

Article Completion of BCC-algebras

S. Mehrshad

Faculty of Sciences, Zabol University of Zabol, Iran.; smehrshad@uoz.ac.ir

Received: 25 March 2020; Accepted: 27 September 2020; Published: 2 October 2020.

Abstract: In this paper, we study some properties of induced topology by a uniform space generated by a family of ideals of a BCC-algebra. Also, by using Cauchy nets we construct a uniform space which is completion of this space.

Keywords: *BCC*-algebra, uniform space, cauchy net, ideal.

MSC: 06B10, 03G10.

1. Introduction

I n 1966, Y. Imai and K. Iséki in [1] introduced a class of algebras of type (2,0) called BCK-algebras which generalizes on one hand the notion of algebra of sets whit the set subtraction as the only fundamental non-nullary operation, on the other hand the notion of implication algebra. K. Iséki posed an interesting problem whether the class of BCK-algebras form a variety. In connection with this problem Y. Komori in [2] introduced a notion of BCC-algebras which is a generalization of notion BCK-algebras and proved that class of all BCC-algebras is not a variety. W. A. Dudek in [3] redefined the notion of BCC-algebras by using a dual form of the ordinary definition. Further study of BCC-algebras was continued [4–6].

In 1937, André Weil in [7] introduced the concept of a uniform space as a generalization of the concept of a metric space in which many non-topological invariants can be defined. The study of quasi uniformities started in 1948 with Nachbin's investigations on uniform preordered spaces. Mehrshad and Kouhestani in [8] introduced a quasi-uniformity on a BCC-algebra by a family of ideals and studied some properties of this structure. Now, in this present work, we consider the set *C* of all cauchy nets on BCC-algebras *X* and define a congruence relation ~ on this set. Then we consider the quotient BCC-algebra $C = \frac{C}{\sim}$ and prove that *C* is a BCC-algebra. We construct a uniformity on *C* and show that this uniformity is a completion of uniform space on *X* induced by a family of ideals of *X*.

2. Preliminary

BCC-algebras

A BCC-algebra is a non empty set *X* with a constant 0 and a binary operation * satisfying the following axioms, for all $x, y, z \in X$:

(1) ((x * y) * (z * y)) * (x * z) = 0,

(2) 0 * x = 0,

- (3) x * 0 = x
- (4) x * y = 0 and y * x = 0 imply x = y.

A non empty subset *S* of BCC-algebra *X* is called subalgebra of *X* if it is closed under BCC-operation. For a BCC-algebra *X*, we denote $x \land y = y * (y * x)$ for all $x, y \in X$. On any BCC-algebra *X* one can define the natural order \leq putting

$$\alpha \leq y \Leftrightarrow x * y = 0.$$

2

It is not difficult to verify that this order is partial and 0 is its smallest element. In BCC-algebra *X*, following hold: for any $x, y, z \in X$

(5) $(x * y) * (z * y) \le x * z$, (6) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$,

(7) $x \land y \le x, y$ (8) $x * y \le x$ (9) $(x * y) * z \le x * (y * z)$ (10) x * x = 0, (11) (x * y) * x = 0 [see, [6]].

Definition 1. [9] Let *X* be a BCC-algebra and $\emptyset \neq I \subseteq X$. *I* is called an ideal of *X* if it satisfies the following conditions:

(12) $0 \in I$, (13) $x * y \in I$ and $y \in I$ imply $x \in I$.

If *I* is an ideal in BCC-algebra of *X*, then *I* is a subalgebra. Moreover, if $x \in I$ and $y \leq x$, then $y \in I$. An ideal *I* is said to be *regular ideal* if the relation

$$x \equiv^{I} y \iff x * y, y * x \in I$$

is a congruence relation. In this case we denote $x/I = \{y : x \equiv^I y\}$ and $X/I = \{x/I : x \in X\}$. X/I is a BCC-algebra by x/I * y/I = (x * y)/I.

