

Afshan Tabassum^{1,*}, Muhammad Awais Umar², Muzamil Perveen¹ and Abdul Raheem³

- ¹ Department of Mathematics, NCBA & E, Quaid-e-Azam Campus, Township Lahore, Pakistan.; afshintabassum@gmail.com(A.T); jimi4224@gmail.com(M.P)
- ² Govt. Degree College (B), Sharqpur Sharif, Pakistan.; owais054@gmail.com
- ³ Department of Mathematics, National University of Singapore, Singapore.; rahimciit7@gmail.com
- * Correspondence: afshintabassum@gmail.com

Received: 17 November 2019; Accepted: 10 January 2020; Published: 9 February 2020.

Abstract: A graph Γ (simple, finite, undirected) with an Ω -covering has an (α, δ) - Ω -antimagic labeling if the weights of all subgraphs Ω of graph Γ constitute an arithmetic progression with the common difference δ . Such a graph is called *super* (α, δ) - Ω -antimagic if $\nu(V(\Gamma)) = \{1, 2, 3, ..., |V(\Gamma)|\}$. In the present paper, the cycle coverings of subdivision of fan graphs has been considered and results are proved for several differences.

Keywords: Ω -covering, super (α , δ)- Ω -antimagic graph, cycle-antimagic, super cycle-antimagic, fan graphs.

MSC: 05C78, 05C70.

1. Introduction

L et $\Gamma = (V(\Gamma), E(\Gamma))$ be a finite simple and undirected graph with a family of subgraphs $\Omega_1, \Omega_2, ..., \Omega_t$ such that every element of $E(\Gamma)$ belongs to $\Omega_i \cong \Omega$, i = 1, 2, ..., t, then Γ admits an Ω -covering. An Ω -covered graph Γ with ν is called an (α, δ) - Ω -antimagic if $wt_{\nu}(\Omega) = \{\alpha, \alpha + \delta, ..., \alpha + (t - 1)\delta\}$ where the associated Ω -weights denoted by $wt_{\nu}(\Omega)$ are defined as

$$wt_{\nu}(\Omega) = \sum_{v \in V(\Omega)} \nu(v) + \sum_{e \in E(\Omega)} \nu(e).$$

and $\alpha > 0$ and $\delta \ge 0$ are two integers, *t* is the number of $\Omega_i \cong \Omega$. For a total labeling ν to be super we require $\nu(V(\Gamma)) = \{1, 2, ..., |V(\Gamma)|\}.$

The results about Ω -(super)magic graphs with Ω as cycle, path and tree can be studied in [1–7].

Inayah *et al.* [8] introduced the (α, δ) - Ω -antimagic labeling. We refer [9–11] for some results on super (α, δ) - Ω -antimagic labeling. In [12], Lih proved that F_n is C_3 -supermagic for every n except $n \equiv 2 \pmod{4}$. In [7], Ngurah *et al.* proved that F_n is C_3 -supermagic for every $n \ge 2$. In the present paper, we proved the super (α, δ) - C_{r+2k+3} -antimagic labelings of subdivided fans for differences $\delta = 0, 1, 2, 3, 4$.

2. Preliminaries

In this section, we give basic definitions of concepts concerning a subdivided fan $F_n(r,k)$.

Definition 1. A graph $F_n \cong P_n + K_1$ is called *fan* graph obtained by the join of *path* P_n and one isolated vertex K_1 .

The *central vertex*, or the *hub vertex* is of degree *n* and *path vertices* are the other ones. *Spokes* are the adjacent edges of central vertex and *path edges* are the remaining edges.

$$V(F_n) = \{c\} \cup \{x_1, x_2, \dots, x_n\},\$$

$$E(F_n) = \{x_1x_2, x_2x_3, \dots, x_{n-1}x_n\} \cup \{cx_1, cx_2, \dots, cx_n\}.$$

