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Abstract: In this paper, we study the existence of positive solutions for boundary value problem of sixth-order
elastic beam equation of the form —u(®) (£) = q(¢) f(t, u(t),u’ (t),u" (£),u" (), u® (£),u®) (t)), 0 < t < 1, with
conditions #(0) = u'(1) = u" (0) = 1" (1) = u®(0) = u® (1) = 0, where f € C([0,1] x [0,00) x [0,00) X
(—00,0] x (—00,0] x [0,00) x [0,00) — [0, 00)). The boundary conditions describe the deformation of an elastic
beam simply supported at left and clamped at right by sliding clamps. We give sufficient conditions that
allow us to obtain the existence of positive solution. The main tool used in the proof is the Leray-Schauder
nonlinear alternative and Leray-Schauder fixed point theorem. As an application, we also give example to
illustrate the results obtained.

Keywords: Green’s function, positive solution, Leary-Schauder nonlinear alternative, fixed point theorem,
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1. Introduction

he study differential equations arise in variety of different areas of applied mathematics, physics and
T many applications of engineering and sciences. For example, the deformations of an elastic beam are
described by a differential equation, often referred as the beam equation, see [1-3] and references therein for
more details. Wuest [4] derived a model for beams and pipes that leads to a sixth-order differential equation.
Many authors studied the existence of positive solutions for sixth-order boundary value problem using
different methods, for example, minimization theorem, global bifurcation theorem, operator spectral theorem
and fixed point theorem in cone, see [5-10] and the references therein.
Also, in papers [11-15] the authors proved the existence of solutions for higher-order (2m-th-order)

m-point boundary value problem
wm (1) = f(tu(t),u (8), ., @2 (1), u@m (1)), 0<t <1,

u®0)=u®(1)=0. 0<i<m-1,

where (—1)"f:(0,1) x R" — [0, 00).
Recently in 2016, Mirzei [16] studied the existence and nonexistence of positive solution for sixth-order
boundary value problems (SBVP):

—u® (1) = Af(tu(t)), 0<t<1.
w0 =u'(0)=u"(0)=0, u(l)=u1)=u"(1)=0,

where A is a parameter, f : [0,1] x [0,00) — [0, c0). The method used is the fixed point theorem in cones.
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The aim of this paper is to establish some sufficient conditions for the existence of positive solutions for
boundary value problem of sixth-order elastic beam equation (SBVP):

—u® (t) = q(6) f(t,u(t),u (8),u" (),u" (1), u® (1), u®) (1), 0<t<1. (1)

u(0)=u' (1) =u" (0)=u" (1) =u®(0) =u®(1) =0, @)

%
where g : [0,1] — [0,00), f : [0,1] x [0,00) X [0,00) X (—00,0] x (—00,0] X [0,00) x [0,00) — [0,00), are
continuous.

This article is organized as follows. In Section 2, we present some definitions that will be used to prove the
main results. In Section 3, we prove our main results which consists of existence theorems for positive solution
of the BVP (1-2) without imposing any nonnegativity condition on f. Also, we establish some existence criteria
of at least one positive solution by using the Leray-Schauder nonlinear alternative and Leray-Schauder fixed
point theorem. Finally, in Section 4, as an application, we give an example to illustrate the results we obtained.

2. Preliminaries

In this section, we present some definitions, Leray-Schauder nonlinear alternative and Leray-Schauder
fixed point theorem.

Definition 1. Let E be a real Banach space. A nonempty closed convex set P C E is called a cone of E if it
satisfies the following two conditions:

(1) x € P,A>0implies Ax € P,

(2) x€P,—x € Pimplies x = 0.

Definition 2. An operator is called completely continuous if it is continuous and maps bounded sets into
precompact sets.

Definition 3. Suppose P is a cone in a Banach space E. The map « is a nonnegative continuous concave
functional on P provided « : P — [0, c0) is continuous and

a(rx+ (1 =r)y) = ra(x) + (1 -r)a(y)

forallx,y € Pandr € [0,1].
Similarly, a map B is nonnegative continuous convex functional on P provided g : P — [0,00) is
continuous and

Blrx+ (1 —=r)y) <rp(x) + (1 —1)B(y)
forallx,y € Pandr € [0,1].

We shall use the well-known Leray-Schauder fixed point theorem and Leray-Schauder nonlinear
alternative to search for positive solution of the problem (1-2).

Theorem 1. [17,18] Let E be Banach space and Q) be a bounded open subset of E, 0 € Q). Let T : QO — E be a completely
continuous operator. Then, either

(i) there exists u € Q) and A > 1 such that T(u) = Au, or

(ii) there exists a fixed point u* € Q.

