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Abstract: In this paper, we study the existence of positive solutions for boundary value problem of sixth-order
elastic beam equation of the form−u(6)(t) = q(t) f (t, u(t), u

′
(t), u

′′
(t), u

′′′
(t), u(4)(t), u(5)(t)), 0 < t < 1, with

conditions u(0) = u
′
(1) = u

′′
(0) = u

′′′
(1) = u(4)(0) = u(5)(1) = 0, where f ∈ C([0, 1]× [0, ∞)× [0, ∞)×

(−∞, 0]× (−∞, 0]× [0, ∞)× [0, ∞)→ [0, ∞)). The boundary conditions describe the deformation of an elastic
beam simply supported at left and clamped at right by sliding clamps. We give sufficient conditions that
allow us to obtain the existence of positive solution. The main tool used in the proof is the Leray-Schauder
nonlinear alternative and Leray-Schauder fixed point theorem. As an application, we also give example to
illustrate the results obtained.

Keywords: Green’s function, positive solution, Leary-Schauder nonlinear alternative, fixed point theorem,
boundary value problem.
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1. Introduction

T he study differential equations arise in variety of different areas of applied mathematics, physics and
many applications of engineering and sciences. For example, the deformations of an elastic beam are

described by a differential equation, often referred as the beam equation, see [1–3] and references therein for
more details. Wuest [4] derived a model for beams and pipes that leads to a sixth-order differential equation.

Many authors studied the existence of positive solutions for sixth-order boundary value problem using
different methods, for example, minimization theorem, global bifurcation theorem, operator spectral theorem
and fixed point theorem in cone, see [5–10] and the references therein.

Also, in papers [11–15] the authors proved the existence of solutions for higher-order (2m-th-order)
m-point boundary value problem

u(2m)(t) = f (t, u(t), u
′
(t), ...., u(2m−2)(t), u(2m−1)(t)), 0 ≤ t ≤ 1,

u(2i)(0) = u(2i)(1) = 0. 0 ≤ i ≤ m− 1,

where (−1)n f : (0, 1)×Rn → [0, ∞).
Recently in 2016, Mirzei [16] studied the existence and nonexistence of positive solution for sixth-order

boundary value problems (SBVP):

−u(6)(t) = λ f (t, u(t)), 0 < t < 1.

u(0) = u
′
(0) = u

′′
(0) = 0, u(1) = u

′
(1) = u

′′
(1) = 0,

where λ is a parameter, f : [0, 1]× [0, ∞)→ [0, ∞). The method used is the fixed point theorem in cones.
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The aim of this paper is to establish some sufficient conditions for the existence of positive solutions for
boundary value problem of sixth-order elastic beam equation (SBVP):

−u(6)(t) = q(t) f (t, u(t), u
′
(t), u

′′
(t), u

′′′
(t), u(4)(t), u(5)(t)), 0 < t < 1. (1)

u(0) = u
′
(1) = u

′′
(0) = u

′′′
(1) = u(4)(0) = u(5)(1) = 0, (2)

where q : [0, 1] → [0, ∞), f : [0, 1] × [0, ∞) × [0, ∞) × (−∞, 0] × (−∞, 0] × [0, ∞) × [0, ∞) → [0, ∞), are
continuous.

This article is organized as follows. In Section 2, we present some definitions that will be used to prove the
main results. In Section 3, we prove our main results which consists of existence theorems for positive solution
of the BVP (1-2) without imposing any nonnegativity condition on f . Also, we establish some existence criteria
of at least one positive solution by using the Leray-Schauder nonlinear alternative and Leray-Schauder fixed
point theorem. Finally, in Section 4, as an application, we give an example to illustrate the results we obtained.

2. Preliminaries

In this section, we present some definitions, Leray-Schauder nonlinear alternative and Leray-Schauder
fixed point theorem.

Definition 1. Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called a cone of E if it
satisfies the following two conditions:
(1) x ∈ P, λ > 0 implies λx ∈ P,
(2) x ∈ P,−x ∈ P implies x = 0.

Definition 2. An operator is called completely continuous if it is continuous and maps bounded sets into
precompact sets.

Definition 3. Suppose P is a cone in a Banach space E. The map α is a nonnegative continuous concave
functional on P provided α : P→ [0, ∞) is continuous and

α(rx + (1− r)y) ≥ rα(x) + (1− r)α(y)

for all x, y ∈ P and r ∈ [0, 1].
Similarly, a map β is nonnegative continuous convex functional on P provided β : P → [0, ∞) is

continuous and
β(rx + (1− r)y) ≤ rβ(x) + (1− r)β(y)

for all x, y ∈ P and r ∈ [0, 1].

