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Abstract: In this paper, we examine linear and nonlinear boundary sinks in compartments whose adjacent
sides are separated with sieve partitions allowing transport of chemical species. The sieve partitions serve
as boundary sinks of the system separating each compartment from the subsequent one. With assumption
of unidirectional transport of chemical species, constant physical properties and same equilibrium constant,
system of partial differential equations are derived. The spatial variables of the derived PDEs are discretized
using Method of Lines (MOL) technique. The semi-discrete system formed from this technique produced
a system of 105 ODEs which are solved using MATLAB solver ode15s. The results show that for
strongly nonlinear boundary sinks, concentration profile maintains low profile in interconnected adjacent
compartments. This suggests that as nonlinearity increases at the boundary, the concentration profile
becomes increasingly low in subsequent compartments.
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1. Introduction

B oundaries are integral parts of chemical reactor systems. Reactions taking place there often need to
be carefully accounted for whenever meaningful designs leading to optimum yield of products are

required. The type of reaction taking place at such boundaries may have unwanted significant effect on the
concentration profile of any species of chemical being transported through such systems.

Several models exist in literature, while some are lumped parameter models [1–3], others are distributed
parameter systems [4–10]. Some researchers [11] emphasized difficulty in obtaining the desired concentration
profile if only inlet concentrations are dependent on. They investigated chemical reaction scheme involving
favourable kinetics as can be found in the work of Lu et al., [12], but their work did not include diffusion of
reacting species as the focus was on distributed source using a set of hyperbolic partial differential equations
for an isothermal tubular reactor. Hamel et al., [13] investigated parallel series reactions in a one-dimensional,
isothermal, isobaric tubular reactor. However, their work centred on lumped parameter system which was
based on systems of Ordinary Differential Equations (ODEs) hence spatial effects on the reactants were not
considered.

Nocon [14] on the other hand modelled distributed feed in continuous sedimentation where he presented
a distributed source model in comparison with the standard point source model using a proposed distribution
function, but the work included settling velocity which may not be required in systems where sedimentation
is not considered. Some other researchers [15] modelled the effects of numbers and locations of inlet apertures
on the flow field but their work centred on single-compartment system with emphasis on flow pattern and
pictorial representation of the flow field.

Investigation was made by Adedire and Ndam [16] to model chlorine decay through water and
intermediate Pseudomonas aeruginosa in multiple-compartment isothermal reactor, their research centred
mainly on linear boundary sinks across the interconnected systems. Also, in their work [17], the focus was
on comparison of species transport through the single and the interconnected multiple-compartment systems.
They did not consider probable effects of nonlinear boundary sinks. They also did not investigate whether
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such nonlinearity has any significant effect on the concentration profiles in adjacent compartments for the
species being transported through the interconnected systems.

Motivation to proceed on this study stems from process industries with continuous flow reactors
consisting of chemical species with linear chemical sinks passing through material sieves such as aluminium
or zinc sieve partitions acting as linear/nonlinear boundary sinks in interconnected multiple-compartment
systems. It should be noted that the materials of the sieve partitions or any material attached to it will -
to some extent - determine whether linear or nonlinear chemical sinks are taking place at the boundaries of
each compartment as the chemical species moves through it. While the effects of wall decay in distribution
systems have been considered in single-compartment systems, satisfactory investigation into linear/nonlinear
boundary sinks of interconnected multiple-compartment systems with sieve or permeable partitions has not
been done in an elaborate way.

To this end, this research intends to determine whether nonlinear boundary sinks will significantly
alter the concentration profiles of adjacent compartments than linear boundary sinks of interconnected
multiple-compartment isothermal systems. Do we need to consider species transport through the
interconnected multiple-compartment systems for chemical species with nonlinear boundary sinks the same
way as for linear boundary sinks? It should be noted that while some similar researches in literature use
differential equations with either reactions terms only or diffusion-reaction terms only [5,6], this research use
convection-diffusion-reaction terms with emphasis on PDEs that are incompletely parabolic whose details can
be found in [18].

In this study, we examine linear and nonlinear boundary sinks for interconnected multiple-compartment
isothermal systems with sieve partitions in order to determine the extent of linear/nonlinear boundary
effects on the concentration profiles in adjacent compartments for species being transported through
multiple-compartment system.

