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1. Introduction and position of the problem

C onsider the equation
Lγu ≡ Lu + γ(t)δ(x0, t0)u = f (x, t), (1)

where u = u(x, t) is the unknown function defined in the domain Q = (0, l) × (0, T), δ(x0, t0) is the
Dirac function δ concentrated at the point (x0, t0) ∈ Q, δ(x0, t0)u = u(x0, t0), γ ∈ C[0, T], L = L0 is the
Euler-Poisson-Darboux operator and

Lu ≡ ∂2u(x, t)
∂t2 +

b
t

∂u(x, t)
∂t

− a2 ∂2u(x, t)
∂x2 , b ≥ 0. (2)

With Equation (1), we associate the initial conditions:

u(x, 0) = ϕ(x),
∂u(x, 0)

∂t
= 0 (3)

and the boundary conditions
∂u
∂x

(0, t) = 0,
∂u(l, t)

∂x
= 0. (4)

It is assumed that the following conditions of conciliation of initial and boundary conditions are verified.

ϕ′(0) = 0, ϕ′(l) = 0.

The case in which L is an ordinary differential operator and γ a real number is treated in article [1].
Mixed problems for these so-called parabolic-type equations have been studied by Dzhenaliev, Ramazanov
and Kozhanov in [2–5].

Cauchy problem and the second mixed problem for parabolic equations with Dirac potential have been
studied by Baranovskaya and Yurchuk in [6]. For the Cauchy problem and the second mixed problem for the
equation of form

∂2u(x, t)
∂t2 − a2 ∂2u(x, t)

∂x2 + γδ(x0, t0)u = f (x, t), (5)

where γ is constant, were studied by Moiseev and Yurchuk in [7]. The equations of the form (5) for γ = 0 and
the more general equations have been studied in [8–10].

In our work, the equation contains not only the speed which is inversely proportional to time
b
t

∂u
∂t

but the

term γ(t)δ(x0, t0)u where γ(t) allows the control of the wave propagation at the level of the barriers in (x0, t0).
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These terms did not exist anywhere in the equations studied by our predecessors. So our equation
generalizes the equations used in the works cited above.

In the current work, we demonstrate the existence and the uniqueness of the strong generalized solution
of the problem (1), (3), (4).

2. Existence and uniqueness of the strong generalized solution of the problem (1), (3), (4).

Let’s denote by the symbol

D(L) =
{

u ∈ C2(Q) ∪ C1(Q), u(x, 0) = ϕ(x),
∂u
∂t

(x, 0) =
∂u
∂x

(0, t) =
∂u
∂x

(l, t) = 0
}

.

From the results of [11], it follows that the second mixed problem

Lv(x, t) = f (x, t),
v(x, 0) = ϕ(x),
∂v
∂t

(x, 0) = 0,
∂v(0, t)

∂x
= 0,

∂v(l, t)
∂x

= 0,

(6)

admits a strong generalized solution.
Consider the following norm

|||u||| =
(

sup
0≤t≤T

∫ l

0

[∣∣∣∣∂u
∂t

∣∣∣∣2 + ∣∣∣∣∂u
∂x

∣∣∣∣2 + |u|2
]

dx

) 1
2

. (7)

This norm defines the total energy (sum of kinetic energy and potential energy). We easily notice that if
|||u||| < ∞, then the function u is continuous in Q, (u ∈ C(Q)) and the value u(x0, t0) has a meaning.

Let’s set the norm in the Sobolev space

W1
2 (0, l) =

{
u ∈ L1(0, l)/u′′ ∈ L1(0, l)

}
by the symbol

||ϕ||1 =

(∫ l

0

[∣∣ϕ′(x)
∣∣2 + |ϕ(x)|2

]
dx
) 1

2

. (8)

Definition 1. We call strong generalized solution of the second mixed problem (1), (3), (4), the function u(x, t)
with the norm over (7), that if it’s exists, the sequence un ∈ D(L), we have the following equalities:

lim
n−→∞

|||un − u|||2 = 0, (9)

lim
n−→∞

∫
Q
|Lγun − f |2 dxdt = 0, (10)

lim
n−→∞

||un(x, 0)− ϕ||21 = 0. (11)

Remark 1. The same definition is valid for the strong generalized solution of the second mixed problem (6)
when in the formula (10) instead of the operator Lγ, we take the operator L.

Theorem 1. Let f ∈ L2(Q), γ ∈ C [0, T] , ϕ ∈W1
2 (0, l) and

∫ t0

0
s−b

∫ s

0
τbγ(τ)dτds 6= −1. (12)
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Then the second mixed problem (1), (3), (4) admits a strong generalized solution

u(x, t) = v(x, t)−
v(x0, t0)

∫ t
0 s−b ∫ s

0 τbγ(τ)dτds

1 +
∫ t0

0 s−b
∫ s

0 τbγ(τ)dτds
, (13)

where v(x, t) is the strong generalized solution of the second mixed problem (6).

