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Abstract: We present, in a way quite accessible to undergraduate and graduate students, some basic and
important facts about conics: parabola, ellipse and hyperbola. For each conic, we start by its definition,
then consider tangent line and obtain an elementary proof of the reflexion property. We study intersection of
tangents. We obtain the orthopic set for orthogonal tangents: the directrix for parabola and the Monge’s circle
for ellipse and hyperbola. For ellipse and hyperbola we also consider intersection of tangents for parallel rays
at points of intersection with the conic. Those analysis lead to geometric methods to draw conics. Finally we
get the directrices for ellipse and hyperbola by considering intersections of tangents at endpoints of a secant
passing through a focus.
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1. Introduction

C onics are defined as locus which is, in general in geometry, a set of all points (commonly, a line, a
line segment, a curve or a surface), whose location satisfies or is determined by one or more specified

conditions. There are many real world applications of conics, some of them were already presented in [1–3],
and more recently in [4–6]. The study of conics is a part of the mathematical field called Analytic Geometry, see
[7,8] for more details, and for example Monge’s work is a quite important contribution to this subject [9]. It
is an old elementary and interesting mathematical subject. Interested readers who would like to learn more
about this subject are referred to the preceding references and to the following books [10–14], and references
therein.

In this paper we prove facts related to tangents to conics using very elementary techniques. So this text is
quite accessible to undergraduate and graduate students. Our paper is based on cartesian coordinate systems
and proceed with the coordinates of points and vectors. For each type of conics, namely parabola, ellipse
and hyperbola, we start with its definition an get its cartesian equation. Then we consider tangents to conic.
We follow by given an elementary and direct proof of its reflexion property. We continue by considering
intersection of tangents. In particular, for the intersection of orthogonal tangents, we obtain the orthoptic set
of the conic. The orthoptic (curve) is the locus of the points by which pass two perpendicular tangents to the
curve, in other words, the locus of the points from which we“see" the curve under a right angle. For a parabola
it is its directrix, and for ellipse and hyperbola it is known as the Monge’s circle. For ellipse and hyperbola we
continue by considering intersection of tangents at the two points of intersenction of the conic with two parallel
rays passing through the foci, so we get the principal circle of the conic. Finally we consider intersection of
tangents at the two points of intersection of a ray passing through one focus, we get the directrices of the
conics.

2. Notations and preliminaries

For two points P = (xp, yp) and Q = (xq, yq) in R2 seen as vectors, we use the scalar product

P ·Q = xpxq + ypyq,

and the length

|P| =
√

P · P =
√

x2
p + y2

p.
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Also, we use the following useful relation

P ·Q = |P| |Q| cos(θ),

where θ is the angle between the two vectors P and Q.

Seen as point in R2, the unique line determined by the two points P and Q is noted
←→
PQ. The set of points

on this line between P and Q is the segment

PQ =
{

R = (1− λ)P + λQ ∈ R2 : λ ∈ [0, 1]
}

.

Also PQ is the vector PQ = Q− P. The length of the vector PQ, or equivalently the length of the segment PQ,
is noted |PQ| = |Q− P|.

A line ` through the point P in a direction ν = (νx, νy) is defined by

` = P + [ν] =
{

Pλ = P + λν ∈ R2 : λ ∈ R
}

.

We use the notation ν⊥ = (−νy, νx) for a vector which is perpendicular or orthogonal to ν. It is also called the
normal vector to the line `. The line ` can also be written as

` =
{

Q ∈ R2 : (Q− P) · ν = 0
}

.

The orthogonal or perpendicular line to ` at P is then

`⊥ = P +
[
ν⊥
]
=
{

Pλ = P + λν⊥ ∈ R2 : λ ∈ R
}

.

Finally the distance |P`| from a point P to a line ` is defined by

|P`| = min {|PQ| : Q ∈ `} .

In this text we focus on tangents to conics. To determine the cartesian equation of a tangent we need its
direction. This direction is obtained by computing the limit of direction of secants to the conic.

3. Parabola

3.1. Definition

A parabola is defined as the locus of a point which moves so that it is always the same distance from a
fixed point F (called the focus) and a given line `d (called the directrix).

Let p > 0, the focus be F = (p/2, 0), and the directrix `d be

`d = −F + [(0, 1)] =
{
(−p/2, y) ∈ R2 : y ∈ R

}
.