We shall use the well-known Leray-Schauder fixed point theorem and Leray-Schauder nonlinear
alternative to search for positive solution of the problem (1-2).

Theorem 1. [17,18] Let E be Banach space and Ω be a bounded open subset of E, 0 ∈ Ω. Let T : Ω→ E be a completely
continuous operator. Then, either
(i) there exists u ∈ ∂Ω and λ > 1 such that T(u) = λu, or
(ii) there exists a fixed point u∗ ∈ Ω.

3. Mains results

In this section, we shall impose growth conditions on f , which allow us to apply Leray-Schauder
nonlinear alternative, and Leray-Schauder fixed point theorem to establish the existence of at least one positive
solution to the SBVP (1-2), and we assume that q(t) ≡ 1.

Lemma 1. Let E = {u ∈ C5([0, 1]) : u(0) = u
′
(1) = u

′′
(0) = u

′′′
(1) = u(4)(0) = 0} be the Banach space equipped

with the maximum norm
‖u‖ = max{|u|0, |u′ |0, |u′′ |0, |u′′′ |0, |u(4)|0, |u(5)|0},
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where |u|0 = max0≤t≤1 |u(t)|. Then for any u ∈ E, we have

‖u‖ = |u(5)|0 and |u|0 ≤
2

15
‖u‖, |u′ |0 ≤

5
24
‖u‖, |u′′ |0 ≤

1
3
‖u‖, |u′′′ |0 ≤

1
2
‖u‖, |u(4)|0 ≤ ‖u‖.

Proof. Let G(t, s) be the Green’s function of fifth-order homogeneous boundary value problem

u(5)(t) = 0, 0 < t < 1,

with u(0) = u
′
(1) = u

′′
(0) = u

′′′
(1) = u(4)(0) = 0. Then

G(t, s) =
1

24


(t4 + s4) + [6s2t− 12s2 + 4(2− t2)]s, 0 ≤ s ≤ t ≤ 1,

[4s3 + 4t2s− 12s2 + 4(2− t2)]t, 0 ≤ t ≤ s ≤ 1.
(3)

By (3), it is easy to see that

G(t, s) ≥ 0,
∂G(t, s)

∂t
≥ 0,

∂2G(t, s)
∂t2 ≤ 0,

∂3G(t, s)
∂t3 ≤ 0,

∂4G(t, s)
∂t4 ≥ 0, (4)

and ∫ 1

0
|G(t, s)|ds =

∫ 1

0
G(t, s)ds =

1
120

t5 − 1
12

t3 +
5

24
t,∫ 1

0
|∂G(t, s)

∂t
|ds =

∫ 1

0

∂G(t, s)
∂t

ds =
1
24

t4 − 1
4

t2 +
5
24

,∫ 1

0
|∂

2G(t, s)
∂t2 |ds = −

∫ 1

0

∂2G(t, s)
∂t2 ds = −1

6
t3 +

1
2

t,∫ 1

0
|∂

3G(t, s)
∂t3 |ds = −

∫ 1

0

∂3G(t, s)
∂t3 ds = −1

2
t2 +

1
2

,∫ 1

0
|∂

4G(t, s)
∂t4 |ds =

∫ 1

0

∂4G(t, s)
∂t4 ds = t.

From which we get

max
0≤t≤1

∫ 1

0
|G(t, s)|ds =

2
15

,

max
0≤t≤1

∫ 1

0
|∂G(t, s)

∂t
|ds =

5
24

,

max
0≤t≤1

∫ 1

0
|∂

2G(t, s)
∂t2 |ds =

1
3

,

max
0≤t≤1

∫ 1

0
|∂

3G(t, s)
∂t3 |ds =

1
2

,

max
0≤t≤1

∫ 1

0
|∂

4G(t, s)
∂t4 |ds = 1.