The remaining part of this paper is organized as follows: Section 2 centres on model development. Section
3 deals with numerical simulation of the derived model equations. While in Section 4, the results of the model
simulation are presented with discussion. Conclusion comes up in Section 5.

2. Model development

The governing partial differential equations are developed from the concept that fluid is a continuum
[19]. Define a function Ψ(

_
x, t) : Rn × R → R, where Ψ(

_
x, t) is the concentration of species ξ flowing in

n-dimensional space with variables
_
x ∈ Rn such that x = x1, x2, ...xn and t is time.

Figure 1. Schematic representation of species transport with linear/nonlinear boundary sinks through
interconnected multiple-compartment isothermal system

For n = 1, we set up mass balance with assumption of convection and diffusion taking place along
x1-axis for the chemical species ξ with flux qξ and reaction term Rξ over the infinitesimal thickness ∆x1 in the
x1-direction of each compartment of the chemical reactor as

(∆x1) Ψξ(x1, t)
∣∣
t − (∆x1)Ψξ(x1, t)

∣∣
t+∆t

= vAΨξ(x1, t)
∣∣
x1

∆t− vA Ψξ(x1, t)
∣∣
x1+∆x1

∆t + qhAx|x1
∆t− qhAx1

∣∣
x1+∆x1

∆t + Rξ∆x1∆t.
(1)
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Divide (1) through by (∆x)(∆t) to obtain

Ψξ (x1,t)|t−Ψξ (x1,t)|t+∆t
∆t = −vAx1

ΨAξ (x1,t)|x−ΨAξ (x1,t)|x1+∆x1
∆x1

−
qhA |x1

− qhA |x1+∆x1
∆x1

+ Rξ
(2)

and take the limit of (2) as ∆x → 0, ∆t→ 0 to have

∂Ψξ(x1, t)
∂t

= −vx1

∂Ψξ

∂x1
−

∂qξ

∂x1
+ Rξ . (3)

The flux qξ follows Fick’s law of diffusion [20], [21] and the rate of consumption of the species is assumed
to be based on first order chemical reaction kinetics hence for all compartments of Figure 1, Equation (3) gives

∂Ψξ(x1, t)
∂t

= −vx1

∂Ψξ(x1, t)
∂x1

+
∂

∂x1

[
D

∂[Ψξ(x1, t)
∂x1

]
− kξ Ψξ(x1, t), t > 0.

Setting 

∂Ψξ (x1,t)
∂t = Ψt(x1, t)ξ

vx1
∂Ψξ (x1,t)

∂x1
= vx1 Ψx1(x1, t)ξ

∂
∂x1

[
D ∂[Ψξ (x1,t)

∂x1

]
= [DΨx1(x1, t)ξ ]x

kξ Ψξ(x1, t) = kξ Ψ(x1, t)ξ

we have the following equation in more compact form as

Ψt(x1, t)ξ = −vΨx1(x1, t)ξ + [DΨx1(x1, t)ξ ]x − kξ Ψ(x1, t)ξ , t > 0 (4)

Let Q ⊂ N be a finite set and γ ∈ Q , define Q = {1, 2, ..., m} such that the least upper bound and greatest
lower bound of Q are contained in Q, consequently Q is a bounded set.

Given the γth-compartment, if γ = 1, 2, ...m ∈ Q ⊂ N for any m-compartment system, then the governing
model Equation (4) becomes a system of m PDEs

Ψt(x, t)1ξ = −vΨx(x, t)1ξ + [D1Ψx(x, t)1ξ ]x − kξ Ψ(x, t)1ξ , xL 6 x 6 x1, t > 0 (5)

Ψt(x, t)2ξ = −vΨx(x, t)2ξ + [D2Ψx(x, t)2ξ ]x − kξΨ(x, t)2ξ , x1 6 x 6 x2, t > 0 (6)

. . .

. . .

. . .

Ψt(x, t)mξ = −vΨx(x, t)mξ + [DmΨx(x, t)mξ ]x − kξΨ(x, t)mξ , xm−1 6 x 6 xm, t > 0 (7)

Observe that (5), (6) and (7) are valid equations only in the specified domain of any γth compartment for
each of the PDEs.

