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Abstract: During the early phase of Covid-19, the transmissibility of the coronavirus disease was estimated
using the classical SIR and SEIR models. However, with the advent of some controlling measures in its
informative stages, these classical compartmental models have been ameliorated to provide accurate insight
of the coronavirus disease. The paper seeks to derive the basic reproductive formulas for these improved
models using the matrix approach. These transmissibility equations detail the dynamics of the coronavirus
disease for all phases of the pandemic; either the infected population is on lockdown or not; either infectious
persons are quarantined or not; either a vaccination program has been rolled out or yet to be rolled out. With
the availability of data, any of these transmissibility equations could be adopted to report on the endemicity
of the coronavirus disease.
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1. Introduction

I he paper presents the basic reproductive formulas for several enhanced coronavirus models. These
formulae highlight the transmissibility of the coronavirus disease regardless of its states. The basic

reproductive equation and its corresponding number is a measure of the transmissibility of a viral disease.
It is often denoted by R0 (R nought). It measures the mean number of new infections assuming an infectious
person is introduced into a susceptible or naive population and is one of the fundamental concepts in infectious
disease modeling. The basic reproductive number gives a simple and clear explanation of the growth or decay
of an endemic disease. With a threshold value of unity, it is theorized that a disease will invade a susceptible
population when R0 is greater than this threshold value. On the other hand, the disease will die-out when
R0 is less than one [1,2]. Related to the basic reproductive number is the Malthusian or exponential growth
parameter R [3]. With the Malthusian parameter classification, the disease will invade the host population
when R is greater than zero, but dies-off when R is less than zero.

Generally, the basic reproductive formulas are derived using three main approaches, that is statistical[4,5],
stochastic [6,7], and mathematical [8–10]. The mathematics has several subdivisions and the most common is
the use of the matrix (NGM). In all cases, the basic reproductive formula is obtained from the Jacobian matrix.
The Jacobian matrix is the first partial derivatives of the given system of equations. The differential equations
are also deduced from the compartmental diagrams.

During the early phase of the corona pandemic, [11], used the R0 from an SIR model to explain
the transmissibility of SARS-CoV-2 for some selected cities in Italy. The authors estimated that the basic
reproductive number for these nine cities to range between 2.43 and 3.10. In a similar research by [12], the
R0 for Iran was also inferred from an SIR model. The value was estimated to lie within the neighborhood of
4.8 during the first week of the coronavirus pandemic but reduced drastically to a value less than one after
the seventh week. In Wuhan where the virus erupted, the basic reproductive number was estimated in the
range between 2.8 and 3.9 based an SEIR model [13]. The paper stated that the transmissibility of SARS-CoV-2
during the early stages of infection was higher than SARS-CoV.

Though the R0 of the coronavirus disease has been addressed in several papers, these values may
not replicate the transmissibility of the virus within its informative stages. These exiting values were
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estimated during the earlier phase of Covid-19, where there were inaccurate data on the spread and control
of SARS-CoV-2. In the recent past, new compartmental corona models have been developed to appropriately
explain the dynamic of the coronavirus disease depending on the eradication strategies adopted to control
the spread in a naive population [14]. It is therefore imperative to derive the corresponding R0 equations
to properly reflect the transmissibility of the virus. The basic reproductive formulas are derived using the
next-generation matrix approach. Here, the NGM with three different domains is considered in deriving the
transmissibility equations. [2] presents a detailed explanation of these domain classifications.

The mathematics of the next-generation matrix is presented in Section 2. In Section 3, the R0 equations for
eight Covid-19 models are presented. For each model, three different NGM domains are employed to derive
the R0 equations. Section 4 provides a general summary of the entire work.

2. Next-generation matrices

This method was first introduced by [15] but was further elaborated by [16]. To derive the basic
reproductive number (R0) using the next-generation matrix, the Jacobian matrix (J) for the infected
sub-population is decomposed into a sum of two matrices; the transmission matrix (Γ) and the transition
matrix (∆). Γ accounts for the number of new infections, while ∆ used to characterize movement to-and-fro
compartments. The transmission and transition matrices are used during the computation process of the NGM.
Besides, the R0 equations are the dominant eigenvalues or spectral radius of the NGM.