Let u ∈ E and ‖u‖ = r. Then

u(t) =
∫ 1

0
G(t, s)[u(5)(s)]ds,

u
′
(t) =

∫ 1

0

∂G(t, s)
∂t

[u(5)(s)]ds,

u
′′
(t) =

∫ 1

0

∂2G(t, s)
∂t2 [u(5)(s)]ds,

u
′′′
(t) =

∫ 1

0

∂3G(t, s)
∂t3 [u(5)(s)]ds,

u(4)(t) =
∫ 1

0

∂4G(t, s)
∂t4 [u(5)(s)]ds.
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Thus

|u|0 ≤ max
0≤t≤1

∫ 1

0
|G(t, s)||u(5)(s)|ds ≤ |u(5)|0 max

0≤t≤1

∫ 1

0
|G(t, s)|ds =

2
15
|u(5)|0,

|u′ |0 ≤ max
0≤t≤1

∫ 1

0
|∂G(t, s)

∂t
||u(5)(s)|ds ≤ |u(5)|0 max

0≤t≤1

∫ 1

0
|∂G(t, s)

∂t
|ds =

5
24
|u(5)|0,

|u′′ |0 ≤ max
0≤t≤1

∫ 1

0
|∂

2G(t, s)
∂t2 ||u(5)(s)|ds ≤ |u(5)|0 max

0≤t≤1

∫ 1

0
|∂

2G(t, s)
∂t2 |ds =

1
3
|u(5)|0,

|u′′′ |0 ≤ max
0≤t≤1

∫ 1

0
|∂

3G(t, s)
∂t3 ||u(5)(s)|ds ≤ |u(5)|0 max

0≤t≤1

∫ 1

0
|∂

3G(t, s)
∂t3 |ds =

1
2
|u(5)|0,

|u(4)|0 ≤ max
0≤t≤1

∫ 1

0
|∂

4G(t, s)
∂t4 ||u(5)(s)|ds ≤ |u(5)|0 max

0≤t≤1

∫ 1

0
|∂

4G(t, s)
∂t4 |ds = |u(5)|0.

So, |u(5)|0 = ‖u‖ = r and the proof is completed.

Theorem 2. Suppose that f ∈ C([0, 1] × [0, ∞) × [0, ∞) × (−∞, 0] × (−∞, 0] × [0, ∞) × [0, ∞), [0, ∞)) and
f (t, 0, 0, 0, 0, 0, 0) 6= 0, t ∈ [0, 1]. Suppose there exist nonnegative functions ai ∈ L1[0, 1], i = 0, 1, 2, 3, 4, 5, 6,
such that

B =
2

15

∫ 1

0
a0(s)ds +

5
24

∫ 1

0
a1(s)ds +

1
3

∫ 1

0
a2(s)ds +

1
2

∫ 1

0
a3(s)ds +

∫ 1

0
a4(s)ds +

∫ 1

0
a5(s)ds < 1, (5)

and for any (t, u0, u1, u2, u3, u4, u5) ∈ [0, 1]× [0, 2
15 ρ]× [0, 5

24 ρ]× [− 1
3 ρ, 0]× [− 1

2 ρ, 0]× [0, ρ]× [0, ρ], f satisfies

f (t, u0, u1, u2, u3, u4, u5) ≤ a0(t)u0 + a1(t)u1 − a2(t)u2 − a3(t)u3 + a4(t)u4 + a5(t)u5 + a6(t), (6)

where ρ = A(1 − B)−1, A =
∫ 1

0 a6(s)ds. Then problem (1-2) has at least one positive solution u∗ ∈ C6([0, 1])
such that 15

2 max0≤t≤1 u∗(t) ≤ 24
5 max0≤t≤1(u∗)

′
(t) ≤ 3 max0≤t≤1[−(u∗)

′′
(t)] ≤ 2 max0≤t≤1[−(u∗)

′′′
(t)] ≤

max0≤t≤1(u∗)(4)(t) ≤ max0≤t≤1(u∗)(5)(t) ≤ ρ.

Proof. Since f (t, 0, 0, 0, 0, 0, 0) 6= 0 and | f (t, 0, 0, 0, 0, 0, 0)| ≤ a6(t), t ∈ [0, 1], we have A =
∫ 1

0 a6(s)ds > 0, so,
it follows from (5) that ρ > 0. From Equation (1) and boundary condition u(5)(1) = 0, we have

u(5)(t) =
∫ 1

t
f (τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ), u(5)(τ))dτ,

which implies that

u(t) =
∫ 1

0
G(t, s)

∫ 1

s
f (τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ), u(5)(τ))dτds, t ∈ [0, 1],

where G(t, s) is defined by (3). Let Ωρ = {u ∈ E, ‖u‖ < ρ}, then Ωρ is a bounded closed convex set of E and
0 ∈ Ωρ. For u ∈ Ωρ, define the operator T by