Since Equations (5), (6) and (7) for m−compartment system have first order derivatives in time and second
order derivatives in space, their auxiliary conditions will include one initial condition and two boundary
conditions in each γth compartment of the system. Thus, for interconnected boundary conditions linking
the state of concentrations in (γ + 1)th compartment with that of the preceding γth compartment, each γth

compartment of the m-compartment system (5)-(7) will have the following initial and Dirichlet boundary
conditions:

Ψ(x, 0)γξ = Ψ(x)γξ0 (8)

Ψ(x = xL0, t)γξ = Ψ(t)γξ (9)

Ψ(x = x1, t)γξ = k
[
Ψ(x = x1, t)(γ+1)ξ

]β
(10)
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where β ∈ R for some equilibrium constant k. Observe that the boundary condition given in (10) is
interconnected boundary condition linking concentrations in the γ + 1)th compartment with that of the
preceding γth compartment in a way showing the relationship at the boundary.

For m-compartment system showing continuity of flux of species ξ from (γ − 1)th compartment to γth

compartment, the following initial and boundary conditions hold

Ψ(x, 0)γξ = Ψ(x)γξ0 (11)

Ψx(x = xL0, t)γξ =
D(γ−1)ξ

Dγξ
Ψx(x = xL0, t)(γ−1)ξ (12)

Ψ(x = x1, t)γξ = k
[
Ψ(x = x1, t)(γ+1)ξ

]β
(13)

From Figure 1, m = 5, γ = 1, 2, 3, 4, 5 then Equations (5), (6) and (7) for compartments A, B, C, D and E
give the following system of PDEs:

For compartment A,

Ψt(x, t)Aξ = −vΨx(x, t)Aξ + [DAΨx(x, t)Aξ ]x − kξΨ(x, t)Aξ , xL 6 x 6 x1, t > 0 (14)

Using (8) , (9) and (10) for compartment A, the initial and boundary conditions for (14) give

Ψ(x, 0)Aξ = Ψ(x)Aξ0 (15)

Ψ(x = xL0, t)Aξ = Ψ(t)Aξ (16)

Ψ(x = x1, t)Aξ = k
[
Ψ(x = x1, t)Bξ

]β (17)

For compartment B,

Ψt(x, t)Bξ = −vΨx(x, t)Bξ + [DBΨx(x, t)Bξ ]x − kξ Ψ(x, t)Bξ , x1 6 x 6 x2, t > 0 (18)

Using (11), (12) and (13) for compartment B, the initial and boundary conditions for (18) give

Ψ(x, 0)Bξ = Ψ(x)Bξ0 (19)

Ψx(x = x1, t)Bξ =
DAξ

DBξ
Ψx(x = x1, t)Aξ (20)

Ψ(x = x2, t)Bξ = k
[
Ψ(x = x2, t)Cξ

]β (21)

For compartment C,

Ψt(x, t)Cξ = −vΨx(x, t)Cξ + [DCΨx(x, t)Cξ ]x − kξ Ψ(x, t)Cξ , x2 6 x 6 x3, t > 0 (22)

The initial and boundary conditions for (22) using (11) , (12) and (13) for compartment C, give

Ψ(x, 0)Cξ = Ψ(x)Cξ0 (23)

Ψx(x = x2, t)Cξ =
DBξ

DCξ
Ψx(x = x2, t)Bξ (24)

Ψ(x = x3, t)Cξ = k
[
Ψ(x = x3, t)Dξ

]β (25)

For compartment D,

Ψt(x, t)Dξ = −vΨx(x, t)Dξ + [DDΨx(x, t)Dξ ]x − kξΨ(x, t)Dξ , x3 6 x 6 x4, t > 0 (26)

Using (11) , (12) and (13) for compartment D, the initial and boundary conditions for (26) give

Ψ(x, 0)Dξ = Ψ(x)Dξ0 (27)
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Ψx(x = x3, t)Dξ =
DCξ

DDξ
Ψx(x = x3, t)Cξ (28)

Ψ(x = x4, t)Dξ = k
[
Ψ(x = x4, t)Eξ

]β (29)

For compartment E,

Ψt(x, t)Eξ = −vΨx(x, t)Eξ + [DEΨx(x, t)Eξ ]x − kξ Ψ(x, t)Eξ , x4 6 x 6 x5, t > 0 (30)

The initial and boundary conditions for (22) using (11) , (12) and (13) for compartment E, give

Ψ(x, 0)Eξ = Ψ(x)Eξ0 (31)

Ψx(x = x4, t)Eξ =
DDξ

DEξ
Ψx(x = x4, t)Dξ (32)

Ψ(x = x5, t)Eξ = Ψ(t)Eξ0 (33)

The terms of (14), (18), (22), (26) and (30) from the left hand side denote net accumulation, convection,
diffusion and first order reaction kinetics.