For a point P = (x, y), we have

|FP| = |(x− p/2, y)| =
√
(x− p/2)2 + y2,

and

|P`d| = min {|PQ| : Q ∈ `d}
= min {|(x + p/2, y− λ)| : λ ∈ R}
= |x + p/2| .

The point P is on the parabola if and only if |FP| = |P`d|. This condition leads to the equation

y2 = 2px.
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So the parabola is the set

P =
{

P ∈ R2 : |FP| = |P`d|
}
=
{

P = (x, y) ∈ R2 : y2 = 2px
}

.

The x-axis, which is the horizontal line of equation y = 0, is the axis of symmetry of the parabola P .

3.2. Tangent

Let us consider Ph = (xh, yh) =
(
(y + h)2/2p, y + h

)
∈ P for h ∈ R. For h 6= 0, the direction of the secant

←→
P0Ph is

τh =
1
h
(Ph − P0) =

(
y
p
+

h
2p

, 1
)

.

Then let h→ 0, so we get τ0 = (y/p, 1). Then let us set τ = pτ0 = (y, p) to be the direction of the tangent to P
at P0 = P = (x, y). So this tangent line is

`t = P + [τ] =
{

Q ∈ R2 : (Q− P) · ν = 0
}

.

where ν = τ⊥ = (−p, y0), which leads to the equation

−px + y0y = px0.

3.3. Reflexion property

Let P = (x, y) ∈ P and Q = (−p/2, y) ∈ `d, so we have |FP| = |QP|. Let α1 be the angle between FP and
the tangent `t, and let α2 be the angle between QP and the tangent `t. If α1 = α2, an horizontal ray is reflected
on the parabola through the focus F, this is the reflexion property of the parabola.

To show this property, let us observe that we have{
FP · τ = |FP| |τ| cos(α1),
QP · τ = |QP| |τ| cos(α2).

Moreover {
FP = P− F = (x− p/2, y),
QP = P−Q = (x + p/2, 0),

so {
FP · τ = (x− p/2, y) · (y, p) = (x + p/2)y,
PQ · τ = (x + p/2, 0) · (y, p) = (x + p/2)y,

from which we can conclude that cos(α1) = cos(α2), or α1 = α2.

3.4. Intersection of tangents

3.4.1. General case

Let Pi = (xi, yi) ∈ P for i = 1, 2, be two points on the parabola. The common points to the two tangents
to the parabola at those points Pi is the solution P̃ = (x̃, ỹ) to the linear system[

−p y1

−p y2

] [
x̃
ỹ

]
= p

[
x1

x2

]
,

which is

P̃ =

(
y1y2

2p
,

y1 + y2

2

)
.

Let us observe that this point is on the horizontal line y = y1+y2
2 as P̄ = (P1 + P2) /2 =

((x1 + x2) /2, (y1 + y2) /2).
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3.4.2. Equally y-spaced Pi

Suppose P2 = (x2, y2) =
(
(y1 + h)2/2p, y1 + h

)
∈ P . Then{

y2 − y1 = h,
y2 + y1 = 2ỹ,

from which we obtain y1y2 = 4ỹ2−h2

4 . Since x̃ = y1y2
2p , so

ỹ2 = 2p
(

x̃ +
h2

8p

)
,

which is a second parabola, in fact it is the translated original parabola. Its directrix is x = − p
2 −

h2

8p and its

focus is F̃ =
(

p
2 −

h2

8p , 0
)

.

3.4.3. Orthogonal tangents and orthoptic set

The orthogonality of the two tangents at Pi = (xi, yi) ∈ P for i = 1, 2, means that

τ1 · τ2 = 0 or ν1 · ν2 = 0 or or y1y2 + p2 = 0.

In this case x̃ = −p/2 and P̃ is on the directrix `d. Moreover any point on the directrix x = −p/2 is a point in
the orthoptic set. Indeed, remember that ỹ = y1+y2

2 , so if we set ỹ = ζ, and solve the system{
y1 + y2 = 2ζ,

y1y2 = −2p2,

we get two values ζ ±
√

ζ2 + p2 for y1 and y2, in fact the y coordinates of the corresponding two points P1 and
P2 on the parabola. In conclusion, the orthoptic curve to the parabola is its directrix.

The orthogonality condition of tangent also means that the focus F is on the secant
←→
P1P2. To see this fact,

consider FP1 = (x1 − p/2, y1) and FP2 = (x2 − p/2, y2). Then F ∈
←→
P1P2 if and only if the angle between FP1

and FP2 is 0 or π, or the angle between FP1 and FP⊥2 is π/2 or 3π/2, which means that FP1 · FP⊥2 = 0. But

FP1 · FP⊥2 = (x1 − p/2, y1) · (−y2, x2 − p/2) =
y1y2 + p2

2p
(y2 − y1).