Proof. From the results of the work [11], it follows that, if f belongs L2(Q), ϕ ∈ W1
2 (0, l), then ϕ ∈ L2(Q) and

the second mixed problem (6) admits a strong generalized solution v(x, t) with the finished norm (7). It means
that there is a sequence vn ∈ D(L), as:

lim
n−→∞

|||vn − v|||2 = 0, (14)

lim
n−→∞

∫
Q
|Lvn − f |2dxdt = 0, (15)

lim
n−→∞

||vn(x, 0)− ϕ||21 = 0. (16)

The sequence vn can not be unique but as for the function v(x, t) it must be unique.
Consider the sequence

un(x, t) = vn(x, t)−
vn(x0, t0)

∫ t
0 s−b ∫ s

0 τbγ(τ)dτds

1 +
∫ t0

0 s−b
∫ s

0 τbγ(τ)dτds
, (17)

where vn(x, t) is the sequence that defines the strong generalized solution v(x, t) of the second mixed problem
(6).

It is clear that

un(x, t) ∈ D(Lγ) = D(L).

From the equality (14), it follows that the limit function v(x, t) is continuous in Q, (v ∈ C(Q)) and

lim
n−→∞

|vn(x0, t0)− v(x0, t0)| = 0. (18)

So from equality (14), from expression (17) and from equality (18), follows the equality (9) where the
function u(x, t) is defined by the formula (13) and v(x, t) is the strong generalized solution of the second
mixed problem (6).

As

Lγun = Lγvn −
vn(x0, t0)γ(t) + γ(t)vn(x0, t0)

∫ t
0 s−b ∫ s

0 τbγ(τ)dτds

1 +
∫ t0

0 s−b
∫ s

0 τbγ(τ)dτds

= Lvn + γ(t)vn(x0, t0)−
vn(x0, t0)γ(t) + γ(t)vn(x0, t0)

∫ t
0 s−b ∫ s

0 τbγ(τ)dτds

1 +
∫ t0

0 s−b
∫ s

0 τbγ(τ)dτds

= Lvn . (19)

Then on the basis of (15), it follows from the equality (19), the equality (10). As vn(x, 0) = un(x, 0), then
the limit (11) comes from the limit (16).

This demonstrates the existence of the strong generalized solution of the second mixed problem (1), (3),
(4).

Theorem 2. Let f ∈ L2(Q), γ ∈ C [0, T] , ϕ ∈W1
2 (0, l) and

∫ t0

0
s−1

∫ s

0
τγ(τ)dτds 6= −1.

Then the second mixed problem (1), (3), (4) admits a unique strong generalized solution

u(x, t) = v(x, t)−
v(x0, t0)

∫ t
0 s−1

∫ s
0 τγ(τ)dτds

1 +
∫ t0

0 s−1
∫ s

0 τγ(τ)dτds
,
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where v(x, t) is the strong generalized solution of the second mixed problem (6).

Proof. To demonstrate the uniqueness of the strong generalized solution of the problem (1), (3), (4), let’s show
for that if ũ(x, t) is a strong generalized solution of the problem ((1)), (3), (4), then ũ(x, t) = 0. According to the
definition of strong generalized solution, there exist a sequence ũn ∈ D(L) for which, there is the limit

lim
n−→∞

|||ũn − ũ|||2 = 0, (20)

lim
n−→∞

∫
Q
|Lγũn|2 dxdt = 0, (21)

lim
n−→∞

||ũn(x, 0)||21 = 0. (22)

From equality (21), it follows that

lim
n−→∞

L(ũn(x, t)− vγ(x, t)ṽn(x0, t0) = 0, (23)

where

vγ(x, t) ≡ vγ(t) =
∫ t

0
s−b

∫ s

0
τbγ(τ)dτds. (24)

From Equations (22) and (24), it follows that

lim
n−→∞

(ũn(x, t)− vγ(x, t)ũn(x0, t0)) = 0. (25)

From Equations (23) and (25), it follows that the function:

˜̃u(x, t) = ũ(x, t)− vγ(x, t)ũ(x0, t0) (26)

is the strong generalized solution of the homogeneous problem (5).
From the uniqueness of the strong generalized solution of the problem (5), we conclude

˜̃u(x, t) ≡ 0.

So from the formula (26), it follows that ũ(x0, t0)(1− vγ(x0, t0)) = 0.
As vγ(x0, t0) 6= 1, then ũ(x0, t0) = 0.
Therefore ũ(x, t) is the strong generalized solution of the homogeneous problem (5). From the uniqueness

of the strong generalized solution of the homogeneous problem (5), ũ(x, t) = 0. The theorem is thus
demonstrated.

Passing to the limit in equality (17), we obtain that the strong generalized solution of the second mixed
problem (1), (3), (4) is of the form:

u(x, t) = v(x, t)−
v(x0, t0)

∫ t
0 s−b ∫ s

0 τbγ(τ)dτds

1 +
∫ t0

0 s−b
∫ s

0 τbγ(τ)dτds
. (27)

In the particular case, when γ(t) = γ-constant the strong generalized solution of the second mixed
problem (1), (3), (4) is of the form:

u(x, t) = v(x, t)−
v(x0, t0)

1
2(b+1) t2γ

1 + 1
2(b+1) t0

2γ
, (28)

where v(x, t) is the strong generalized solution of the second mixed problem (6).
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