Each of the boundary conditions (17), (21), (25), (29) and (33) links the action in one compartment to the
preceding compartment via linear/nonlinear sinks. Observe that there are linear/nonlinear sinks which act
as nexus between the boundaries. Equations (20), (24), (28) and (32) show the continuous flux of the chemical
species from one compartment to another.

2.1. Existence and uniqueness of solution

In this subsection, we present the existence and uniqueness of solutions for the system of PDEs and
auxiliary conditions (14)-(33). Let x = (x1, ..., xn) , 0 ≤ xi < ∞, 1 ≤ i ≤ n, be space variables and consider the
system of PDEs

ψt(x, t)1 = ∑
|v|6m

[
Av(x, t, ψ(x, t)1)

∂|v|

∂x
v1
1 ...∂xvs

s

]
ψ(x, t)1 + G(x, t)1

ψt(x, t)2 = ∑
|v|6m

[
Av(x, t, ψ(x, t)2)

∂|v|

∂x
v1
1 ...∂xvs

s

]
ψ(x, t)2 + G(x, t)2

.

.

.

ψt(x, t)s = ∑
|v|6m

[
Av(x, t, ψs(x, t)) ∂|v|

∂x
v1
1 ...∂xvs

s

]
ψ(x, t)s + G(x, t)s



(34)

with initial values
ψ(x, 0)i = f (x)i, x ∈ Ω (35)

and boundary values
Lψ(x, t)i = g(x, t)i, x ∈ ∂Ω, t > 0, i = 1, 2, ..., s (36)

where L is differential operator and x = (x1, ..., xs) ∈ <s represents independent variable vectors such that
|v| = v1 + ... + vs. The coefficients Av = A(x, t, ψ)v are given matrix functions which are smooth and ψi =

ψ(x, t)i is the solution to be obtained such that ψi ∈ Cn with Gi(x, t) acting as the forcing functions. Assume
smooth boundary ∂Ω of the given domain Ω ⊂ <s are fixed with the data of the system taken as G(x, t)i, f (x)i
and g(x, t)i. Then the system of Equations (34)-(36) is well-posed [18].

In order to avoid repetitions, detailed proof of existence and uniqueness leading to well-posedness of
(34)-(36) will not be considered here as it has already been proved extensively by [18]. See proofs also for
special cases of (34)-(36) in [22].

3. Numerical simulation

The approach used to obtain numerical solution is the Method of Lines (MOL). The governing model
equations with linear/nonlinear boundary sinks are solved by discretizing only the spatial derivatives of the
PDEs with finite difference approximations.
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Let x1 = x and consider i ∈ N as an index representing a position along a grid in x and ∆x, the spacing in
x along the grid in x . For the convective part, consider the first order approximations to Ψx as

Ψx(x, t) ≈ Ψi −Ψi−1

∆x
+ O(∆x). (37)

For the diffusive part of the PDEs, consider second order FD approximations to the second order
derivatives Ψxx as

Ψxx(x, t) ≈ Ψi+1 − 2Ψi + Ψi−1

∆x2 + O(∆x2). (38)

The value at the first boundary (left-end) of x is i = 1 and the value at the last boundary (right-end) of x is
i = Mx where Mx is the number of points on the grids in x. This means that there are M points on the grid in
x for each compartment. The term O(∆x2) represent order of ∆x; that is the truncation error of approximation
is second order finite difference FD scheme obtained from Taylor series.