Definition 2. The subdivided fan $F_n(r,k)$ is the graph obtained from a fan F_n by inserting $r \ge 1$ new vertices $\{v_1^{(i)}, \ldots, v_r^{(i)}\}$ into each path edge $x_i x_{i+1}, 1 \le i \le n-1$, denoted by $P_{x_i x_{i+1}}$ -vertices and by inserting $k \ge 1$ new vertices $\{w_1^{(i)}, \ldots, w_k^{(i)}\}$ into every spoke $cx_i, 1 \le i \le n$, denoted by $S^{(i)}$ -vertices.

$$E(P_{x_ix_{i+1}}) = \{x_iv_1^{(i)}, v_2^{(i)}v_3^{(i)}, \dots, v_{r-1}^{(i)}v_r^{(i)}, v_r^{(i)}x_{i+1}, 1 \le i \le n-1\}, \\ E(S^{(i)}) = \{cw_1^{(i)}, w_2^{(i)}w_3^{(i)}, \dots, w_{k-1}^{(i)}w_k^{(i)}, w_k^{(i)}x_i, 1 \le i \le n\}.$$

Let $C_{r+2k+3}^{(i)}$ be the *i*th-subcycle. For the weight of *i*th-subcycle $C_{r+2k+3}^{(i)}$, we obtain

$$wt_{\psi}(C_{r+2k+3}^{(i)}) = \sum_{u \in V(C_{r+2k+3}^{(i)})} \psi(u) + \sum_{e \in E(C_{r+2k+3}^{(i)})} \psi(e)$$

$$= \left(\psi(x_i) + \psi(x_{i+1}) + \psi(e) + \sum_{v \in V(P_{x_i x_{i+1}})} \psi(v) + \sum_{w \in V(S^{(i)})} \psi(w) \right)$$

$$+ \left(\sum_{e \in E(P_{x_i x_{i+1}})} \psi(e) + \sum_{e \in E(S^{(i)})} \psi(e) + \sum_{e \in E(S^{(i+1)})} \psi(e) \right).$$
(1)

where indices *i* are taken modulo *n*.

3. Main results

In this section, we introduce the super (α, δ) - C_{r+2k+3} -antimagic labelings of subdivided fans for differences d = 0, 1, 2, 3, 4.

Theorem 1. Let $r, k \ge 1$ and $n \ge 3$ be positive integers. The subdivided fan $F_n(r, k)$ is super (α, δ) - C_{r+2k+3} -antimagic for difference $\delta = 0, 1, 4$.

Proof. The total labeling ψ_{δ} is defined as:

$$\begin{split} \psi_{\{\delta\}}(c) &= 1\\ \psi_{\{0,4\}}(x_i) &= \begin{cases} \lceil \frac{n}{2} \rceil + 2 - \frac{i+1}{2}, & \text{if } i \equiv 1 \pmod{2} \\ n+2 - \frac{i}{2}, & \text{if } i \equiv 2 \pmod{2} \end{cases}\\ \psi_{\{1\}}(x_i) &= \begin{cases} 1 + \frac{i+1}{2}, & \text{if } i \equiv 1 \pmod{2} \\ 1 + \lceil \frac{n}{2} \rceil + \frac{i}{2}, & \text{if } i \equiv 2 \pmod{2} \end{cases}\\ \psi_{\{0,1\}}(cw_1^{(i)}) &= \begin{cases} 2(n-1)(r+1) + 2(nk+1) + \frac{i+1}{2}, & \text{if } i \equiv 1 \pmod{2} \\ 2(n-1)(r+1) + 2(nk+1) + \lceil \frac{n}{2} \rceil + \frac{i}{2}, & \text{if } i \equiv 2 \pmod{2} \end{cases}\\ \psi_{\{4\}}(cw_1^{(i)}) &= 2n(r+k) + (3n-2r+1) - i. \end{split}$$