Uniform and quasi uniform space

Let *A* be a non-empty set and $\emptyset \neq \mathcal{F} \subseteq P(A)$. Then \mathcal{F} is called a *filter* on P(A), if for each $F_1, F_2 \in \mathcal{F}$:

(i) $F_1 \in \mathcal{F}$ and $F_1 \subseteq F$ imply $F \in \mathcal{F}$, (ii) $F_1 \cap F_2 \in \mathcal{F}$, (iii) $\emptyset \notin \mathcal{F}$.

A subset \mathcal{B} of a filter \mathcal{F} on A is a *base* of \mathcal{F} iff, every set of \mathcal{F} contains a set of \mathcal{B} . If \mathcal{F} is a family of nonempty subsets of A, then we denote generated filter by \mathcal{F} with $fil(\mathcal{F})$.

A *quasi-uniformity* on a set *A* is a filter *Q* on $P(X \times X)$ such that

- (i) $\triangle = \{(x, x) \in A \times A : x \in A\} \subseteq q$, for each $q \in Q$, (ii) Equation (i) Equation (i) $A = \{(x, y) \in A : y \in A\}$
- (ii) For each $q \in Q$, there is a $p \in Q$ such that $p \circ p \subseteq q$ where

$$p \circ p = \{(x, y) \in A \times A : \exists z \in A \text{ s.t } (x, z), (z, y) \in p\}.$$

The pair (A, Q) is called a *quasi-uniform space*. If Q is a quasi-uniformity on a set A, then $q^{-1} = \{q^{-1} : q \in Q\}$ is also a quasi-uniformity on A called the *conjugate* of Q. It is well-known that if a quasi-uniformity satisfies condition: $q \in Q$ implies $q^{-1} \in Q$, then Q is a *uniformity*. Also Q is a uniformity on A provided

$$\forall q \in Q \; \exists p \in Q \; s.t \; p^{-1} \circ p \subseteq q.$$

Furthermore, $Q^* = Q \lor Q^{-1}$ is a uniformity on *A*. A subfamily *C* of quasi-uniformity *Q* is said to be a base for *Q* iff, each $q \in Q$ contains some member of *C*. The topology $T(Q) = \{G \subseteq X : \forall x \in G \exists q \in Q \text{ s.t } q(x) \subseteq G\}$ is called the topology induced by the quasi-uniformity *Q* [See, [10]].

3. Main results

Let *X* be a *BCC*-algebra and η be an arbitrary family of ideals of *X* which is closed under intersection.

Theorem 1. [8] Let X be a BCC-algebra. The set $\mathcal{I} = \{I_L : I \in \eta\}$ is a base for a quasi uniformity \mathcal{U} on X, where $I_L = \{(x, y) \in X \times X : y * x \in I\}.$

Lemma 1. [8] Let I be a regular ideal of BCC- algebra X. Define $I_L^{-1} = \{(x, y) \in X \times X : (y, x) \in I_L\}$ and $I_L^{\star} = I_L \cap I_L^{-1}$. Then following holds:

 $\begin{array}{ll} (i) \ \ I_L^{-1} = \left\{ (x,y) \in X \times X : x \ast y \in I \right\}, \\ (ii) \ \ I_L^{-1}(x) = \left\{ y \in X : x \ast y \in I \right\}, \\ (iii) \ \ I_L^{-1}(0) = X, \\ (iv) \ \ I_L^{\star} = \left\{ (x,y) \in X \times X : x \equiv^I y \right\}, \end{array}$

(v) $I_L^{\star}(x) = \{y \in X : x \equiv^I y\} = x/I,$ (vi) if $x \in I$, then $I_L^{\star}(x) = I$.

Theorem 2. [8] Let $\mathcal{U}^* = \{ U \subseteq X \times X : \exists I \in \eta \ I_L^* \subseteq U \}$. Then the pair (X, \mathcal{U}^*) is a uniform space. Moreover, $(X, T(\mathcal{U}^*))$ is a topological BCC-algebra, where $T(\mathcal{U}^*) = \{ G \subseteq X : \forall x \in G \ \exists I \in \eta \ I_L^*(x) \subseteq G \}$ is the induced topology by \mathcal{U}^* on X.