3. Mains results

In this section, we shall impose growth conditions on f, which allow us to apply Leray-Schauder
nonlinear alternative, and Leray-Schauder fixed point theorem to establish the existence of at least one positive
solution to the SBVP (1-2), and we assume that g(t) = 1.

Lemmal. Let E = {u e C5([0,1]) : u(0) = u'(1) = u (0) = u" (1) = u® (0) = 0} be the Banach space equipped
with the maximum norm
ull = max{|ulo, [u'lo, |u” o, [ o, 4o, [u® o},
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where |u|y = maxo<;<1 |u(t)|. Then for any u € E, we have

2 n l
lull = 14 and |ulo < 7 |lul, w'lo < il [u']o < 5 IIuH, " lo < Sl 1 ® o < flul]-

<3
Proof. Let G(t,s) be the Green’s function of fifth-order homogeneous boundary value problem
uP()=0, 0<t<1,

with u(0) = ' (1) = u" (0) = " (1) = u®(0) = 0. Then

, (t* +s) + [6s2t — 1252 +4(2 —#?)]s, 0<s<t<1,
G(t,S) =57 (3)
[43 + 4125 — 1252 +4(2 — t2)]t, 0<t<s<l.

By (3), it is easy to see that

oG(t,s) 02G(t,s) 33G(t,s) 0*G(t,s)
> < <0, —f—> > 4
T T - @

1
/O IG(t,s)|ds

G(t,s) >0,

and

1 1
s=L1p o Llpy 2y

1

/0 ¢ 120 12 247
1

J

(t,s)d
oG (t,s) 1, 1
ot

/01|$|ds = ds = ot th_i_%
/0182(355‘15)"15 - —/()ly(;gs)ds——éﬁur;t,
[1EC) e~ [ TC),

From which we get

1
max/ |G(t,s)|ds =

0<t<1

/ |8G (t,s) _
Rt -

1 32
O<t<1/ 8t2 -

1 |83G(t ,S)
O<t<l ot3
1 |84G(t ,9)

O<t<l ot4

~

R o E_n:"\’

Nl—= W= N

~

—_

Letu € E and ||u|| = r. Then

ut) = [ G5,
W) = [ O ) s,

ot
" 192 S
u(t) = /Oa(gig')[u@(s)]ds,
o) = [ T 0 ),

w0y = [ PO )
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Thus

1 1 2
ulp < max/ 1G(t,5)|[u® (s)|ds < [u®]o max/ G(t,9)lds = o,

0<t<1 0<t<1
Wl < max [112%0 ) 6)jds < Ol max [ 1700 jas = 310,
Wlo = oo [P N 0l < o g, [P G s = S
W'l < max 1|33§g ) 114 (5)|ds < [u® ]0021351/1|83G(t's>|d5:;|u(5)0,
@l < ] 1|a4c&;§i S)HM(S)(S)MSSW |00r2?<xl/ |a4(;tis = [u®o.

So, [u®)|g = ||u|| = r and the proof is completed. [
Theorem 2. Suppose that f € C([0,1] x [0,00) x [0,00) x (—00,0] x (—00,0] x [0,00) x [0,00),[0,00)) and

£(t,0,0,0,0,0,0) # 0, t € [0,1]. Suppose there exist nonnegative functions a; € L'[0,1], i = 0,1,2,3,4,5,6,
such that

2 [ ao@ts+ 2 [ a)ds+ 2 [ a(syds+ L [ ase)ds+ [ as)ds+ [ as(s)ds <1,
_ﬁ/o ao(s) S+ﬂ/o a1(s) s+§/0 as(s) s+§/0 ﬂ3(5)5+/() a4(s) S—|—/Oa5(s) s<1, (5)

and for any (t,ug, uy, ua, uz, us, us) € [0,1] x [0, Zp] x [0, 50] x [—3p,0] x [—3p,0] x [0,p] x [0, ], f satisfies

f(t, g, un, uz, uz,ug,us) < ag(t)ug +ar(t)uy — ax(t)uz — as(t)uz + ag(t)ug + as(t)us + ag(t), (6)
where p = A(l — B)~ fo ag(s)ds. Then problem (1-2) has at least one positive solution u* € C®([0,1])
such that %2 maxo<<1u (t) < 2 maxOgtSl(”*)/(t) < B3maxp<i<r[— ()" (1] < 2maxo<p<[— ()" (1)] <

maxg<;<1(1*)® (£) < maxg<<1(u*) O (t) < p.

