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1. Introduction

T he geometry of Lagrange spaces is applied to the description of classical general relativity and
electrodynamics. First, the Einstein equations are given in a new form, where the geometrical objects

related to the internal variables are separated from those related to the external variables. After this, several
special Lagrange spaces are analyzed. The almost Riemannian Lagrange spaces are rather simple for explicit
calculations and they recover all classical results of general relativity and electrodynamics.

The theory of Finsler spaces with (α, β)-metrics was introduced by Matsumoto [1]. The natural extension
of this theory is based on the canonial Cartan nonlinear connection N [2].

In [3], Bucataru studied the Finsler space with (α, β)-metrics have nonholonomic frames which are useful
for unifying theories in theoretical physics.

The notion of Lorentz nonlinear connection N was introduced by Hassan, which depends only on the
metric L(α, β), so the spaces FLn = (M, L(α, β), N) are called the Finsler-Lagrange spaces with (α, β)-metrics.
This theory has been applied in the study of gravitational and electromagnetic [4,5].

The present paper organized the Euler-Lagrange spaces with (α, β)-metrics and Lorentz equations. Also,
Einstein equations for Lagrange space with (α, β)-metrics, in particularly Randers metric by means of canonical
N-metrical connection is presented.

2. Preliminaries

The present section deals with some fundamental concepts and facts of Finsler-Lagrange geometry [6–8].

2.1. Finsler-Lagrange space with (α, β)-metrics

Let Fn = (M, F(x, y)) be a Finsler space with (α, β)-metric and F(x, y) be a fundamental function of the
form

F(x, y) = F̂(α(x, y), β(x, y)),

where, F̂ is a differentiable function of two variables:

α2(x, y) = aij(x)yiyj,

β(x, y) = bi(x)yi.

The notion α in the above equation represent the pseudo-Riemannian metric on the base manifold M
which gives the gravitational part of F(x, y) whereas β is the eletromagnetic 1-form on M.
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Denoting L(α(x, y), β(x, y)) = F̂(α(x, y), β(x, y)), gives Ln = (M, L) Lagrange space with fundamental
metric tensor gij(x, y) of the form

gij =
1
2

∂2L
∂yi∂yj .

Which further modified as

gij = ρaij + ρ0bibj + ρ−1(bilj + bjli) + ρ−2lilj, (1)

where bi =
∂β

∂yi , li = aijyj = α ∂α
∂yj , ρ, ρ0, ρ−1 and ρ−2 are invariants of the space Ln:

ρ =
1

2α
Lα, ρ0 =

1
2

Lββ, ρ−1 =
1
2

Lαβ, ρ−2 =
1

2α2 (Lαα −
1
α

Lα) (2)

with

Lα =
∂L
∂α

, Lβ =
∂L
∂β

, Lαα =
∂2L
∂α2 Lββ =

∂2L
∂β2 , Lαβ =

∂2L
∂α∂β

.

The totally symmetric Cartan tensor defined by

Cijk =
1
4

∂3L
∂yi∂yj∂yk =

1
2

∂gij

∂yk .

By means of gij from (1) taking into account the formulae from [9], one obtains

2Cijk = σ(i,j,k)(ρ−1aijbk + ρ−2aijlk +
1
3

r−1bibjbk + r−2bibjlk + r−3biljlk +
1
3

r−4liljlk), (3)

where σ(i,j,k) means the cyclic sum in the indices i, j, k.

2.2. Variational problem and Lorentz non-linear Connection

Let L : TM −→ R be a regular Lagrangian and c : t ∈ [0, 1] −→ (xi(t)) ∈ U ⊂ M be a regular curve. The
functional defined as follows:

I(c) =
∫ 1

0
L(α(x, y), β(x, y))dt,

gives Euler-Lagrange equations as:

Ei(L) =
∂L
∂xi −

d
dt
(

∂L
∂yi ) = 0, yi =

dxi

dt
. (4)

The co-vector Ei(L) can also be expressed as:

Ei(L) = Ei(α
2) + 2

ρ−1

ρ
Ei(β) + 2

dα

dt
∂α

∂yi . (5)

If c is an extremal curve, i.e., c is a solution of Euler-Lagrange equation (4), then along c the energy of a
Lagrangian L is:

EL = yi ∂L
∂yi − L.