Here, the NGM is categorized under three domain headings; a large domain (DL), classical domain (DC),
and small domain (DS).

The spectral formula for the NGM with large domain is given by

DL = −Γ∆−1. (1)

Similarly, the NGM with the classical domain is deduced from Equation (1) as

DC = Ψ′DLΨ = −Ψ′Γ∆−1Ψ (2)

where Ψ is an arbitrary matrix composed of unit column vectors (ei) such that the ith row of the transmission
matrix is not zero [2].

The dimension of the large domain could be reduced to obtain the result of the NGM with small domain.
For the small domain, the transmission matrix (Γ) is dichotomized into two separate vectors (Ω, Λ). A row
vector (Ω), and a column vector (Λ) are defined to satisfy Equation (3).

Γij = ΛiΩj. (3)

Then the NGM with the small domain is defined as

DS = −Ω∆−1Λ. (4)

For the small domain, the spectral radius of this matrix (4) is also the basic reproductive formula. With
the other two domains, the trace of the spectral formula is the basic reproductive equation. These domain
analyzes are summarized by the following propositions.

Proposition 1. The NGM with classical domain DC and the NGM with large domain DL have the same non-zero
eigenvalue.

Proof. Let Θ be an eigenvector of DC with corresponding eigenvalues Υ. Then DCΘ = −Ψ′Γ∆−1ΨΘ = ΥΘ.
Multiply this identity by Ψ to get −ΨΨ

′
Γ∆−1ΨΘ = ΥΨΘ. But ΨΨ′Γ = Γ, so ΨΘ is an eigenvector of DL with

corresponding eigenvalue Υ, and the non-zero eigenvalues of DC and DL are the same.

Proposition 2. The NGM with small domain DS and the NGM with large domain DL have the same non-zero
eigenvalue.
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Proof. Let Θ be an eigenvector of DS with corresponding eigenvalues Υ. Then DSΘ = −Ω∆−1ΛΘ = ΥΘ.
Multiply this identity by Λ to get −ΛΩ∆−1ΛΘ = ΥΛΘ. But ΛΩ = Γ. So ΛΘ is an eigenvector of DL with
corresponding eigenvalue Υ.

Remark 1. The NGM with domains DL, DC and DS have the same rank, same non-zero spectrum and same
dominant eigenvalue.

3. Covid-19 models and their basic reproductive equations

The compartmental models discussed in this paper are detailed in [14]. The following notations are
used to represent the various sub-populations: S → susceptible, I →infected, E → exposed, R → removed
or recovered, L → lockdown, Q → quarantine, V → vaccinated, Ia → asymptomatic patients, and Is →
symptomatic patients. The parametric constants used for the formulation of these models are summarized in
Table 1. We begin by considering the simple SEIR model.

Table 1. Model Parameters and Their Definitions

Parameters Definition
µ Birth rate
γ Natural death rate
α3 Recovery rate Ia
α4 Recovery rate of Is
ε Incubation/latency rate
α1 Outflow from I to R
α2 Outflow from Q to R
β Outflow from S to I
β1 Outflow from S to E
ξ Outflow from E to S
κ Outflow from E to Is
φ Outflow from Ia to Is
θ1 Outflow from I to Q
θ2 Outflow from E to Q
η Outflow from S to L
δ Outflow from L to S

ω1 Outflow from S to V
τ Infectivity factor

3.1. SEIR Model

The simple SEIR model that characterizes the coronavirus is given by the system (5).
S′(t) = µN − β1SI − γS + ξE;

E′(t) = β1SI − (γ + ε + ξ)E;

I′(t) = εE− (γ + α1)I;

R′(t) = α1 I − γR.