(Tu)(t) =
∫ 1

0
G(t, s)

∫ 1

s
f (τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ), u(5)(τ))dτds. (7)

Then

(Tu)
′
(t) =

∫ 1

0

∂G(t, s)
∂t

∫ 1

s
f (τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ), u(5)(τ))dτds,

(Tu)
′′
(t) =

∫ 1

0

∂2G(t, s)
∂t2

∫ 1

s
f (τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ), u(5)(τ))dτds

(Tu)
′′′
(t) =

∫ 1

0

∂3G(t, s)
∂t3

∫ 1

s
f (τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ), u(5)(τ))dτds,

(Tu)(4)(t) =
∫ 1

0

∂4G(t, s)
∂t4

∫ 1

s
f (τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ), u(5)(τ))dτds,

(Tu)(5)(t) =
∫ 1

t
f (τ, u(τ), u

′
(τ), u

′′
(τ), u

′′′
(τ), u(4)(τ), u(5)(τ))dτ, t ∈ [0, 1].
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So, (Tu)(0) = (Tu)
′
(1) = (Tu)

′′
(0) = (Tu)

′′′
(1) = (Tu)(4)(0) = (Tu)(5)(1) = 0. Therefore, T : Ωρ → E. By

Ascoli-Arzela Theorem, it is easy to know that this operator T : Ωρ → E is a completely continuous operator.
So, the problem (1-2) has a solution u = u(t) if and only if u solves the operator equation Tu = u.

Suppose there exists u ∈ ∂Ωρ, λ > 1 such that Tu = λu. Noticing that ‖u‖ = ρ, it follows from Lemma
that

|u|0 ≤
2

15
ρ, |u′ |0 ≤

5
24

ρ, |u′′ |0 ≤
1
3

ρ, |u′′′ |0 ≤
1
2

ρ, |u(4)|0 ≤ ρ, |u(5)|0 = ρ.

Thus from (5), (6) and (7), we have

λρ = λ‖u‖ = ‖Tu‖ = max
0≤t≤1

|u(5)(t)|

= max
0≤t≤1

∣∣∣∣∫ 1

t
f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

∣∣∣∣
= max

0≤t≤1

∫ 1

t
f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

=
∫ 1

0
f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

≤
∫ 1

0

[
a0(s)u(s) + a1(s)u

′
(s)− a2(s)u

′′
(s)− a3(s)u

′′′
(s) + a4(s)u(4)(s) + a5(s)u(5)(s) + a6(s)

]
ds

≤
∫ 1

0

[
2
15

a0(s)ρ +
5

24
a1(s)ρ +

1
3

a2(s)ρ +
1
2

a3(s)ρ + a4(s)ρ + a5(s)ρ + a6(s)
]

ds

=

[
2

15

∫ 1

0
a0(s)ds +

5
24

∫ 1

0
a1(s)ds +

1
3

∫ 1

0
a2(s)ds +

1
2

∫ 1

0
a3(s)ds +

∫ 1

0
a4(s)ds +

∫ 1

0
a5(s)ds

]
ρ

+
∫ 1

0
a6(s)ds

= Bρ + A = Bρ + (1− B)ρ = ρ,

a contradiction. So, by Theorem 1, T has a fixed point u∗ ∈ E, which is a solution of the problem (1-2). Noticing
that f (t, 0, 0, 0, 0, 0, 0) 6= 0, we assert that u = 0 is not a solution of the (1-2), therefore, |u∗|0 > 0. It follows
from (4) that u∗(t) is nondecreasing and concave on [0, 1], thus u∗(t) ≥ t|u∗|0 > 0 for t ∈ [0, 1], i.e., u∗(t) is a
positive solution of the problem (1-2). This completes the proof.