For $\delta = 0, 1, 4$

$$\begin{array}{lll} \psi_{\delta}(V(P_{x_{i}x_{i+1}})) &=& \{(n-1)j+2+i:1 \leq i \leq n-1, 1 \leq j \leq r\} \\ \psi_{\delta}(E(P_{x_{i}x_{i+1}})) &=& \{(n-1)(2r+2-j)+n(k+1)+2-i:1 \leq j \leq r+1\} \\ \psi_{\delta}(V(S^{(i)})) &=& \{r(n-1)+1+nj+i:1 \leq i \leq n, 1 \leq j \leq k\} \\ \psi_{\delta}(E(S^{(i)}) \setminus \{cw_{1}^{(i)}\}) &=& \{2n(r+k)+(3n-2r+1)-nj-i:1 \leq j \leq k\} \end{array}$$

where indices *i* are taken modulo *n*. Evidently ψ_{δ} is a super labeling as $V(F_n(rk)) = \{1, 2, ..., n(k + r + 1) - r + 1\}$. The spoke vertices are labeled with the numbers n + 2, n + 3, ..., n + 2k + 1 and the path edge vertices are labeled with n + 2k + 2, n + 2k + 3, ..., n(k + r + 1) - r + 1. Clearly,

$$\sum \left(\psi_{\delta}(V(S^{(i)})) + \psi_{\delta}(E(S^{(i)}) \setminus \{cw_{1}^{(i)}\}) \right) = 3rk(n-1) + k(3n+2nk+2)$$

$$\sum \left(\psi_{\delta}(V(P_{x_{i}x_{i+1}})) + \psi_{\delta}(E(P_{x_{i}x_{i+1}})) \right) = nr(2r+k+4) + n(k+2) + r(1-2r) + 1 - i$$
(2)

According to (1) and (2), we obtain

$$wt_{\psi_0}(C_{r+2k+3}^{(i)}) = 4(n-1)(r+1) + 4(nk+1) + 6rk(n-1) + 2\left\lceil \frac{n}{2} \right\rceil + n + 3 + 2k(3n+2nk+2) + nr(2r+k+4) + n(k+2) + r(1-2r) + 1$$

$$wt_{\psi_0}(C_{r+2k+3}^{(i)}) = n + 2\left\lceil \frac{n}{2} \right\rceil + nk(7r+4k+11) + 2nr(r+4) + r(1-2r-6k) + 2(3n+2k-2r) + 4.$$
(3)

Equation (3) shows that all $C_{r+2k+3}^{(i)}$ -weights are independent of *i*. According to (1) and (2), we obtain

$$wt_{\psi_1}(C_{r+2k+3}^{(i)}) = 4(n-1)(r+1) + 4(nk+1) + 6rk(n-1) + 2\left\lceil \frac{n}{2} \right\rceil + 5 + 2i + 2k(3n+2nk+2) + nr(2r+k+4) + n(k+2) + r(1-2r) + 1 - i$$

$$wt_{\psi_1}(C_{r+2k+3}^{(i)}) = 2\left\lceil \frac{n}{2} \right\rceil + nk(7r+4k+11) + 2nr(r+4) + r(1-2r-6k) + 2(3n+2k-2r) + 6 + i.$$
(4)

Equation (4) shows that all $C_{r+2k+3}^{(i)}$ -weight consists of consecutive integers. According to (1) and (2), we obtain

$$wt_{\psi_4}(C_{r+2k+3}^{(i)}) = 4(n-1)(r+1) + 4(nk+1) + 6rk(n-1) + 2\left\lceil \frac{n}{2} \right\rceil + 5 + 2i + 2k(3n+2nk+2) + nr(2r+k+4) + n(k+2) + r(1-2r) + 1 - i$$

$$wt_{\psi_4}(C_{r+2k+3}^{(i)}) = n + \left\lceil \frac{n}{2} \right\rceil + r(1-2r) + k(4nk-5r+9) + 2n(3k+4)(r+1) - 6n + 7 - 4i.$$
(5)

Equation (5) shows that all $C_{r+2k+3}^{(i)}$ -weight constitute an arithmetic progression with common difference $\delta = 4$. This completes the proof. \Box

Theorem 2. Let $r, k \ge 1$ and $n \ge 3$ be positive integers. The subdivided fan $F_n(r,k)$ is super (α, δ) - C_{r+2k+3} -antimagic for difference $\delta = 2, 3, 5$.