(5)

The infectious subsystem is deduced from Equation (5) as{
E′(t) = β1SI − (γ + ε + ξ)E;

I′(t) = εE− (γ + α1)I.
(6)

Then the Jacobian matrix from the system (6) is computed as

J(E,I) =

[
−(γ + ε + ξ) β1S

ε −(γ + α1)

]
. (7)
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The Jacobian matrix is decomposed into two matrices as shown below.

Γ =

[
0 β1S
0 0

]
, ∆ =

[
−(γ + ε + ξ) 0

ε −(γ + α1)

]
.

Then the inverse of the transition matrix is also computed as

∆−1 =


−1

γ + ε + ξ
0

−ε

(γ + α1)(γ + ε + ξ)

−1
γ + α1

 .

The basic reproductive equation (R0) is derived by considering the following domain cases.

Case I: NGM with large domain

The NGM with large domain is denoted by (DL), that is

DL = −Γ∆−1 =

 εβ1S
(γ + α1)(γ + ε + ξ)

β1S
γ + α1

0 0

 .

Therefore the basic reproductive formula considering a large domain matrix is

RL
0 = trace(DL) =

εβ1S
(γ + α1)(γ + ε + ξ)

.

Case II: NGM with classical domain

The NGM with classical domain is denoted by DC. Here, we assume an auxiliary matrix Ψ of the form:

Ψ =

[
1 0
0 0

]
. This implies that

Ψ′Γ =

[
0 β1S
0 0

]
and − ∆−1Ψ =

 1
γ + ε + ξ

0
ε

(γ + α1)(γ + ε + ξ)
0

 .

Then the spectral formula is given by

DC = −Ψ′Γ∆−1Ψ =

 εβ1S
(γ + α1)(γ + ε + ξ)

0

0 0

 .

Deductively, the basic reproductive number considering a classical domain matrix is given by the equation

RC
0 = trace(DC) =

εβ1S
(γ + α1)(γ + ε + ξ)

.

Case III: NGM with small domain

The NGM with small domain is denoted by DS. We define an arbitrary row vector Ω and column vector

Λ such that Ω =
[
0 β1

]
and Λ =

[
S 0

]′
. Note that Γij = Λi ×Ωj. This implies that

−Ω∆−1 =

[
εβ1

(γ + α1)(γ + ε + ξ)

β1

γ + α1

]
.

Then the basic reproductive formula for a small domain matrix is

RS
0 = DS = −Ω∆−1Λ =

εβ1S
(γ + α1)(γ + ε + ξ)

.
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It could be realized that the R0 result for these different domains are equivalent to each other. The
susceptible population S is assumed to equal unity for a naive population. Again, if we assume that birth
rate µ offset death rate γ then the basic reproductive number for the SEIR model reduce to

R0 =
εβ1

α1(ε + ξ)
.

Moreover, the R0 value for the SEIR model reverts to SIR model when ξ = 0. That is

R0 =
β1

α1
.

3.2. SEIs IaR Model

The system of equations for an SEIR model with asymptomatic (Ia) and symptomatic (Is) compartments
is given by (8). This system is hereafter referred to as the SEIs IaR model.

S′(t) = µN − β1S(Is + τ Ia)− γS + ξE;

E′(t) = β1S(Is + τ Ia)− (γ + ε + ξ)E;

I′s(t) = εkE + φIa − (γ + α4)Is;

I′a(t) = ε(1− k)E− [γ + α3 + φ]Ia;

R′(t) = α4 Is + α3 Ia − γR/, .

(8)

Equation (8) is reduced to form the infectious subsystem as (9).
E′(t) = β1S(Is + τ Ia)− (γ + ε + ξ)E;

I′s(t) = εkE + φIa − (γ + α4)Is;

I′a(t) = ε(1− k)E− [γ + α3 + φ]Ia .

(9)

The Jacobian matrix is deduced as

J(E, Is, Ia) =

−(γ + ε + ξ) β1S τβ1S
εk −(γ + α1) φ

ε(1− k) 0 −(γ + α3 + φ)

 .