Lemma 2. The Green’s function of the sixth-order homogeneous equation −u(6)(t) = 0, t ∈ [0, 1], with boundary
conditions (2) is

G(t, s) =
1

120


[s2(s2 + 10t2 − 20t) + 20t(2− t2) + 5t4]s, 0 ≤ s ≤ t ≤ 1,

[t2(t2 + 10s2 − 20s) + 20s(2− s2) + 5s4]t, 0 ≤ t ≤ s ≤ 1,
(8)

and for any t, s ∈ [0, 1],

G(t, s) ≥ 0,
∂G(t, s)

∂t
≥ 0,

∂2G(t, s)
∂t2 ≤ 0,

∂3G(t, s)
∂t3 ≤ 0,

∂4G(t, s)
∂t4 ≥ 0,

∂5G(t, s)
∂t5 ≥ 0. (9)

Theorem 3. Assume that f ∈ C([0, 1] × [0, ∞) × [0, ∞) × (−∞, 0] × (−∞, 0] × [0, ∞) × [0, ∞), [0, ∞)) and
f (t, 0, 0, 0, 0, 0, 0) 6= 0, t ∈ [0, 1]. Suppose that there exists positive number d > 0 such that

max
{

f (t, u0, u1, u2, u3, u4, u5) : (t, u0, u1, u2, u3, u4, u5) ∈ [0, 1]× [0, d]×
[

0,
96
61

d
]

×
[
−150

61
d, 0
]
×
[
−240

61
d, 0
]
×
[

0,
360
61

d
]
×
[

0,
720
61

d
]}
≤ 720

61
d. (10)

Then the problem (1-2) has at least one positive solution u∗ ∈ C6([0, 1]) such that

0 ≤ u∗(t) ≤ d, 0 ≤ (u∗)
′
(t) ≤ 96

61
d, − 150

61
d ≤ (u∗)

′′
(t) ≤ 0,
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−240
61

d ≤ (u∗)
′′′
(t) ≤ 0, 0 ≤ (u∗)(4)(t) ≤ 360

61
d, 0 ≤ (u∗)(5)(t) ≤ 720

61
d, t ∈ [0, 1].

Proof. From (8) and after direct computations, we easily get

∫ 1

0
|G(t, s)|ds =

∫ 1

0
G(t, s)ds = − 1

720
t6 +

1
120

t5 − 1
18

t3 +
2
15

t,∫ 1

0
|∂G(t, s)

∂t
|ds =

∫ 1

0

∂G(t, s)
∂t

ds = − 1
120

t5 +
1

24
t4 − 1

6
t2 +

2
15

,∫ 1

0
|∂

2G(t, s)
∂t2 |ds = −

∫ 1

0

∂2G(t, s)
∂t2 ds =

1
24

t4 − 1
6

t3 +
1
3

t,∫ 1

0
|∂

3G(t, s)
∂t3 |ds = −

∫ 1

0

∂3G(t, s)
∂t3 ds =

1
6

t3 − 1
2

t2 +
1
3

,∫ 1

0
|∂

4G(t, s)
∂t4 |ds =

∫ 1

0

∂4G(t, s)
∂t4 ds = −1

2
t2 + t,∫ 1

0
|∂

5G(t, s)
∂t5 |ds =

∫ 1

0

∂5G(t, s)
∂t5 ds = 1− t.

So,

max
0≤t≤1

∫ 1

0
|G(t, s)|ds =

61
720

,

max
0≤t≤1

∫ 1

0
|∂G(t, s)

∂t
|ds =

2
15

,

max
0≤t≤1

∫ 1

0
|∂

2G(t, s)
∂t2 |ds =

5
24

,

max
0≤t≤1

∫ 1

0
|∂

3G(t, s)
∂t3 |ds =

1
3

,

max
0≤t≤1

∫ 1

0
|∂

4G(t, s)
∂t4 |ds =

1
2

,

max
0≤t≤1

∫ 1

0
|∂

5G(t, s)
∂t5 |ds = 1.

Now, we consider the Banach space E = C5([0, 1]) equipped with the norm

‖u‖ = max
{
|u|0,

61
96
|u′ |0,

61
150
|u′′ |0,

61
240
|u′′′ |0,

61
360
|u(4)|0,

61
720
|u(5)|0

}
, (11)

where |u|0 = max0≤t≤1 |u(t)|, for u ∈ E define the operator T by

(Tu)(t) =
∫ 1

0
G(t, s) f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds. (12)

Then

(Tu)
′
(t) =

∫ 1

0

∂G(t, s)
∂t

f (s, u(s), u
′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds, t ∈ [0, 1],

(Tu)
′′
(t) =

∫ 1

0

∂2G(t, s)
∂t2 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds, t ∈ [0, 1],

(Tu)
′′′
(t) =

∫ 1

0

∂3G(t, s)
∂t3 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds, t ∈ [0, 1],

(Tu)(4)(t) =
∫ 1

0

∂4G(t, s)
∂t4 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds, t ∈ [0, 1],

(Tu)(5)(t) =
∫ 1

0

∂5G(t, s)
∂t5 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds, t ∈ [0, 1].
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So, (Tu)(0) = (Tu)
′
(1) = (Tu)

′′
(0) = (Tu)

′′′
(1) = (Tu)(4)(0) = (Tu)(5)(1) = 0. Therefore, by

Ascoli-Arzela Theorem, it is easy to see that this operator T : E → E is a completely continuous operator.
Problem (1-2) has a solution u = u(t) if and only if u is a fixed point of operator T defined by (12).