Now, let us fix the parametrization of the curve c by a natural parameter t = s, with respect to the
Riemannian metric α2(x, dx/dt) given by:

ds2 = α2(x,
dx
dt

)dt2. (6)

Thus, along the extremal curve c parameterized by arc lengths t = s, we have α2(x, dx/ds) = 1 and
dα/ds = 0, dL/ds = 0, which implies that dβ/ds = 0, dLα/ds = 0, dLβ/ds = 0.
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Since Ei(β) is given by:

Ei(β) = Fij(x)
dxj

ds
, Fij =

∂bj

∂xi −
∂bi

∂xj . (7)

Then, Miron and Hassan [5] obtained the following theorems:

Theorem 1. Consider the natural parametrization t = s, the Euler-Lagrange equations of the Lagrangian L(α, β) are
given by

Ei(α
2) + 2

ρ−1

ρ
Fij(x)yj = 0, yi =

∂xi

∂s
. (8)

Choosing γi
jk(x) as the Christoffel symbols of pseudo-Riemannian metric α2 and

σ(x, y) =
ρ−1

ρ
, Fi

j (x) = aih(x)Fhj(x),

we have the following result.

Theorem 2. The Euler-Lagrange equation (8) are equivalent to the Lorentz equations as:

d2xi

ds2
+ γi

jk(x)
dxj

ds
dxk

ds
= σ(x,

dx
ds

)Fi
j (x)

dxj

ds
. (9)

If Euler-Lagrange equations Ei(L)=0, then we determine a canonical semispray S as:

S = yi ∂

∂xi − 2Gi ∂

∂yi ,

where 2Gi(x, y) = γi
jk(x)− σ(x, y)Fi

j (x)yj. Then, the integral curve of S are given by the Lorentz equation (9).
Now, let us consider the non-linear connection N with the coefficients as:

Ni
j = γi

jk(x)yk − σ(x)Fi
j (x)

Thus, the variation of autoparallel curves of a non-linear connections work should be progressed in 2003.
Since the autoparallel curves of N are given by the Lorentz equation (8), we call it as the Lorentz non-linear

connection of the metric L and so FLn is the Finsler- Lagrange (α, β)-metric L(α, β) and the Lorentz non-linear
connection N. The semispray S associated to N has the coefficients as:

2Gi = Ni
j y

j. (10)

2.3. Properties of the Lorentz non-linear connection

(i) The Berwald connection BΓ(N) = (Bi
jk(x, y), 0) of N has the coefficients

Bi
jk(x, y) = γi

jk(x)− σ̇kFi
j (x),

where σ̇k =
∂σ
∂yk

(ii) The weak torsion of N is
Li

jk = σ̇jFi
k(x)− σ̇kFi

j (x).

Clearly, if bi = gradi ϕ(x), then Li
jk = 0.

(iii) The adapted bases are
δ

δxi =
∂

∂xi − N j
i

∂

∂yj .

(iv) The integrability tensor

Ri
jk =

δNi
j

δxk −
δNi

k
δxj ,

of N is
Ri

jk = yhρi
hjk(x) + σjFi

k − σkFi
j − σ(Fi

j|k − Fi
k|j),
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where σj = ∂σ
∂xj and ‘|’ is the covariant derivative with respect to the Levi-Civita connection of α2 and

ρi
hjk(x) is the curvature tensor of the Levi-Civita connection.

(v) The Lorentz non-linear connection N is integrable if and only if the d-tensor of integrability Ri
jk vanishes.