Then

Γ =

0 β1S 0
0 0 0
0 0 0

 , ∆ =

−(γ + ε + ξ) 0 0
εk −(γ + α4) φ

ε(1− k) 0 −(γ + α3 + φ)


and

∆−1 =



−1
γ + ε + ξ

0 0

−εk(γ + α3 + φ) + φε(1− k)
(γ + ε + ξ)(γ + α3 + φ)

−1
γ + α4

−φ

(γ + α4)(γ + α3 + φ)
−ε(1− k)

(γ + ε + ξ)(γ + α3 + φ)
0

−1
γ + α3 + φ

 .

Similarly, the basic reproductive equation (R0) for this model is derived by considering the following
domain cases.

Case I: NGM with large domain

DL =


β1S[εk](γ + α3 + φ) + φε(1− k)
(γ + ε + ξ)(γ + α4)(γ + α3 + φ)

β1S
γ + α4

φβ1S
(γ + α4)(γ + α3 + φ)

0 0 0
0 0 0

 .
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Hence the basic reproductive number is deduced as

RL
0 = trace(DL) =

εβ1S[k(γ + α3 + φ) + φ(1− k)]
(γ + ε + ξ)(γ + α4)(γ + α3 + φ)

.

Case II: NGM with classical domain

We let Ψ =

1 0 0
0 0 0
0 0 0

, then Ψ′Γ =

0 β1S 0
0 0 0
0 0 0

, −∆−1Ψ =



1
γ + ε + ξ

0 0

εk(γ + α3 + φ) + φε(1− k)
(γ + ε + ξ)(γ + α3 + φ)

0 0

ε(1− k)
(γ + ε + ξ)(γ + α3 + φ)

0 0

. The

next-generation matrix is of the form DC = −Ψ′Γ∆−1Ψ =


εβ1S[k(γ + α3 + φ) + φ(1− k)]
(γ + ε + ξ)(γ + α4)(γ + α3 + φ)

0 0

0 0 0
0 0 0

 . Then

RC
0 = trace(DC) =

εβ1S[k(γ + α3 + φ) + φ(1− k)]
(γ + ε + ξ)(γ + α4)(γ + α3 + φ)

.

Case III: NGM with small domain

The transmission matrix is decomposed as Ω =
[
0 β1 0

]
and Λ =

[
S 0 0

]′
. Then

−Ω∆−1 =

[
εβ1[k(γ + α3 + φ) + φ(1− k)]

(γ + ε + ξ)(γ + α4)(γ + α3 + φ)

β1

γ + α4

β1θ

(γ + α4)(γ + α3 + φ)

]
and

RS
0 = DS = −Ω∆−1Λ =

εβ1S[k(γ + α3 + φ) + φ(1− k)]
(γ + ε + ξ)(γ + α4)(γ + α3 + φ)

.

3.3. SIR Model with Quarantine

The model equation for this Covid-19 characterization is given by
S′(t) = µN − βSI − γS;

I′(t) = βSI − [γ + θ1 + α1]I;

Q′(t) = θ1 I − (γ + α2)Q;

R′(t) = α1 I + α2Q− γR.

(10)

For the infected states, then Jacobian matrix is J(I, Q) =

[
βS− (γ + θ1 + α1) 0

θ1 −(γ + α2)

]
. Then the

transition and transmission matrices are deduced as Γ =

[
βS 0
0 0

]
, ∆ =

[
−(γ + θ1 + α1) 0

α1 −(γ + α2

]
, with

the inverse matrix ∆−1 =


−1

γ + θ1 + α1
0

−θ1

(γ + α2)(γ + α2

−1
γ + α2

.

Case I: NGM with large domain

DL =

 βS
γ + θ1 + α1

0

0 0

 and RL
0 =

βS
γ + θ1 + α1

.
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Case II: NGM with classical domain

We let Ψ =

[
1 0
0 0

]
, then Ψ′Γ =

[
βS 0
0 0

]
, and −∆−1Ψ =


1

γ + θ1 + α1
0

θ1

(γ + α2)(γ + θ1 + α1)
0

.