Proof. Since f(t,0,0,0,0,0,0) # 0and |f(#0,0,0,0,0,0)| < ag(t), t € [0,1], we have A = fo ag(s)ds > 0, so,
it follows from (5) that p > 0. From Equation (1) and boundary condition %) (1) = 0, we have

"

(1) = /tlf(r,u(T),u'(r),u”(r),u (0),u®(0),u® (1))dr,
which implies that
u(t):/OlG(f,S) /lf(T,u(T),u/(T)f”N(T)’M (1), u® (1), u® (1))drds, t € [0,1],

where G(t,s) is defined by (3). Let Oy = {u € E, [[u]| < p}, then (), is a bounded closed convex set of E and
0 € Qp. For u € ), define the operator T by

(Tu)(t) / (t,5) / Flru(), i (1), 1" (1), " (1), u® (1), u® (1)) drds. @)
Then
') = [ 20 [ f el (0, (00" (0, (), ) () s,
(Tu)'(t) = /O1 a2c;t§s / flx (o), (1), 1" (1), u® (), u® (7 )drds
)" ®) = [ TS [ pouge) il (0, (00, (0,0 (), ) 0) s,
@@ = [ ECE) [ o w0, (0,1 (0,00 ()i,

MO0 = [ feu,u @, @,
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"

So, (Tu)(0) = (Tu) (1) = (Tu)" (0) = (Tu)" (1) = (Tu)¥(0) = (Tu)®) (1) = 0. Therefore, T : Q) — E. By
Ascoli-Arzela Theorem, it is easy to know that this operator T : ()y — E is a completely continuous operator.
So, the problem (1-2) has a solution u = u(t) if and only if u solves the operator equation Tu = u.

Suppose there exists u € 00y, A > 1 such that Tu = Au. Noticing that ||u|| = p, it follows from Lemma
that

lulo < 5.0/ o < 24p, u'lo < 3.0/ "o < 50, ¥ o <p, [ =0p.

Thus from (5), (6) and (7), we have

Ap = Alfull = [|Tul —Omax u® (1)
= max / Fls,us),u' (s),u" (s), " (s),u® (s), u) (5))ds
= 0r£1ta<xl/ f(s,u(s ) (s),um(s),u(‘”(s),u(5)(s))ds

" n

< /01 [a0(s)u(s) + ar () () = ar(s)u” (s) — as ()" (5) + aa(s)u® (s) + as(s)u (s) + as(s) ] ds
< /01 {125110(S)P+ %al(S)PJr ;az( )o+ 1”3( )p+a4(s)p—|—a5(5)p+ﬂ6(5):| *

1 1 1 1 1 1
_ [/O ao(s)ds+%/o o (s)ds + az(s)ds—l—%'o as(s)ds+ [ as(s)ds+ [ a5(s)ds}p

= Bp+A=Bp+(1—-B)p=p,

a contradiction. So, by Theorem 1, T has a fixed point #* € E, which is a solution of the problem (1-2). Noticing
that f(£,0,0,0,0,0,0) # 0, we assert that # = 0 is not a solution of the (1-2), therefore, |u*|g > 0. It follows
from (4) that u*(t) is nondecreasing and concave on [0, 1], thus u*(t) > t|u*|p > 0 for t € [0,1], i.e., u*(t) is a
positive solution of the problem (1-2). This completes the proof. [

Lemma 2. The Green's function of the sixth-order homogeneous equation —u'®)(t) = 0, t € [0,1], with boundary
conditions (2) is

. [s2(s2 + 10£% — 20t) +20t(2 — t2) +5t4]s, 0 < s <t < 1,

G(t,s) = 20 8)
[t2(t? 4 105> — 20s) +20s(2 — s2) +5s4]t, 0 < t <5 <1,
and for any t,s € [0,1],
0G(t,s) 02G(t,s) 33G(t,s) 0*G(t,s) 3°G(t,s)
> > < < > > 0.
Glts) 20, a =0 S0 S0 g 20 s 20 ®)

Theorem 3. Assume that f € C([0,1] x [0,00) X [0,00) X (—00,0] X (—00,0] X [0,00) X [0,00),[0,00)) and
£(£,0,0,0,0,0,0) # 0, t € [0,1]. Suppose that there exists positive number d > 0 such that

61
x{ >, o] [ 2, 0} {0,36%] x [O,md]} <2 (10)

96
max {f(t g, Uy, Up, Uz, Ug, us) = (£, ug, Uy, Uz, us, ug, us) € [0,1] x [0,d] x [O, d}

61 61 — 6l

Then the problem (1-2) has at least one positive solution u* € C®([0,1]) such that

0<u(t) <d,0< () (1) < =d, —Dd< @) (1) <0,
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240 " 360

SZRd < )" (1) 0,02 ()W) < 2, 0< (@) () < %d, te01].