Let

Ωd = {u ∈ E, ‖u‖ < d, u(t) ≥ 0, u
′
(t) ≥ 0, u

′′
(t) ≤ 0, u

′′′
(t) ≤ 0, u(4)(t) ≥ 0, u(5)(t) ≥ 0, t ∈ [0, 1]},

then Ωd is a bounded closed convex set of E. If u ∈ Ωd, then by (11), we have

|u|0 ≤ d, |u′ |0 ≤
96
61

d, |u′′ |0 ≤
150
61

d, |u′′′ |0 ≤
240
61

d, |u(4)|0 ≤
360
61

d, |u(5)|0 ≤
720
61

d,

which implies

0 ≤ u(t) ≤ d, 0 ≤ u
′
(t) ≤ 96

61
d, − 150

61
d ≤ u

′′
(t) ≤ 0,

−240
61

d ≤ u
′′′
(t) ≤ 0, 0 ≤ u(4)(t) ≤ 360

61
d, 0 ≤ u(5)(t) ≤ 720

61
d, t ∈ [0, 1].

Thus (10) implies

f (t, u(t), u
′
(t), u

′′
(t), u

′′′
(t), u(4)(t), u(5)(t)) ≤ 720

61
d, t ∈ [0, 1].

Therefore,

|(Tu)|0 (t) = max
0≤t≤1

∣∣∣∣∫ 1

0
G(t, s) f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

∣∣∣∣
≤ max

0≤t≤1

∫ 1

0
G(t, s) f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

≤ 720
61

d× max
0≤t≤1

∫ 1

0
G(t, s)ds = d.

∣∣∣(Tu)
′
∣∣∣
0
(t) = max

0≤t≤1

∣∣∣∣∫ 1

0

∂G(t, s)
∂t

f (s, u(s), u
′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

∣∣∣∣
≤ max

0≤t≤1

∫ 1

0

∂G(t, s)
∂t

f (s, u(s), u
′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

≤ 720
61

d× max
0≤t≤1

∫ 1

0

∂G(t, s)
∂t

ds =
96
61

d.

∣∣∣(Tu)
′′
∣∣∣
0
(t) = max

0≤t≤1

∣∣∣∣∫ 1

0

∂2G(t, s)
∂t2 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

∣∣∣∣
= max

0≤t≤1

∫ 1

0

∣∣∣∣∂2G(t, s)
∂t2 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))

∣∣∣∣ ds

≤ 720
61

d× max
0≤t≤1

∫ 1

0

∣∣∣∣∂2G(t, s)
∂t2

∣∣∣∣ ds =
150
61

d.

∣∣∣(Tu)
′′′
∣∣∣
0
(t) = max

0≤t≤1

∣∣∣∣∫ 1

0

∂3G(t, s)
∂t3 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

∣∣∣∣
= max

0≤t≤1

∫ 1

0

∣∣∣∣∂3G(t, s)
∂t3 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))

∣∣∣∣ ds

≤ 720
61

d× max
0≤t≤1

∫ 1

0

∣∣∣∣∂3G(t, s)
∂t3

∣∣∣∣ ds =
240
61

d.
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∣∣∣(Tu)(4)
∣∣∣
0
(t) = max

0≤t≤1

∣∣∣∣∫ 1

0

∂4G(t, s)
∂t4 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

∣∣∣∣
≤ max

0≤t≤1

∫ 1

0

∂4G(t, s)
∂t4 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

≤ 720
61

d× max
0≤t≤1

∫ 1

0

∂4G(t, s)
∂t4 ds =

360
61

d.