Proof. The total labeling ψ_{δ} is defined as:

$$\begin{split} \psi_{\{\delta\}}(c) &= 1\\ \psi_{\{\delta\}}(x_i) &= 2i\\ \psi_{\{\delta\}}(v_r) &= 2i+1 \end{split}$$

$$\psi_{\{2\}}(cw_1^{(i)}) &= 2n(r+k) + (3n-2r+1) - i\\ \psi_{\{3\}}(cw_1^{(i)}) &= \begin{cases} 2n(r+k) + (3n-2r+1) - \frac{i+1}{2}, & \text{if } i \equiv 1 \pmod{2} \\ 2n(r+k) + (3n-2r+1) - \lceil \frac{n}{2} \rceil - \frac{i}{2}, & \text{if } i \equiv 2 \pmod{2} \end{cases}$$

$$\psi_{\{5\}}(cw_1^{(i)}) &= \begin{cases} 2\{r(n-1) + n(k+1)\} + \frac{i+1}{2}, & \text{if } i \equiv 1 \pmod{2} \\ 2\{r(n-1) + n(k+1)\} + \lceil \frac{n}{2} \rceil + \frac{i}{2}, & \text{if } i \equiv 2 \pmod{2} \end{cases}$$

For $\delta = 2, 3, 5$

$$\begin{array}{lll} \psi_{\delta}(V(P_{x_{i}x_{i+1}})) &=& \{n+(n-1)j+1+i: 1 \leq i \leq n-1, 1 \leq j \leq r-1\} \\ \psi_{\delta}(E(P_{x_{i}x_{i+1}})) &=& \{(n-1)(2r+2-j)+n(k+1)+2-i: 1 \leq j \leq r+1\} \\ \psi_{\delta}(V(S^{(i)})) &=& \{r(n-1)+1+nj+i: 1 \leq i \leq n, 1 \leq j \leq k\} \\ \psi_{\delta}(E(S^{(i)}) \setminus \{cw_{1}^{(i)}\}) &=& \{2n(r+k)+(3n-2r+1)-nj-i: 1 \leq j \leq k\} \end{array}$$

where indices *i* are taken modulo *n*.

Evidently ψ_{δ} is a super labeling as $V(F_n(rk)) = \{1, 2, ..., n(k + r + 1) - r + 1\}$. The spoke vertices are labeled with the numbers n + 2, n + 3, ..., n + 2k + 1 and the path edge vertices are labeled with n + 2k + 2, n + 2k + 3, ..., n(k + r + 1) - r + 1. Clearly,

$$\sum \left(\psi_{\delta}(V(S^{(i)})) + \psi_{\delta}(E(S^{(i)}) \setminus \{cw_{1}^{(i)}\}) \right) = 3rk(n-1) + k(3n+2nk+2)$$

$$\sum \left(\psi_{\delta}(V(P_{x_{i}x_{i+1}})) + \psi_{\delta}(E(P_{x_{i}x_{i+1}})) \right) = n(r+1)(k+3) + 2n(r^{2}-1) + r(n-2r+1) + 1.$$
(6)

According to (1) and (6), we obtain

$$wt_{\psi_2}(C_{r+2k+3}^{(i)}) = 2i + 3 + n\{k(r+5) + 7r + 3\} + 2nk(2k+3) + 2n(r^2 - 1) + 2(3n - 2r + 2k + 1) \\ wt_{\psi_2}(C_{r+2k+3}^{(i)}) = nk(4k + r + 11) + n(2r^2 + 7r + 1) + 2(3n - 2r + 2k) + 5 + 2i.$$
(7)

Equation (7) shows that all $C_{r+2k+3}^{(i)}$ -weights constitute an arithmetic progression with common difference $\delta = 2$.