The next-generation matrix for the classical domain and its corresponding basic reproductive number are
respectively given by DC and RC

0 below.

DC =

 βS
γ + θ1 + α1

0

0 0

 and RC
0 =

βS
γ + θ1 + α1

Case III: NGM with small domain

The decomposed matrices are of the form Ω =
[

β 0
]
, Λ =

[
S 0

]′
, then −Ω∆−1 =

[
β

γ + θ1 + α1
0
]

.

Here, the basic reproductive number is equal to the spectral formula and is given by

RS
0 = DS = −Ω∆−1Λ =

βS
γ + θ1 + α1

.

3.4. SEIR Model with Quarantine

The model equations for the SEIR with quarantine is given by (11):

S′(t) = µN − β1SI − γS + ξE;

E′(t) = β1SI − [γ + θ2 + ε + ξ)]E;

I′(t) = εE− [γ + θ1 + α1]I;

Q′(t) = θ1 I + θ2E− (γ + α2)Q;

R′(t) = α1 I + α2Q− γR.

(11)

The Jacobian matrix for the infected sub-population is

J(E, I, Q) =

−(γ + θ2 + ε + ξ) β1S 0
ε −(γ + θ1 + α1) 0
θ2 θ1 −(γ + α2)

 .

The above matrix is decomposed as

Γ =

0 β1S 0
0 0 0
0 0 0

 , ∆ =

−(γ + θ2 + ε + ξ) 0 0
ε −(γ + θ1 + α1) 0
θ2 θ1 −(γ + α2)

 .

This yields the inverse of the transition matrix as

∆−1 =


−1

γ + θ2 + ε + ξ
0 0

ε

(γ + θ2 + ε + ξ)(γ + θ1 + α1
)

−1
γ + θ1 + α1

0

εθ1 + θ2(γ + θ1 + α1)

−(γ + θ2 + ε + ξ)(γ + θ1 + α1)(γ + α2)

−θ1

(γ + θ1 + α1)(γ + α2)

−1
(γ + α2)

 .

Case I: NGM with large domain

For this case, the NGM; DL =


εβ1S

(γ + θ2 + ε + ξ)(γ + θ1 + α1)

β1S
γ + θ1 + α1

0

0 0 0
0 0 0

 and RL
0 =

εβ1S
(γ + θ2 + ε + ξ)(γ + θ1 + α1)

.
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Case II: NGM with classical domain

Letting Ψ =

1 0 0
0 0 0
0 0 0

, then DC = −Ψ′Γ∆−1Ψ =


εβ1S

(γ + θ2 + ε + ξ)(γ + θ1 + α1)
0 0

0 0 0
0 0 0

 . Thus, the

basic reproductive number for this case is RC
0 =

εβ1S
(γ + θ2 + ε + ξ)(γ + θ1 + α1)

.

Case III: NGM with classical domain

The matrix Γ is break-down as Ω =
[
0 β1 0

]
, and Λ =

[
S 0 0

]′
. Then

−Ω∆−1 =

[
εβ1

(γ + θ2 + ε + ξ)(γ + θ1 + α1)

β1

(γ + θ1 + α1)

β1θ1

(γ + θ1 + α1)(γ + α2)

]
and

RS
0 = DS =

εβ1S
(γ + θ2 + ε + ξ)(γ + θ1 + α1)

.

In subsequent derivations, the mathematics of the next-generation matrix are evinced without enough
emphasis to the use of words. Besides, the R0 results are obtained for all three domain cases.

3.5. SIR Model with Quarantine and Lockdown

This corona characterization is represented with the differential Equation (12).

S′(t) = µN − βSI − (γ + η)S + δL;

L′(t) = ηS− (γ + δ)L;

I′(t) = βSI − [γ + θ1 + α1]I;

Q′(t) = θ1 I − (γ + α2)Q;

R′(t) = α1 I + α2Q− γR.

(12)

Considering only the infected states, the matrix of first partial derivative is given by

J(I, Q) =

[
βS− (γ + θ1 + α1) 0

θ1 −(γ + α2)

]
.

