ(v) | v ∈ V, f (v) = w}
= f (µ)(w).

Therefore f (µ) ∈ AFC(W).

Theorem 29. Let f be an epimorphism linear transformation from vector space V into vector space W over field F. If
µ ∈ NAFC(V), then f (µ) ∈ NAFC(W).

Proof. By Theorem 28, we have f (µ) ∈ AFC(W). Suppose that 0V and 0W are the identity elements of V and
W, respectively. Since µ ∈ NAFC(V) so µ(0V) = 1 and then

f (µ)(0W) = inf{µ(0V) | 0V ∈ V, f (0V) = 0W}
= inf{1 | 0V ∈ V, f (0V) = 0W}
= 1.

Hence f (µ) ∈ NAFC(W).

Theorem 30. Let f be a linear transformation from vector space V into vector space W over field F. If ν ∈ AFC(W),
then f−1(ν) ∈ AFC(V).

Proof. (1) Let v1, v2 ∈ V. Then

f−1(ν)(v1 + v2) = ν( f (v1 + v2))

= ν( f (v1) + f (v2))

≤ C(ν( f (v1), ν( f (v2))

= C( f−1(ν)(v1), f−1(ν)(v2)).

(2) Let v ∈ V. Then
f−1(ν)(−v) = ν( f (−v)) = ν(− f (v)) ≤ ν( f (v)) = f−1(ν)(v).

(3) Let v ∈ V and a ∈ F. Then

f−1(ν)(av) = ν( f (av)) = ν(a f (v)) ≤ ν( f (v)) = f−1(ν)(v).

Thus f−1(ν) ∈ AFC(V).

Theorem 31. Let f be a linear transformation from vector space V into vector space W over field F. If ν ∈ NAFC(W),
then f−1(ν) ∈ NAFC(V).

Proof. Theorem 30 gives us f−1(ν) ∈ AFC(V). Suppose that 0V and 0W be the identity elements of V and
W, respectively. As ν ∈ NAFC(W) so ν(0W) = 1 and then f−1(ν)(0V) = ν( f (0V)) = ν(0W) = 1. Thus
f−1(ν) ∈ NAFC(V).
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