(vi) The dual basis (dxi, δyi) of (δ/δxi, ∂/∂yi) is determined by

δyi = dyi + Ni
j dxj,

= dyi + γi
jkykdxj − σFi

j dxj,

= δyi − σFi
j dxj.

(vii) The autoparallel curves of Lorentz non-linear connection are given by the system of differential
equations:

δyi

dt
, yi =

dxi

dt
.

(viii) In the parametrization S with α2(x, dx/ds) = 1, the property (vii) are the Lorentz equation (8).

(ix) The exterior differential of 1-forms δyi of the form

dδyi =
1
2

Ri
jkdxk ∧ dxj + Bi

jkδyk ∧ dxj.

2.4. Canonical N-metrical connection

The metric N-linear connection is called the canonical N-linear connection or the Cartan connection of
the Lagrange space. The space FLn = (M, L(α, β), N) has a canonical N-linear connection CΓ(N) with the
coefficients (Li

jk, Ci
k) given by the generalized Christoffel symbols are:

Li
jk =

1
2 gis

(
δgsk
δxj +

δgjs

δxk −
δgjk
δxs

)
Ci

jk =
1
2 gis

(
∂gsk
∂yj +

∂gjs

∂yk −
∂gjk
∂ys

)
 (11)

The 1-form connection CΓ(N) is:
ωi

j = Li
jkdxk + Ci

jkδyk.

By the property (ix), the structure equations of CΓ(N) expressed in the following theorem [10]:

Theorem 3. The structure equations of the canonical N-linear metrical connection CΓ(N) of the space FLn are as
follows:

d(dxi)− dxk ∧ωi
k = −

1Ωi,

d(δyi)− δyk ∧ωi
k = −

2Ωi,

dωi
k −ωk

j ∧ωi
k = −Ωi

j,

where 1Ω, 2Ω are the 2-forms of torsion.

Here

1Ωi = Ci
jkdxj ∧ δyk,

2Ωi =
1
2

Ri
jkdxj ∧ dxk + Pi

jkdxj ∧ δyk

and Ω is the 2-form of curvature.

Ωi
j =

1
2

Ri
jkhdxk ∧ dxh + Pi

jkhdxk ∧ δyh +
1
2

Si
jkhδyk ∧ δyh,

where Ri
jk is tensor given in property (iv), Pi

jk = Bi
jk − Li

jk and Ri
jkh, Pi

jkh, Si
jkh are the curvature tensor of CΓ(N).
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In this study, we use the metric N-linear connection DΓ(N) = (L̄i
jk, C̄i

jk) and has a given d-tensor of torsion

T̄i
jk and S̄i

jk as follows:

L̄i
jk = Li

jk +
1
2 gih

(
gjrT̄r

kh + gjhT̄r
jh − ghrT̄r

kj

)
,

C̄i
jk = Ci

jk +
1
2 gih

(
gjrSr

kh + gjhSr
jh − ghrSr

kj

)
,

 (12)

where (Li
jk, Ci

jk) are the local coefficients of the canonical metric N-linear connection CΓ(N) and T̄i
jk, S̄i

jk simply

by (Ti
jk, Si

jk).

2.5. Einstein Equations on TM

Let TM be endowed with a non-linear connection N, an h-v metric structure G and a metrical
N-connection DΓ(N) with a priori given torsions (Ti

jk, Si
jk).

Given an h-v metric G on TM becomes a pseudo-Riemannian manifold of dimension 2n. The Einstein
equations written for the connection DΓ(N) on TM as:

Ric(D)− 1
2

Sc(D)G = kT, (13)

where Ric(D) is the Ricci tensor field and Sc(D) is the scalar curvature of DΓ(N), k is constant and T is the
energy-momentum tensor field.

In local coordinates, Miron and Anastasiei stated as [11]:

Theorem 4. The Einstein equations of the Lagrange space Ln = (M, L) corresponding to the metric N-linear connection
DΓ(N) = (Li

jk, Ci
jk) with the coefficients (12) have the following form:

Rij =
1
2
(R + S)gij = kTij,

Sij =
1
2
(R + S)gij = kT(i)(j),

1Pi
j = kT(i)j,

2Pi
j = −kTi(j),

where Tij, T(i)(j), Ti(j) are d-tensor fields.