∣∣∣(Tu)(5)
∣∣∣
0
(t) = max

0≤t≤1

∣∣∣∣∫ 1

0

∂5G(t, s)
∂t5 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

∣∣∣∣
≤ max

0≤t≤1

∫ 1

0

∂5G(t, s)
∂t5 f (s, u(s), u

′
(s), u

′′
(s), u

′′′
(s), u(4)(s), u(5)(s))ds

≤ 720
61

d× max
0≤t≤1

∫ 1

0

∂5G(t, s)
∂t5 ds =

720
61

d.

Thus

‖Tu‖ = max
{
|(Tu)|0,

61
96
|(Tu)

′ |0,
61

150
|(Tu)

′′ |0,
61

240
|(Tu)

′′′ |0,
61
360
|(Tu)(4)|0,

61
720
|(Tu)(5)|0

}
≤ d,

i.e., Tu ∈ Ωd. So, by Leray-Schauder fixed point Theorem, T has a fixed point u∗ ∈ Ωd, which is a solution of
the problem (1-2). Noticing that f (t, 0, 0, 0, 0, 0, 0) 6= 0. So, u = 0 is not a solution of the problem (1-2), therefore,
|u∗|0 > 0. From (9) we know that u∗(t) is nondecreasing and concave on [0, 1], thus u∗(t) ≥ t|u∗|0 > 0 for
t ∈ [0, 1]. So, u∗(t) is a positive solution of the problem (1-2). This completes the proof.

4. Examples

In order to illustrate the above results, we consider an example.

Example 1. Consider the following problem SBVP

−u(6) =
√

t
26 u + t15

2 u
′ − t11

4 u
′′ −

3√t
59 u

′′′
+ t4

7 u(4) + 2 5√t
5 u(5) + t3 + 1,

u(0) = u
′
(1) = u

′′
(0) = u

′′′
(1) = u(4)(0) = u(5)(1) = 0.

(13)

Set

f (t, u0, u1, u2, u3, u4, u5) =

√
t

26
u0 +

t15

2
u1 −

t11

4
u2 −

3
√

t
59

u3 +
t4

7
u4 +

2 5
√

t
5

u5 + t3 + 1,

and

a0(t) =
√

t
26

, a1(t) = t15, a2(t) =
t11

4
, a3(t) =

3
√

t
59

, a4(t) =
t4

7
, a5(t) =

2 5
√

t
5

, a6(t) = t3 + 2.

It is easy to prove that ai ∈ L1[0, 1], i = 0, 1, 2, 3, 4, 5, 6, are nonnegative functions, f (t, 0, 0, 0, 0, 0, 0) = t3 + 1 6=
0. Moreover, we have

B =
2

15

∫ 1

0
a0(s)ds +

5
24

∫ 1

0
a1(s)ds +

1
3

∫ 1

0
a2(s)ds +

1
2

∫ 1

0
a3(s)ds +

∫ 1

0
a4(s)ds +

∫ 1

0
a5(s)ds,

=
2

15

∫ 1

0

√
s

26
ds +

5
24

∫ 1

0
s15ds +

1
3

∫ 1

0

s11

2
ds +

1
2

∫ 1

0

3
√

s
59

ds +
∫ 1

0

s4

7
ds +

∫ 1

0

2 5
√

s
5

ds,

=
2

585
+

5
384

+
1

144
+

3
472

+
1

35
+

1
3
' 0, 38592443631 < 1,

and for any

(t, u0, u1, u2, u3, u4, u5) ∈ [0, 1]× [0,
2

15
ρ]× [0,

5
24

ρ]× [−1
3

ρ, 0]× [−1
2

ρ, 0]× [0, ρ]× [0, ρ],

and f satisfies

f (t, u0, u1, u2, u3, u4, u5) ≤ a0(t)u0 + a1(t)u1 − a2(t)u2 − a3(t)u3 + a4(t)u4 + a5(t)u5 + a6(t).
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where

A =
∫ 1

0
a6(s)ds =

9
4

, ρ = A(1− B)−1 ' 3, 66404418779.

Hence, by Theorem 2, the SBVP (13) has at least one positive solution u∗ in C6([0, 1]) such
that 15

2 max0≤t≤1 u∗(t) ≤ 24
5 max0≤t≤1(u∗)

′
(t) ≤ 3 max0≤t≤1[−(u∗)

′′
(t)] ≤ 2 max0≤t≤1[−(u∗)

′′′
(t)] ≤

max0≤t≤1(u∗)(4)(t) ≤ max0≤t≤1(u∗)(5)(t) ≤ ρ.
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