According to (1) and (6), we obtain

$$wt_{\psi_3}(C_{r+2k+3}^{(i)}) = 6n - 4r + 5 + 3i - \left\lceil \frac{n}{2} \right\rceil + r(n - 2r + 1) + 6kr(n - 1) + 2kn(2k + 3) + 4k + n(2r^2 + 5k + 7r + rk + 1) wt_{\psi_3}(C_{r+2k+3}^{(i)}) = 2nr(r + 4) + nk(4k + r + 11) + 6rk(n - 1) - r(2r + 3) + 7n + 4k - \left\lceil \frac{n}{2} \right\rceil + 5 + 3i.$$
(8)

Equation (8) shows that all $C_{r+2k+3}^{(i)}$ -weights constitute an arithmetic progression with common difference $\delta = 3$.

According to (1) and (6), we obtain

$$wt_{\psi_5}(C_{r+2k+3}^{(i)}) = nk(6r+11) + nr(3r+8) - r(2r+3) + 2k(2nk-3r+2) + 5n + \lceil \frac{n}{2} \rceil + 5 + 5i.$$
(9)

Equation (9) shows that all $C_{r+2k+3}^{(i)}$ -weights constitute an arithmetic progression with common difference $\delta = 5$. \Box

4. Concluding remarks

An Ω -covering graphs is the extension of the edge-antimagic labeling and generalizes the structure for Ω -antimagic labeling. Several results concerning Ω -antimagic labelings for different families of graphs are proved and available in literature. In the present manuscript, the super (α, δ) - C_n -antimagicness of subdivided fans has been considered for few of differences. One can work to extend the labeling for further differences greater than 5.

Acknowledgments: The authors are grateful for the valuable comments of the anonymous referees.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The authors declare no conflict of interest."

References

- [1] Gutiérrez, A., & Lladó, A. (2005). Magic coverings. *Journal of Combinatorial Mathematics and Combinatorial Computing*, 55, 43-56.
- [2] Inayah, N., López, A., & Moragas, J. (2012). Magic and antimagic H-decompositions. *Discrete Mathematics*, 312(7), 1367-1371.
- [3] Jeyanthi, P., & Selvagopal, P. (2010). More classes of *H*-supermagic graphs. *International Journal of Algorithms, Computing and Mathematics*, 3(1), 93-108.
- [4] Lladó, A., & Moragas, J. (2007). Cycle-magic graphs. Discrete Mathematics, 307(23), 2925-2933.
- [5] Maryati, T. K., Baskoro, E. T., & Salman, A. N. M. (2008). P_h-supermagic labelings of some trees. Journal of Combinatorial Mathematics and Combinatorial Computing, 65, 197.

- [6] Maryati, T. K., Salman, A. N. M., & Baskoro, E. T. (2013). Supermagic coverings of the disjoint union of graphs and amalgamations. *Discrete Mathematics*, 313(4), 397-405.
- [7] Ngurah, A. A. G., Salman, A. N. M., & Susilowati, L. (2010). H-supermagic labelings of graphs. Discrete Mathematics, 310(8), 1293-1300.
- [8] Inayah, N., Salman, A. N. M., & Simanjuntak, R. (2009). On (a, d)-H-antimagic coverings of graphs. *Journal of Combinatorial Mathematics and Combinatorial Computing*, 71, 273-281.
- [9] Inayah, N., Simanjuntak, R., Salman, A. N. M., & Syuhada, K. I. A. (2013). Super (a, d)-H-antimagic total labelings for shackles of a connected graph *H. Australasian Journal of Combinatorics*, 57, 127-138.
- [10] Umar, M. A. (2019). Cyclic-antimagic construction of ladders. Engineering and Applied Science Letter, 2(2), 43-47.
- [11] Ali, N., Umar, M. A., Tabassum, N., & Raheem, L. (2018). Super (*a*, *d*)-C3-antimagicness of a corona graph. *Open Journal of Mathematical Sciences*, 2(1), 371-378.
- [12] Lih, K. W. (1983). On magic and consecutive labelings of plane graphs. Utilitas Math, 24, 165-197.

© 2020 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).