3. The notion of Randers metric

The preliminaries theories has a remarkable particular case, that is based on the Randers metric.

F(x, y) = α(x, y) + β(x, y). (14)

The Lagrange space Ln = (M, L) with

L(α(x, y), β(x, y)) = F̂2(α(x, y), β(x, y)) = (α + β)2. (15)

The invariants (2) of Randers metric are given by:

ρ =
α + β

α
, ρ0 = 1, ρ−1 =

1
α

, ρ−2 = − β

α3 .

Using the formula (1), we obtain the fundamental metric tensor gij,

gij =
α + β

α
aij + bibj +

1
α
(bilj + bjli)−

β

α3 lilj. (16)

Its contravariant counterpart gij as:

gij =
1
ρ

(
aij − (bil j + bjli)

α + β
+

b2

(α + β)2 yiyj
)

. (17)



Open J. Math. Sci. 2020, 4, 240-247 245

And we know gij is positively defined if b2 < 1. The Cartan tensor Cijk (3) given by:

Cijk = σ(i,j,k)
1
2

(
1
α

aijbk −
β

α3 aijlk −
1
α3 biljlk +

β

α4 liljlk

)
. (18)

Clearly, we see that Cijk 6= 0. Thus, we have

Theorem 5. The Cartan tensor Cijk of Randers metric is non zero (different from zero).

Moreover, the Randers metric is not reducible to a Riemannian metric. For this metric (15), the
Euler-Lagrange equation in the natural parametrization given by:

Ei(α
2) + 2σFijyj = 0, yi =

dxi

ds
, (19)

where σ = ρ−1
ρ = 1

2
Lβ

ρ = α.
From Theorem 2, we have the result

Theorem 6. The Euler-Lagrange equations of Randers metric L = (α + β)2 is the natural parametrization
α(x, dx/ds) = 1 and are given by the Lorentz equation

d2xi

ds2 + γi
jk(x)

dxj

ds
dxk

ds
= αFi

j (x)
dxj

ds
(20)

Thus, the coefficients of the canonical semispray and non-linear connection N are:

2Gi(x, y) = γi
jk(x)yjyk − α(x, y)Fi

j (x)yj,

Ni
j = γi

jk(x)yk − αFi
j (x).

The weak torsion of N is Li
jk = 0 and the metric N-linear connection DΓ(N) = (L̄i

jk, C̄i
jk) is given in (12)

coincide with those of the Cartan connection. Moreover, taking into account that, with respect to the canonical
N-linear connection N, we have δF

δxi = 0.
The torsion tensor of DΓ(N) are:

Ti
jk = 0, Ri

jk, Ci
jk, Pi

jk = Ni
jk − Li

kj, Si
jk = 0. (21)

In the following and using the properties form [2], we get

Pi
jkyk = 0, Pi

jkyj = 0. (22)

4. Einstein equations of Lagrange space with Randers metric

Now, we express equation (13) in the basis (δ/δxi, ∂/∂yi), i.e., adapted to the decomposition of TuTM,
u ∈ TM into horizontal and vertical subspaces.

Set (Xα) = (Xi, X(i)), where Xi = δ/δxi and X(i) = ∂/∂yi. The indices i will run from 1 to 2n and (i) will
run from n + 1 to 2n. The local vector fields (Xa) provides a nonholonomic basis given by

[Xb, Xc] = Wa
bcXa,

which satisfies the following Vranceanu indentities [12]

∑
(abc)

[Xa(Wd
bc) + WeabWd

ce] = 0.

Let DXc Xb = Γa
bcXa, then the basis (Xa) the torsion T of the N-linear connection D has the components:

Ta
bc = Γa

bc − Γa
cb + Wa

bc.
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In the basis (Xa) the curvature R of the N-linear connection D has the components:

Ra
bcd = XdΓa

bc − XcΓa
bd + Γe

bcΓa
ed − Γe

bdΓa
ec + Γa

beΓe
cd.