For γ = 1, substitution of (37) and (38) into (14) gives

Ψt(t)(Aξ)i = −vAx
Ψ(t)(Aξ)i−Ψ(t)(Aξ)i−1

∆x + DAx

[
Ψ(t)(Aξ)i+1−2Ψ(t)(Aξ)i+Ψ(t)(Aξ)i−1

∆x2

]
− kAξΨ(t)(Aξ)i, 1 6 i 6 M(1)

(39)
where for γ = 1, Equations (15), (16) and (17) are semi-discretized as:

Ψ(t = 0)(Aξ)i = Ψ(x(i))Aξ0 (40)

Ψ(t)(Aξ)1 = Ψ(t)Aξ1 (41)

Ψ(t)(Aξ) M(1)
= k

[
Ψ(t)(Bξ) M(1)

]β
(42)

For γ = 2, substitution of (37) and (38) into (18) gives

Ψt(t)(Bξ)i = −vBx
Ψ(t)(Bξ)i−Ψ(t)(Bξ)i−1

∆x + DBx

[
Ψ(t)(Bξ)i+1−2Ψ(t)(Bξ)i+Ψ(t)(Bξ)i−1

∆x2

]
− kBξ Ψ(t)(Bξ)i, 1 6 i 6 M(2) (43)

and for γ = 2, (19)-(21) are semi-discretized as:

Ψ(t = 0)(Bξ)i = Ψ(x(i))Bξ0 (44)

Ψ(t)(Bξ) M(1)
−Ψ(t)(Bξ) M(1)−1

∆x
=

DAξ

DBξ

Ψ(t)(Aξ) M(1)
−Ψ(t)(Aξ) M(1)−1

∆x
(45)

Ψ(t)(Bξ) M(2)
= k

[
Ψ(t)(Cξ) M(2)

]β
. (46)

For γ = 3, substitution of (37) and (38) into (22) gives

Ψt(t)(Cξ)i = −vCx
Ψ(t)(Cξ)i−Ψ(t)(Cξ)i−1

∆x + DCx

[
Ψ(t)(Cξ)i+1−2Ψ(t)(Cξ)i+Ψ(t)(Cξ)i−1

∆x2

]
− kCξΨ(t)(Cξ)i, 1 6 i 6 M(3)

(47)
where for γ = 3, Equations (23)-(25) are semi-discretized as:

Ψ(t = 0)(Cξ)i = Ψ(x(i))Cξ0 (48)

Ψ(t)(Cξ) M(2)
−Ψ(t)(Cξ) M(2)−1

∆x
=

DBξ

DCξ

Ψ(t)(Bξ) M(2)
−Ψ(t)(Bξ) M(2)−1

∆x
(49)

Ψ(t)(Cξ) M(3)
= k

[
Ψ(t)(Dξ) M(3)

]β
(50)

For γ = 4, substitution of (37) and (38) into (26) gives

Ψt(t)(Dξ)i = −vDx
Ψ(t)(Dξ)i−Ψ(t)(Dξ)i−1

∆x + DDx

[
Ψ(t)(Dξ)i+1−2Ψ(t)(Dξ)i+Ψ(t)(Dξ)i−1

∆x2

]
− kDξ Ψ(t)(Dξ)i, 1 6 i 6 M(4)

(51)
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and for γ = 4, (27)-(29) are semi-discretized as:

Ψ(t = 0)(Dξ)i = Ψ(x(i))Dξ0 (52)

Ψ(t)(Dξ) M(3)
−Ψ(t)(Dξ) M(3)−1

∆x
=

DCξ

DDξ

Ψ(t)(Cξ) M(3)
−Ψ(t)(Cξ) M(3)−1

∆x
(53)

Ψ(t)(Dξ) M(4)
= k

[
Ψ(t)(Eξ) M(4)

]β
(54)

For γ = 5, substitution of (37) and (38) into (30) gives

Ψt(t)(Eξ)i = −vEx
Ψ(t)(Eξ)i−Ψ(t)(Eξ)i−1

∆x + DEx

[
Ψ(t)(Eξ)i+1−2Ψ(t)(Eξ)i+Ψ(t)(Eξ)i−1

∆x2

]
− kEξ Ψ(t)(Eξ)i1 6 i 6 M(5) (55)

where for γ = 5, Equations (31)-(33) are semi-discretized as:

Ψ(t = 0)(Eξ)i = Ψ(x(i))Eξ0 (56)

Ψ(t)(Eξ) M(4)
−Ψ(t)(Eξ) M(4)−1

∆x
=

DDξ

DEξ

Ψ(t)(Dξ) M(4)
−Ψ(t)(Dξ) M(4)−1

∆x
(57)

Ψ(t)(Eξ) M(5)
= Ψ(t)(Eξ)0 M(5)

(58)

Semi-discrete systems (39) (43) (47), (51) and (55) together with their auxiliary conditions (40)-(42), (44)-(46),
(48)-(50), (52)-(54) and (56)-(58) respectively will be solved simultaneously for (m=5)-compartment system.