So, since y1 6= y2 because the Pi’s are not on an horizontal line, F being on
←→
P1P2 leads to the orthogonality

condition y1y2 + p2 = 0, and conversely.

3.5. A geometric construction

Let Q = (−p/2, y) ∈ `d. Let R be the middle point of QF,

R =
1
2
(Q + F) = (0, y/2).

Consider now the line `r passing through R and perpendicular to
←→
QF. Since

QF = F−Q = (p,−y) and QF⊥ = (y, p)

then
`r = R +

[
QF⊥

]
= R + [(y, p)] .

The point of intersection of `r and the horizontal line `h = Q + [(1, 0)] is the point P =
(
y2/2p, y

)
∈ P . So this

is in fact a geometric method to construct the parabola.
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4. Ellipse

4.1. Definition

An ellipse is a plane curve surrounding two points called foci, such that for all points on the curve, the
sum of the two distances to the focal points is a constant.

Let a > c > 0 and define b =
√

a2 − c2. Let F1 = (c, 0) and F2 = (−c, 0) be the foci of the ellipse. For a
point P = (x, y), we have F1P = P− F1 = (x− c, y) and F2P = P− F2 = (x + c, y). A point P is on the ellipse
if and only if

|F1P|+ |F2P| = 2a.

This condition leads to the equation
x2

a2 +
y2

b2 = 1,

and the ellipse is the set

E =
{

P ∈ R2 : |F1P|+ |F2P| = 2a
}
=

{
P = (x, y) ∈ R2 :

x2

a2 +
y2

b2 = 1
}

.

The horizontal x-axis and the vertical y-axis are axes of symmetry of the ellipse. As a consequence, the
ellipse is also symmetric with respect to the origin O = (0, 0).

Finally using the parametrization P = (x, y) = (a cos(θ), b sin(θ)) for θ ∈ R, we have P ∈ E . The
coordinates of P can be obtained by considering two circles of radius respectively a and b, which leads to a
geometric construction of an ellipse.

4.2. Tangent

Without loosing in generality, let us consider the figure in the right half space x > 0. Let Ph =

(xh, y0 + h) ∈ E on the ellipse for h such that y0 + h ∈ (−b, b). Let h 6= 0, the direction of the secant
←→
P0Ph

to the ellipse is

τh =
1
h
(Ph − P0)

=

 a
h

√1− (y0 + h)2

b2 −

√
1−

y2
0

b2

 , 1



=

− a
b2

2y0 + h√
1− (y0+h)2

b2 +

√
1− y2

0
b2

, 1

 .

Then let h → 0, so we get τ0 =
(
− y0/b2

x0/a2 , 1
)

. Then we set τ = − x0
a2 τ0 =

(
y0/b2,−x0/a2) to be the direction of

the tangent line to E at P = P0. So this tangent line is

`t = P + [τ] =
{

Q ∈ R2 : (Q− P) · ν = 0
}

,

for ν = τ⊥ = (x0/a2, y0/b2), which leads to the equation

x0

a2 x +
y0

b2 y = 1.

4.3. Reflexion property

Let P = (x, y) ∈ E , we have {
PF1 · τ = |PF1| |τ| cos(α1),
F2P · τ = |F2P| |τ| cos(α2).

where αi (i = 1, 2) are respectively the angles between PF1, and F2P, and the tangent vector τ. To prove the
reflexion property we have to prove that α1 = α2.
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We have {
PF1 = F1 − P = (c− x,−y),
F2P = P− F2 = (x + c, y).

So  |PF1| = a
(

1− c
a2 x
)

,

|F2P| = a
(

1 + c
a2 x
)

,

and  PF1 · τ = (c− x,−y) · (y/b2,−x/a2) = cy
b2

(
1− c

a2 x
)

,

F2P · τ = (x + c, y) · (y/b2,−x/a2) = cy
b2

(
1 + c

a2 x
)

.

So we can conclude that cos(α1) = cos(α2), or α1 = α2, which is a proof of the reflexion property of the ellipse
which means that a ray passing through one focus is reflected on the ellipse into a ray passing through the
other focus.