The torsion and curvature components given by:

T(Xc, Xb) = Ta
bcXa, R(Xd, Xc)Xb = Ra

bcdXa.

In the adapted basis (Xa) the Bianchi identities of D of the form:

∑
abc

(DaRe
dbc + Re

davTv
bc) = 0,

∑
abc

(DaTd
bc + Te

abTd
ec − Rd

abc) = 0,

where Da = DXa.
If in these equations the components with respect to Xi = δ/δxi and X(i) = ∂/∂yi are separated, it comes

out that among the coefficients Γa
bc, we have

Γi
jk = Li

jk, Γ(i)
(j)(k) = Ci

jk.

This is advantage created by the choice of the basis (Xa) as well as by the fact that D is an N-linear
connection.

The set of components Ta
bc of the torsion field T splits into following:

Ti
jk = Ti

jk, Ti
(j)k = −Ci

jk, Ti
j(k) = −Ci

jk, T(j)(k) = 0,

T(i)
jk = Ri

jk, T(i)
(j)k = −Pi

kj, T(i)
j(k) = Pi

jk, T(i)
(j)(k) = 0.

}
(23)

with respect to the basis (Xa), the Ricci tensor field of the N-linear connection DΓ(N) has the components

Rij = Rij, R(i)j =
1 Pij, Ri(j) = −2Pij, R(i)(j) = Sij.

By the pseudo-Riemannian metric G has the components Gab given by:

Gij = gij, Gi(j) = 0, G(i)j = 0, G(i)(j) = gij,

Gij = gij, Gi(j) = 0, G(i)j = 0, G(i)(j) = gij,

where gij and gij are given in (16) and (17) respectively.
Thus, the tensor field Ra

b = GacRcb and the scalar curvature Sc(D) have in the frame Xa the components
are

Ri
j = Ri

j, R(i)
j =1 Pi

j , Ri
(j) =

2 Pi
j , R(i)

(j) = Si
j, Sc(D) = R + S,

where R = gijRij and S = gijSij.

Theorem 7. The Einstein equations of the Largrange space with Randers metric corresponding to the metric N-linear
connection DΓ(N) = (Li

jk, Ci
k) have the following form:

Rij =
1
2 (R + S)gij,

1Pi
j = 0, 2Pi

j = 0,
Sij =

1
2 (R + S)gij,

 (24)

where gij given in (16).

Proof. Making use of the formulae in Theorem (4), one can shows that from theorem and corresponding
d-tensor fields in (12), (21), (22) and (23) are equivalent to get (24).
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In vacuum, which corresponds to the case Tij = 0, if we multiply this with Gij = gij the equation (13) of
Randers metric can be written in the form:

Rij −
1
2

Sc(D)Gij = 0, or Rij −
1
2

Sc(D)gij = 0, (25)

which implies that Sc(D)− nSc(D) = o. Hence, Sc(D) = 0 for n > 1. Thus, the equation (25) takes the form
Rij = 0 and immediately, we obtain the following result:

Lemma 8. For the vacuum state, the Einstein equations of the Lagrange space with Randers metric corresponding to the
metric connection DΓ(N) = (Li

jk, Ci
k) are as follows:

Rij = 0, Sij = 0, 1Pi
j = 0, 2Pi

j = 0. (26)

5. Conclusion

The development of the geometry of Lagrange spaces, using the fundamental concepts from Analytical
Mechanics as: the integral of action, the Euler-Lagrange equations, the law of conservation of energy and
symplectic form etc. The geometry of a Lagrange space is mostly derived from the Euler-Lagrange equations.
This paper is devoted to derived the Euler Lagrange equations of Randers metric. Then, by using canonical
N-metrical connection, characterized the Einstein equations of Finsler Lagrange space with Randers metric.
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