Proof. From (8) and after direct computations, we easily get

1 1 1 1,2
/ (G(t,5)lds /0 Glts)ds = =058+ 1ot ~ 80 T 150

1
/|aG’ ds = /aG(t’S)ds:—it5+i4—1t2+£
0

ot 120 24 6 15
/1 2 B _/1 aZG(t,s) Ll 1t3+1t
at2 - 0o o 24 6 3"
aGts 133G(t,s) 1 1 1
= — 20ds = 13 — Zt2 4 =
/ | o3 /o ot3 3 2 +3’
1 a4G t,s) 19%G(t,s) 1,
/ Py = /o T LA
3°G(t,s) 133G(t,s)
= =1-—t
/ | at5 /o otd ds t
So,
1 61
pmax [ 1GGs)ls = 25
aG t,s) 2
0<t<1/ = lds = 15’
/ ‘a2G (t,9) _ i
0<t<1 o247
/ ‘a?’c (t,s) 1
0<t<l 3
R )| !
0<t<1 o
1 85 .
0<t<1/ 8t5 -

Now, we consider the Banach space E = C>([0,1]) equipped with the norm

luf) = max{ julo, L1l S0, o, 2k ju®)y, SL 10,
- 07 96! 107 950 1% 107 5401™ 107 360 0 720 of-

where |u|g = maxg<;<1 |u(t)|, for u € E define the operator T by

! " n

(T)(1) = [ Glt,5)f(s,u(s), 0 (5)" 5), " (5,1 (5), ) 5) .

Then
) ()= [ 2 6 ), (5), 0 51,0 (50,09 (9,15, 1€ [0,1),

1 BZG(t S) i " "

(Tu)”(if)zfO 25 (s u(s) 1 (5), 1" (5),u” (5), 4 ), (5))ds, £ € [0,1],

! " "

(Tu)" (t) = '/01 aSC;g’S)f(s,u(s),u (s),u (s),u (s),u®(s),u®(s))ds, t € [0,1],

(Tu)®(t) = /O 191G(ts) Fs,u(s),u (s),u” (s),u" (s),u®(s),u® (s))ds, t € [0,1],

o4
1 85G(t S) ’ " "

(Tu)<5>(t)=/0 S5 f(s,u(s),u (s),u(s),u (s),u®(s),u®(s))ds, t € [0,1].

(11

(12)
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So, (Tu)(0) = (Tu)'(1) = (Tw)"(0) = (Tw)"(1) = (Tu)®(0) = (Tu)® (1) = 0. Therefore, by
Ascoli-Arzela Theorem, it is easy to see that this operator T : E — E is a completely continuous operator.
Problem (1-2) has a solution u = u(t) if and only if u is a fixed point of operator T defined by (12).

Let

! "

Qp={uckE |lul| <d, u(t)>0,u(t)>0,u (t)<0,u (t)<0, u®(t) >0, u®(t) >0, te[01]},

then ) is a bounded closed convex set of E. If u € (), then by (11), we have

720

/ 96 " 150 " 240 360
< < = < == < = @), <« 222 B, « &2
|M|O — d’ |Ll |O — 61d’ |l/[ |0 — 61 d’ |u |0 — 61 d’ | |0 — 61 d’ |u |0 — 61 d/
which implies
! 96 150 "
< < < < — ——d < <
O_u(t)_d,O_u(t)_61d, 61d_u(t)_0,
240 m 360 720
i< < <u®) <22 0<u® ) < 22
61d_u () <0,0<u™(t) < 1 d,0<u®(t) < 1 d, t €10,1].
Thus (10) implies
I " n (4) (5) 720
fu(t),u (t),u (£),u (t),u'™(t),u(t)) < 6—1d, te0,1].
Therefore,
1 ! " n
[(Tu)lg () = max /0 G(t,8)f (s,u(s),u' (s),u’ (s),u’ (s),u)(s),u®)(s))ds
1 !/ " "
< Orgta<xl/0 G(t,s)f(s,u(s),u (s),u" (s),u" (s),u®(s),u® (s))ds
720 1
< — =d.
< 4 d x Orgtagl/o G(t,s)ds =d
()| () :Imx/”q“U@wgdwdﬁwﬂ@u@@u@@ws
0 0<t<1 0 at 7 7 7 7 7 7
1 aG(t,S) / " " (4) (5)
< max [F S f ()0 (5),u"(6), 0 (5), 4 (5), ) () s
720 19G(t,s) 96
< — = —
< G [ s = g
" 1 aZG(f,S) ’ " " (4) (5)
)| 0 = max | [ S s )0 (5), (90" 5),00 (), ) ()
1 aZG(t, S) ’ " " (4) (5)
= o??%/o 32 f(s,u(s),u(s),u (s),u (s),u*(s),u>(s))|ds
720 1192G(t,s) 150
< = T s = =22
S i orgtagxl/o |4 ot
" 1 83G(t,s) / " " (4) (5)
(T0)"| &) = max | [FEZ5 2 s u(e),u (5),1 ()" (5),u (5), 1) ) ds