4.4. Intersection of tangents

4.4.1. General case

Let Pi = (xi, yi) ∈ E for i = 1, 2, be two points on the ellipse such that P̄ = 1
2 (P1 + P2) =

(
x1+x2

2 , y1+y2
2

)
6=

O, or equivalently that O /∈
←→
P1P2. This condition means that

P2 · P⊥1 = (x2, y2) · (−y1, x1) = x1y2 − x2y1 6= 0.

The common points to the two tangents to the ellipse at those points Pi is the solution P̃ = (x̃, ỹ) to the
linear system [

x1
a2

y1
b2

x2
a2

y2
b2

] [
x̃
ỹ

]
=

[
1
1

]
,

which is
P̃ =

1
x1y2 − x2y1

(
a2(y2 − y1), b2(x1 − x2)

)
.

Let us observe that this point is also on the line passing through O and P̄. Indeed

P̃ · P̄⊥ =
1

x1y2 − x2y1

(
a2(y2 − y1), b2(x1 − x2)

)
·
(
−y1 + y2

2
,

x1 + x2

2

)
= 0.

In fact
P̃ =

1
x1y2 − x2y1

(
a2(y2 − y1), b2(x1 − x2)

)
= ρ̃ ((x1 + x2)/2, (y1 + y2)/2) ,

where
ρ̃ =

4
(x1+x2)2

a2 + (y1+y2)2

b2

.

4.4.2. Orthogonal tangents and orthoptic set

The orthogonality of the two tangents at Pi ∈ E (i = 1, 2), means that

τ1 · τ2 = 0 or ν1 · ν2 = 0 or
x1x2

a4 +
y1y2

b4 = 0.

To find the intersection P̃ = (x̃, ỹ) of the two tangents, we have to solve the linear system[
ν1

ν2

] [
x̃
ỹ

]
=

[
1
1

]
.
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Using the orthogonality property of the two normal vectors ν1 and ν2, we get[
ν1

ν2

]−1

=

[
νt

1
|ν1|2

νt
2
|ν2|2

]
,

and then
P̃ = (x̃, ỹ) =

1

|ν1|2
ν1 +

1

|ν2|2
ν2.

Using the orthogonality condition again we get

x̃2 + ỹ2 = |P̃|2 = P̃ · P̃ =
1

|ν1|2
+

1

|ν2|2
.

Now for the inverse matrix of the linear system, we have

I =

[
ν1

ν2

] [
νt

1
|ν1|2

νt
2
|ν2|2

]
,

and also

I =
[

νt
1
|ν1|2

νt
2
|ν2|2

] [
ν1

ν2

]

=
1

|ν1|2
νt

1ν1 +
1

|ν2|2
νt

2ν2.

Let us observe that[
a2 0
0 b2

]
=

[
a 0
0 b

]
I

[
a 0
0 b

]
=

2

∑
i=1

1

|νi|2

[
a 0
0 b

]
νt

i νi

[
a 0
0 b

]
,

and taking the trace on both sides, we get

a2 + b2 =
2

∑
i=1

1

|νi|2

[
a2 x2

i
a4 + b2 y2

i
b4

]
=

1

|ν1|2
+

1

|ν2|2
.

So we have
x̃2 + ỹ2 = a2 + b2,

and the point P̃ is on the circle of radius
√

a2 + b2.
Moreover any point on this circle is the intersection of two orthogonal tangents to the ellipse. To see

this fact, consider a point Q on this circle and Q(λ) = λQ for λ ∈ (λ0,+∞), where λ0 is such that Q(λ0) =

λ0Q ∈ E . For any Q(λ) we can find two tangents to the ellipse, and the angle between the tangents decreases
continuously from π to 0 for λ increasing in (λ0,+∞). So for a point Q(λ) we have a right angle and the two
tangents are perpendicular. From the preceding computation this point is on the circle of radius

√
a2 + b2 and

coincide with Q = Q(λ) = λQ so λ = 1.
In conclusion, the orthoptic set is the circle of radius

√
a2 + b2, called the Monge’s circle.

4.4.3. Parallel rays

We consider two parallel rays F1P1 and F2P2, with Pi ∈ E for i = 1, 2, and find the intersection of the
tangents to the ellipse at those two points Pi.

We consider a point F = (σ, 0) with |σ| < a, a direction η = (a cos(θ), b sin(θ)), and rewrite

P = F + λη = (c, 0) + λ(a cos(θ), b sin(θ)).
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The condition P ∈ E leads to the following values of λ

λ = λ±(σ) = −
σ

a
cos(θ)±

√(
1−

(σ

a

)2
)
+
(σ

a

)2
cos2(θ).