From the Jacobian matrix, the required components ∆, and Γ are obtained as Γ =

[
βS 0
0 0

]
, and ∆ =

[
−(γ + θ1 + α1) 0

α1 −(γ + α2

]
, with the inverse matrix ∆−1 =


−1

γ + θ1 + α1
0

−θ1

(γ + α2)(γ + α2

−1
γ + α2

 .

Case I: NGM with large domain

DL =

 βS
γ + θ1 + α1

0

0 0

 and RL
0 =

βS
γ + θ1 + α1

.

Case II: NGM with classical domain

DC =

 βS
γ + θ1 + α1

0

0 0

 and RC
0 =

βS
γ + θ1 + α1

where Ψ =

[
1 0
0 0

]
.
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Case III: NGM with small domain

RS
0 = DS = −Ω∆−1Λ =

βS
γ + θ1 + α1

where Ω =
[

β 0
]
, and Λ =

[
S 0

]′
.

3.6. SEIR Model with Quarantine and Lockdown

The model equations are 

S′(t) = µN − β1SI − (γ + η)S + δL + ξE;

L′(t) = ηS− (γ + δ)L;

E′(t) = β1SI − [γ + θ2 + ε + ξ]E;

I′(t) = εE− [γ + θ1 + α1]I;

Q′(t) = θ1 I + θ2E− (γ + α2)Q;

R′(t) = α1 I + α2Q− γR.

(13)

The Jacobian for the infected states is

J(E, I, Q) =

−(γ + θ2 + ε + ξ) β1S 0
ε −(γ + θ1 + α1) 0
θ2 θ1 −(γ + α2)

 .

Then Γ =

0 β1S 0
0 0 0
0 0 0

, ∆ =

−(γ + θ2 + ε + ξ) 0 0
ε −(γ + θ1 + α1) 0
θ2 θ1 −(γ + α2)

, and ∆−1 =


−1

γ + θ2 + ε + ξ
0 0

ε

(γ + θ2 + ε + ξ)(γ + θ1 + α1
)

−1
γ + θ1 + α1

0

εθ1 + θ2(γ + θ1 + α1)

−(γ + θ2 + ε + ξ)(γ + θ1 + α1)(γ + α2)

−θ1

(γ + θ1 + α1)(γ + α2)

−1
(γ + α2)

 .

Case I: NGM with large domain

DL =


εβ1S

(γ + θ2 + ε + ξ)(γ + θ1 + α1)

β1S
γ + θ1 + α1

0

0 0 0
0 0 0

 , RL
0 =

εβ1S
(γ + θ2 + ε + ξ)(γ + θ1 + α1)

.

Case II: NGM with classical domain

DC =


εβ1S

(γ + θ2 + ε + ξ)(γ + θ1 + α1)
0 0

0 0 0
0 0 0

 , RC
0 =

εβ1S
(γ + θ2 + ε + ξ)(γ + θ1 + α1)

.

The entries of Ψ are the same as the SEIR model with quarantine.

Case III: NGM with small domain

RS
0 = DS = −Ω∆−1Λ =

εβ1S
(γ + θ2 + ε + ξ)(γ + θ1 + α1)

.

The entries of Ω and Λ are the same as the SEIR model with quarantine.
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3.7. SIR Model with Quarantine and Vaccination

The SIR equations with quarantine and vaccinations are expressed as (14).

S′(t) = µN − βSI − (γ + ω1)S;

V′(t) = ω1S− γV;

I′(t) = βSI − [γ + θ1 + α1]I;

Q′(t) = θ1 I − (γ + α2)Q;

R′(t) = α1 I − γR + α2Q.

(14)

For the infected sub-compartments, the Jacobian is mathematically expressed as

J(I, Q) =

[
βS− (γ + θ1 + α1) 0

θ1 −(γ + α2)

]
.