4. Results and discussion

The length of each compartment of the interconnected multiple-compartment system is taken to be 120m
each so that the total length of the system equal to 600m. The diffusivities DAx, DBx, DCx, DDx and DEx of the
species are taken to be 9.0× 10−3m2/s with linear velocity v = 50m/s.

The initial concentration of the species is taken to be 15mg/L. The first order reaction rate constants
kAξ , kBξ , kCξ , kDξ and kEξ are taken to be 1.0 × 10−2s−1. At the left boundary of the system, the species
concentration ΨAξ0 is taken as 15mg/L. The results from simulation of the semi-discrete system of Equations
(39)-(58) are shown for species concentration for different values of β which represent linear/nonlinear
boundary sinks for values of β taken as 1, 2 and 7 as nonlinearity at the boundary increases. The results
are displayed in Figures 2, 3 and 4 at 36 minutes when equilibrium has been attained.
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Figure 2. Species concentration profile for linear boundary sinks β = 1 of interconnected
(m=5)multiple-compartment system at time t = 36 mins
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Figure 3. Species concentration profile for nonlinear boundary sinks β = 2 of interconnected
(m=5)multiple-compartment system at time t = 36 mins
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Figure 4. Species concentration profile for nonlinear boundary sinks β = 7 of interconnected
(m=5)multiple-compartment system at time t = 36 mins

From Figure 2 for linear boundary sink β = 1 at time t=36 minutes, end of one boundary and the
beginning of another boundary of each compartment of the system maintains the same concentration values
of 11.77 mg/L, 8.70 mg/L, 5.75 mg/L, 2.86 mg/L and 0.00 mgL respectively. However, there is a significant
drop in the concentration profile for nonlinear boundary sink β = 2 between the end of one compartment
and the beginning of another compartment as they do not maintain the same concentration profile at the
boundaries of the compartments for the chemical species being transported through the interconnected
multiple-compartment system as shown in Figure 3. The values of the concentration at t=36 minutes are
14.17 mg/L, 3.08 mg/L, 1.10 mg/L, 0.41 mg/L and 0.00 mgL which are obtained at the boundary end of each
compartment of the reactor system.

For strongly nonlinear boundary sink β = 7 depicted in Figure 4, more drop of the concentration profile
is observed. The values of the species concentration at the boundary end of each compartment are 14.15 mg/L,
0.73 mg/L, 0.24 mg/L, 0.10 mg/L and 0.00 mgL respectively at t = 36 minutes. While results from Figure 1
indicate a small drop in concentration profile to 10.22 mg/L at mid-point of the second compartment for linear
boundary sink β = 1 , results from Figures 2 and 3 at the mid-point of the second compartment for nonlinear
boundary sinks β = 2 and β = 7 show significant drop in concentration values to 3.42 mg/L and 1.09 mg/L
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respectively. Generally , this means that whenever a chemical species with linear sinks (first order chemical
reaction kinetic decay) is transported through adjacent compartments of interconnected multiple-compartment
system, there is significant drop in concentration profile at the adjacent compartments as nonlinear boundary
sinks increase.

5. Conclusion

The emphasis in this research work is on investigating the influence of nonlinearity at the boundaries
on the concentration profile of a chemical species being transported - in adjacent compartments - through
multiple-compartment isothermal system. The system is such that each compartment is connected with
form of sieve partitions allowing nonlinear sinks at such boundaries. Comparison was made between linear
boundary sink β = 1 as shown in Figure 2 and nonlinear boundary sinks β = 2 and 7 as shown in Figures 3
and 4.

The results show that for strongly nonlinear boundary sinks, the concentration profile at the adjacent
compartments significantly dropped to very low values in the interconnected multiple-compartment system.
Hence interconnected multiple-compartment systems with strongly nonlinear boundary sinks may not be
suitable for systems where high concentration profile in adjacent compartment is needed. Therefore, we
recommend such models for system designs in which low concentration profile is the target.
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