For our purpose, let us use

λ+(σ) = −
σ

a
cos(θ) +

√(
1−

(σ

a

)2
)
+
(σ

a

)2
cos2(θ) > 0

and set {
P1 = F1 + λ+(c) (a cos(θ), b sin(θ)) = (x1, y1),
P2 = F2 + λ+(−c) (a cos(θ), b sin(θ)) = (x2, y2),

such that P1 and P2 are in the upper half space (y > 0). The intersection of the tangents to the ellipse at those
points is

P̃ = (x̃, ỹ) =
1√(

1−
( c

a
)2
)
+
( c

a cos(θ)
)2

(a cos(θ), b sin(θ)) ,

and we observe that
x̃2 + ỹ2 = a2.

So P̃ is a point on the principal circle of the ellipse, namely the circle centered at the origin O of radius a.
We also observe that F2P̃ is perpendicular to the tangent to E at P1. In fact a direct computation leads to

F2P̃ · τ1 = (P̃− F2) ·
(

y1/b2,−x1/a2
)
= 0.

In the same way F1P̃ is perpendicular to the tangent to E at P2, and also directly we verify that

F1P̃ · τ2 = (P̃− F1) ·
(

y2/b2,−x2/a2
)
= 0.

Those observations lead to a geometric construction of an ellipse by rotating a rectangle. Draw a rectangle
such that two parallel sides pass through the foci with vertices on the circle of radius a. The intersections of
lines passing through the foci and parallel to the diagonals of the rectangle intersect sides of the rectangle at
points on E . So by rotating the rectangle we can find E pointwise.

4.4.4. Tangents to endpoint of a secant

Using the notation of the preceding section, for any |σ| < a and θ ∈ (0, π), we consider

λ±(σ) = −
σ

a
cos(θ)±

√(
1−

(σ

a

)2
)
+
(σ

a

)2
cos2(θ),

and, considering the focus F1, we set{
P1 = F1 + λ+(c)(a cos(θ), b sin(θ)) = (x1, y1),
P2 = F1 + λ−(c)(a cos(θ), b sin(θ)) = (x2, y2).

In this way, the focus F1 is on the secant
←→
P1P2. The point of intersection P̃ of the tangents to the ellipse at

Pi, (i = 1, 2), is given by
P̃ = (x̃, ỹ) =

(
a2/c,−b2 cot(θ)/c

)
,

which means that P̃ is on the vertical line x = a2/c. By symmetry, for the focus F2 we get the line x = −a2/c.
Those two vertical lines x = a2/c and x = −a2/c are also called the directrices of the ellipse.
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5. Hyperbola

5.1. Definition

A hyperbola is a set of points such that for any point of the set the absolute difference of the distances
from two focal points, called foci, is a constant.

Let c > a > 0 and define b =
√

c2 − a2. Let F1 = (c, 0) and F2 = (−c, 0) be the foci of the hyperbola.
For a point P = (x, y), we have F1P = P− F1 = (x− c, y) and F2P = P− F2 = (x + c, y). A point P is on the
hyperbola if and only if ∣∣ |F1P| − |F2P|

∣∣ = 2a.

This condition leads to the equation
x2

a2 −
y2

b2 = 1,

and the hyperbola is the set

H =
{

P ∈ R2 :
∣∣ |F1P| − |F2P|

∣∣ = 2a
}
=

{
P = (x, y) ∈ R2 :

x2

a2 −
y2

b2 = 1
}

.

The graph of the hyperbola in R2 has two branches: a first one in the right half space x > 0, and a second
one in the left half space x < 0. The horizontal x-axis and the vertical y-axis are axes of symmetry of the
hyperbola. Consequently the hyperbola is symmetric with respect to the origin O = (0, 0).

The natural parametrization for the hyperbola is P = (x, y) = (a cosh(θ), b sinh(θ)) for θ ∈ R. This
parametrization does not give us a geometric construction of the hyperbola.

5.2. Tangent

Without loosing in generality, let us consider the branch of the hyperbola in right half space (x > 0). Let

us consider Ph = (xh, y0 + h) ∈ H for h ∈ R. Let h 6= 0, the direction of the secant
←→
P0Ph to the hyperbola is

τh =
1
h
(Ph − P0)

=

 a
h

√1 +
(y0 + h)2

b2 −

√
1 +

y2
0

b2

 , 1



=

 a
b2

2y0 + h√
1 + (y0+h)2

b2 +

√
1 + y2

0
b2

, 1

 .