3 ! " "
- &%Alaifﬁ@w%u®m@wi@mwwm@@>

720 1193G(t,s)
< -
< i max 155

240

ds = 6Td
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(@] () = max /01a4§§§'”f<s,u<s>,u’<s>,u”<s>,u’”<s>,u<4><s>,u<5><s>>ds
< o [ %f(s,u(s),u' (5), " (5), " (), u®) (), 4 (5))ds
()@ () = max /Ol %ﬂau<s>,u’<s>,u"<s>,u’”<s>,u<4><s>,u<5><s)>ds
< max /O 1 85(;% Fls,u(s),u (s),u" (s),u" (s),u®(s),u®(s))ds
= 76210d 0<t<1/olascé;)t(5w)d5_76210d
Thus
1Tl = max { (i)l 51T o, 15 1(T) o 55517 o 555 (T} ¥ o, 51T lo <

ie., Tu € Q) . So, by Leray-Schauder fixed point Theorem, T has a fixed point u* € (), which is a solution of

the problem (1-2). Noticing that f(¢,0,0,0,0,0,0) # 0. So, u = 0 is not a solution of the problem (1-2), therefore,

|u*|op > 0. From (9) we know that u*(t) is nondecreasing and concave on [0, 1], thus u*(t) > t{u*|p > 0 for
€ [0,1]. So, u*(t) is a positive solution of the problem (1-2). This completes the proof. [

4. Examples

In order to illustrate the above results, we consider an example.
Example 1. Consider the following problem SBVP

a8 = Yy B2 By Ly B @) 2Y65)

26 4 59 7 (13)
u(0)=u'(1)=u"(0)=u"1)=u®0) =u®1)=0
Set 15 11 \3[ 4 \5[
t t t t 24/t
f(t, ug, uy, up, uz, ug, us) = %uO“‘?ul e §u3—0——u4+ Tu 5+ +1,
and
Vit tH vt t 2Vt

Clo(t) = %/ al(t> = t15' Clz(i’) = T! a3(t) = 5/ 614(1') = 7/ a5(t) = T/ a6(t) = t3 +2.

It is easy to prove that a; € L'[0,1], i = 0,1,2,3,4,5,6, are nonnegative functions, f(t,0,0,0,0,0,0) = > +1 #
0. Moreover, we have

5 1 1 r1 1 r1 1 -1
B = 15/ ao(s ds+24 al(s)ds+§/ az(s)ds+§/ a3(s)ds+/0 a4(s)ds+/0 as(s)ds

1 1s!! 12\%
_  ~ 15 C .
= 15./0 2% 24/ ds+3 2d +2/ 50 +/ s+ 5 9

5 01 3 11
_ S RS S 4
585 T38a T 1ag Tz T35 T3 O 9ARSL <

and for any
(1o, 11, 142, 13, tta, 1i5) € [0,1] X [0, 2] x [0, ~p] X [==0,0] X [==p,0] x [0, 0] x [0, 0]
s 1o, U1, 42, U3, U4, U5 7 /15P r24p 3P1 2P1 , 0 un
and f satisfies

f(t, ug, uy, up, uz, ug, us) < ag(t)ug + ay(t)uy — ax(t)up — az(t)uz + ag(t)uy + as(t)us + ag(t).
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where

1
A= / ag(s)ds = Z, p=A(1-B)"! ~3,66404418779.
0

Hence, by Theorem 2, the SBVP (13) has at least one positive solution u* in C®([0,1]) such

that %maxogtgu*(t) < %maxogtgl(u*),(t) < Bmaxg<i<1[—(u*) (t)] < 2maxo<i<i[—(u*) ()] <
maxg<<1 (u*) @ (t) < maxge;<1 () (t) < p.
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