The transition, transmission and inverse matrices are

Γ =

[
βS 0
0 0

]
, ∆ =

[
−(γ + θ1 + α1) 0

α1 −(γ + α2

]
, ∆−1 =


−1

γ + θ1 + α1
0

−θ1

(γ + α2)(γ + α2

−1
γ + α2

 .

Case I: NGM with large domain

DL =

 βS
γ + θ1 + α1

0

0 0

 and RL
0 =

βS
γ + θ1 + α1

.

Case II: NGM with classical domain

DC =

 βS
γ + θ1 + α1

0

0 0

 and RC
0 =

βS
γ + θ1 + α1

.

The entries of Ψ are the same as the SIR model with quarantine.

Case III: NGM with small domain

RS
0 = DS = −Ω∆−1Λ =

βS
γ + θ1 + α1

.

The entries of Ω and Λ are the same as the SEIR model with quarantine.

3.8. SEIR Model with Quarantine and Vaccination

The SEIR model with quarantine and vaccinations is given by the system (15).

S′(t) = µN − β1SI − (γ + ω1)S + ξE;

V′(t) = ω1S− γV;

E′(t) = β1SI − [γ + θ2 + ε + ξ]E;

I′(t) = εE− [γ + θ1 − α1]I;

Q′(t) = θ1 I + θ2E− (γ + α2)Q;

R′(t) = α1 I − γR + α2Q.

(15)

For the infected states

J(E, I, Q) =

−(γ + θ2 + ε + ξ) β1S 0
ε −(γ + θ1 + α1) 0
θ2 θ1 −(γ + α2)
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and

Γ =

0 β1S 0
0 0 0
0 0 0

 , ∆ =

−(γ + θ2 + ε + ξ) 0 0
ε −(γ + θ1 + α1) 0
θ2 θ1 −(γ + α2)



∆−1 =


−1

γ + θ2 + ε + ξ
0 0

ε

(γ + θ2 + ε + ξ)(γ + θ1 + α1
)

−1
γ + θ1 + α1

0

εθ1 + θ2(γ + θ1 + α1)

−(γ + θ2 + ε + ξ)(γ + θ1 + α1)(γ + α2)

−θ1

(γ + θ1 + α1)(γ + α2)

−1
(γ + α2)

 .

Case I: NGM with large domain

DL =


εβ1S

(γ + θ2 + ε + ξ)(γ + θ1 + α1)

β1S
γ + θ1 + α1

0

0 0 0
0 0 0

 , RL
0 =

εβ1S
(γ + θ2 + ε + ξ)(γ + θ1 + α1)

.

Case II: NGM with classical domain

DC =


εβ1S

(γ + θ2 + ε + ξ)(γ + θ1 + α1)
0 0

0 0 0
0 0 0

 , RC
0 =

εβ1S
(γ + θ2 + ε + ξ)(γ + θ1 + α1)

.

Case III: NGM with small domain

RS
0 = DS =

εβ1S
(γ + θ2 + ε + ξ)(γ + θ1 + α1)

.

These R0 equations presented in this section explain the transmissibility of the coronavirus disease under
several varied conditions. The choice will depend on the underlining characteristic of the coronavirus disease
within the host population.

4. Conclusion

Since the outbreak of the coronavirus diseases, its endemicity is inferred from the R0 of simple SIR and
SEIR models. In some recent corona model offshoots; lockdowns, quarantine, and vaccination compartments
have been introduced to reflect the current state of Covid-19.

In this paper, we derived the basic reproductive equations from these improved models to fully
characterize the spread of the coronavirus disease within the informative stages. In section three, divergent R0

formulas were presented depending on the state of the Covid-19 infections, and the measures implemented to
curb the spread of the virus.

The next-generation matrix was used to derive these basic reproductive equations. In each case, the R0

equation was derived using three different NGM domains; the classical domain, large domain, and small
domain. These unique domain analyses yielded the same R0 equations. This was corroborated with two
propositional proofs.

With a better insight on the spread and control of the coronavirus disease within the informative phases
of the corona disease, stakeholders could opt for a suitable R0 equation among these to appropriately report
on the transmissibility of SARS-CoV-2.
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