Then let h → 0, so we get τ0 =
(

y0/b2

x0/a2 , 1
)

. Then we set τ = x0
a2 τ0 =

(
y0/b2, x0/a2) to be the direction of the

tangent line to E at P = P0. Also, the tangent line is

`t = P + [τ] =
{

Q ∈ R2 : (Q− P) · ν = 0
}

,

where ν = τ⊥ = (−x0/a2, y0/b2), which leads to the equation

x0

a2 x− y0

b2 y = 1.

5.3. Reflexion property

Let P = (x, y) ∈ H, we have {
F1P · τ = |F1P| |τ| cos(α1),
F2P · τ = |F2P| |τ| cos(α2).

where αi is the angle between FiP and the tangent vector τ for i = 1, 2. To prove the reflexion property we
have to prove that α1 = α2.
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We have {
F1P = P− F1 = (x− c, y),
F2P = P− F2 = (x + c, y).

So  |F1P| = a
(

c
a2 x− 1

)
,

|F2P| = a
(

c
a2 x + 1

)
,

and  F1P · τ = (x− c, y) · (y/b2, x/a2) = cy
b2

(
c
a2 x− 1

)
,

F2P · τ = (x + c, y) · (y/b2, x/a2) = cy
b2

(
c
a2 x + 1

)
.

So we can conclude that cos(α1) = cos(α2), or α1 = α2, which is a proof of the reflexion property of the ellipse.
A ray arriving in the direction of one focus is reflected on the hyperbola towards the other focus.

5.4. Intersection of tangents

5.4.1. General case

Let Pi = (xi, yi) ∈ H, for i = 1, 2, be two points on the hyperbola such that P̄ = 1
2 (P1 + P2) =(

x1+x2
2 , y1+y2

2

)
6= O, or equivalently that O /∈

←→
P1P2. This condition means that

P2 · P⊥1 = (x2, y2) · (−y1, x1) = x1y2 − x2y1 6= 0.

The common points to the two tangents to the hyperbola at those points Pi is the solution P̃ = (x̃, ỹ) to
the linear system [

x1
a2 − y1

b2
x2
a2 − y2

b2

] [
x̃
ỹ

]
=

[
1
1

]
,

which is
P̃ =

1
x1y2 − x2y1

(
a2(y2 − y1), b2(x2 − x1)

)
.

Let us observe that this point is also on the line passing through O and P̄. Indeed

P̃ · P̄⊥ =
1

x1y2 − x2y1

(
a2(y2 − y1), b2(x2 − x1)

)
·
(
−y1 + y2

2
,

x1 + x2

2

)
= 0.

In fact
P̃ =

1
x1y2 − x2y1

(
a2(y2 − y1), b2(x2 − x1)

)
= ρ̃ ((x1 + x2)/2, (y1 + y2)/2) ,

where
ρ̃ =

4
(x1+x2)2

a2 − (y1+y2)2

b2

.

5.4.2. Orthogonal tangents and orthoptic set

The orthogonality of the two tangents at Pi (i = 1, 2) ofH, means that

τ1 · τ2 = 0 or ν1 · ν2 = 0 or
x1x2

a4 +
y1y2

b4 = 0.

To find the intersection P̃ = (x̃, ỹ) of the two tangents, we have to solve the linear system[
ν1

ν2

] [
x̃
ỹ

]
=

[
1
1

]
.
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Using the orthogonality property of the family of normal vectors, we get[
ν1

ν2

]−1

=

[
νt

1
|ν1|2

νt
2
|ν2|2

]
and then

P̃ =
1

|ν1|2
ν1 +

1

|ν2|2
ν2.

Moreover, using the orthogonality condition

x̃2 + ỹ2 = P̃ · P̃ =
1

|ν1|2
+

1

|ν2|2
.

Let us look at the inverse. We have

I =

[
ν1

ν2

] [
νt

1
|ν1|2

νt
2
|ν2|2

]
,

and also

I =
[

νt
1
|ν1|2

νt
2
|ν2|2

] [
ν1

ν2

]

=
1

|νl |2
νt

1ν1 +
1

|ν2|2
νt

2ν2.

Let us observe that[
a2 0
0 −b2

]
=

[
a 0
0 ιb

]
I

[
a 0
0 ιb

]
=

2

∑
i=1

1

|νi|2

[
a 0
0 ιb

]
νt

i νi

[
a 0
0 ιb

]

where ι2 = −1, and taking the trace on both sides, we get

a2 − b2 =
2

∑
i=1

1

|νi|2

[
a2 x2

i
a4 − b2 y2

i
b4

]
=

1

|ν1|2
+

1

|ν2|2
.

Then
x̃2 + ỹ2 = a2 − b2,

so the point P̃ is on the circle of radius
√

a2 − b2, under the condition that a2 − b2 ≥ 0.
Let us consider that the aymptotes y = ± b

a x are two tangents to the hyperbola at infinity. Under the
condition that a > b, any point on the circle of radius

√
a2 − b2 is the intersection of two orthogonal tangents

to the hyperbola. To see this fact, first consider a point Q on this circle such that the ray Q(λ) = λQ intersect
the segment (a, y) with y ∈ [−b, b] and a λ > 0. Let λ ∈ (0, λ0) for λ0 such that Q(λ0) ∈ H. For any Q(λ)

we can find two tangents to the branch in x > 0 to the hyperbola, and the angle between the tangent increases
continuously from a value less that π/2, because a > b, to +∞ for λ increasing in (0, λ0). So, for a point the
angle is a right angle, so the two tangents are perpendicular. From the preceding computation this point is on
the circle of radius

√
a2 − b2. We proceed similarly for a point Q on this circle such that the ray Q(λ) = λQ

intersect the segment (x, b) with x ∈ [−a, a] for a λ > 0. In this case for any Q(λ) we can find two tangents to
the hyperbola, one on the branch in x > 0 and a second on the branch in x < 0. The two points of tangency
on the hyperbola have a y < 0. Now let λ ∈ (0,+∞), the angle between the tangents decrease continuously
from a value larger π/2, because a > b, to 0. So for one point the angle is π/2, the tangents are perpendiculat
and the point is on the circle. For the degenerate case a = b, the tangents (at infinity) are the asymptotes an
O = (0, 0) is the unique point in the orthoptic set.

In conclusion, if the orthoptic set exists it is the circle of radius
√

a2 − b2 also known as Monge’s circle.
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5.4.3. Parallel rays

We consider two parallel rays F1P1 and F2P2, with Pi ∈ E for i = 1, 2, and we would like to find the
intersection of the tangents to the hyperbola at those two points Pi. We consider two appropriate sets of
directions to scan all the possible directions.

For the first set of directions, let η = (a cosh(θ), b sinh(θ)) for θ ∈ R. It is a point on the hyperbola
x2

a2 −
y2

b2 = 1 with x > 0. We consider a point F = (σ, 0) with |σ| > a, and write

P = F + λη = (σ, 0) + λ(a cosh(θ), b sinh(θ)),

and the condition P ∈ H leads to

λ = λ±(σ) = −
σ

a
cosh(θ)±

√(σ

a

)2
cosh2(θ)−

((σ

a

)2
− 1
)

.

For P1, associated to the focus F1, we have σ = c and λ−(c) < λ+(c) < 0. So, let us set

P+
1 = F1 + λ+(c)(a cosh(θ), b sinh(θ)),

which is on the branch ofH, with x > 0, and

P−1 = F1 + λ−(c)(a cosh(θ), b sinh(θ)),

which is on the branch ofH, with x < 0.
For P2, associated to the focus F2, we have σ = −c, and 0 < λ−(−c) < λ+(−c). So, let us set

P+
2 = F2 + λ+(−c)(a cosh(θ), b sinh(θ))

which is on the branch ofH, with x > 0, and

P−2 = F2 + λ−(−c)(a cosh(θ), b sinh(θ))

which is on the branch ofH, with x < 0.
We remark that

λ+(c) = −λ−(−c) and λ−(c) = −λ+(−c)

and since F2 = −F1 we have
P+

1 = −P−2 and P−1 = −P+
2 .

We then select P1 = P+
1 and P2 = P+

2 , both on the same branch of H with x > 0. Then we look at the
intersection of the tangents to the hyperbola at those points. This intersection is the point

P̃ =
a√

c2 cosh2(θ)− b2
(a cosh(θ), b sinh(θ)) ,

and we observe that
x̃2 + ỹ2 = a2.

Moreover we can directly show that F1P̃ · τ2 = 0 and F2P̃ · τ1 = 0.
For the second set of directions, let η = (a sinh(θ), b cosh(θ)) for θ ∈ R. It is a point on the hyperbola

− x2

a2 + y2

b2 = 1 with y > 0. We consider a point F = (σ, 0) with |σ| > a, and write

P = F + λη = (σ, 0) + λ(a sinh(θ), b cosh(θ)).

The condition P ∈ H leads to

λ = λ±(σ) =
σ

a
sinh(θ)±

√(σ

a

)2
sinh2(θ) +

((σ

a

)2
− 1
)

.
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For P1, associated to the focus F1, we have σ = c, and λ−(c) < 0 < λ+(c). So, let us set

P+
1 = F1 + λ+(c)(a sinh(θ), b cosh(θ)),

and
P−1 = F1 + λ−(c)(a sinh(θ), b cosh(θ))

which are both on the branch ofH for x > 0.
For P2, associated to the focus F2, we have σ = −c and λ−(−c) < 0 < λ+(−c). So, let us set

P+
2 = F2 + λ+(−c)(a sinh(θ), b cosh(θ)),

and
P−2 = F2 + λ−(−c)(a sinh(θ), b cosh(θ))

which are both on the branch ofH for x < 0.
We remark that

λ+(c) = −λ−(−c) and λ−(c) = −λ+(−c)

and since F2 = −F1 we have
P+

1 = −P−2 and P−1 = −P+
2 .

We then select P1 = P+
1 and P2 = P+

2 , one on each branche of H with y > 0. Then we look at the
intersection of the tangents to the hyperbola at those points. This intersection is the point

P̃ = − a√
c2 sinh2(θ) + b2

(a sinh(θ), b cosh(θ)) ,

and again we observe that
x̃2 + ỹ2 = a2.

Also we can directly show that F1P̃ · τ2 = 0 and F2P̃ · τ1 = 0.
In both cases, P̃ = (x̃, ỹ) is on the principal circle of the hyperbola, the circle of equation x̃2 + ỹ2 = a2.
Those observations lead to a geometric construction of an hyperbola by rotating a rectangle. Draw a

rectangle such that two parallel sides pass through the foci with vertices on the circle of radius a centered at
O = (0, 0). The intersections of the lines passing through the foci and parallel to the diagonals of the rectangle
intersect (extended) sides of the rectangle at points onH. So by rotating the rectangle we can findH pointwise.

5.4.4. Tangents to endpoint of a secant

Using the notation of the first set of directions of the preceding section, we consider

λ±(σ) = −
σ

a
cosh(θ)±

√(σ

a

)2
cosh2(θ)−

((σ

a

)2
− 1
)

for any |σ| > a and θ ∈ R. Then set{
P1 = P+

1 = F1 + λ+(c)(a cosh(θ), b sinh(θ)) = (x1, y1)

P2 = P−1 = F1 + λ−(c)(a cosh(θ), b sinh(θ)) = (x2, y2).

In this way, F1 is on the secant P1P2 which connects two points on the two different branches of H. The point
of intersection P̃ of the tangents to the ellipse at Pi, (i = 1, 2), is

P̃ = (x̃, ỹ) =
(

a2/c, ab coth(θ)/c
)

.

Using the notation of the second set of directions of the preceding section, we consider

λ±(σ) =
σ

a
sinh(θ)±

√(σ

a

)2
sinh2(θ) +

((σ

a

)2
− 1
)
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for any |σ| > a and θ ∈ R. Then set{
P1 = P+

1 = F1 + λ+(c)(a sinh(θ), b cosh(θ)) = (x1, y1)

P2 = P−1 = F1 + λ−(c)(a sinh(θ), b cosh(θ)) = (x2, y2).

In this way, F1 is on the secant P1P2 which connect two points on the same branch ofH. The point of intersection
P̃ of the tangents to the ellipse at Pi, (i = 1, 2), is

P̃ = (x̃, ỹ) =
(

a2/c, ab tanh(θ)/c
)

.

Considering both cases, the set of those points P̃ with respect to the focus F1 is the vertical line x = a2/c
and, by symmetry for the focus F2, on the vertical line x = −a2/c. These lines are also called the directrices of
the hyperbola.

6. Conclusion

In this paper, for each conics, namely parabola, ellipse, and hyperbola, we have presented its cartesian
equation and considered their tangents. Elementary proofs of their reflexion property are given. Then we
have considered orthoptic sets and given elementary, but not wellknown, determination of this set. For ellipse
and hyperbola, we have also obtained its principal circle and their directrices both as the intersections of a
family of pair of tangents. There are much more to write about conics but we have limited our presentation to
intersections of tangents.
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