Let $J = \bigcap_{I \in \eta} I$. Then $\mathcal{U}^{\star} = \{ U \subseteq X \times X : J_L^{\star} \subseteq U \}$ and $\tau_I = \{ G \subseteq X : \forall x \in G \ J_L^{\star}(x) \subseteq G \}$.

Proposition 1. $T(\mathcal{U}^*) = \tau_I$, where $J = \bigcap_{I \in \eta} I$.

Proof. Let $x \in G \in T(\mathcal{U}^*)$. Then there exists $I \in \eta$ such that $I_L^*(x) \subseteq G$. Since for any $I \in \eta$ $J \subseteq I$, we get $J_L^* \subseteq I_L^*$. Hence $J_L^*(x) \subseteq I_L^*(x) \subseteq G$ and so $G \in \tau_J$. Thus $T(\mathcal{U}^*) \subseteq \tau_J$. Conversely, let $x \in G \in \tau_J$. Then $J_L^*(x) \subseteq G$. Since η is closed under intersection, $J \in \eta$ and so $J_L^* \in \mathcal{U}^*$. Hence $G \in T(\mathcal{U}^*)$. Therefore $\tau_J \subseteq T(\mathcal{U}^*)$. \Box

Definition 2. [11]

- (i) A poset (D, \leq) is called an *upward* directed set if for any $i, j \in D$ there exists $k \in D$ such that $i \leq k$ and $j \leq k$.
- (ii) Let (D, \leq) be an upward directed set and *X* be a BCC-algebra. The mapping $x : D \to X$ is called a net in *X* and denoted by $\{x_i\}_{i \in D}$.

Definition 3. Let $\{x_i\}_{i \in D}$ be a net in topological space (X, τ_I) . Then

- (i) $\{x_i\}_{i \in D}$ is called *converges* to $x \in X$ if for any neighborhood G of x there exists $i_0 \in D$ such that $x_i \in G$ for any $i \ge i_0$. In this case we write $x_i \to x$.
- (ii) $\{x_i\}_{i \in D}$ is called *Cauchy* if there exists $i_0 \in D$ such that $\frac{x_i}{I} = \frac{x_j}{I}$ for any $i, j \ge i_0$.

Proposition 2. Let $\{x_i\}_{i\in D}$ and $\{y_i\}_{i\in D}$ be two nets in (X, τ_I) . Then

- (i) If $x, y \in X$, $x_i \to x$ and $y_i \to y$, then $x_i * y_i \to x * y$.
- *(ii)* Each convergent net in X is a cauchy net.
- **Proof.** (i) Let $x * y \in G \in \tau_J$. Then $J_L^*(x * y) \subseteq G$. Since $x_i \to x$ and $J_L^*(x)$ is a neighborhood of x, there exists $i_0 \in D$ such that $x_i \in J_L^*(x)$ for any $i \ge i_0$. Similarly, there exists $i_1 \in D$ such that $y_i \in I_L^*(y)$ for any $i \ge i_1$. Since D is an upward directed set, there exists $i_2 \in D$ such that $i_0, i_1 \le i_2$. Hence by Lemma (1) $x_i * y_i \in J_L^*(x) * J_L^*(y) = \frac{x}{J} * \frac{y}{J} = \frac{x*y}{J} = J_L^*(x * y) \subseteq G$ for any $i \ge i_2$ and so $x_i * y_i \to x * y$. (ii) Let $\{x_i\}_{i\in D}$ be a net in X and $x_i \to x \in X$. Since $J_L^*(x)$ is a neighborhood of x, there exists $i_0 \in D$ such
 - (ii) Let $\{x_i\}_{i\in D}$ be a net in X and $x_i \to x \in X$. Since $J_L^{\star}(x)$ is a neighborhood of x, there exists $i_0 \in D$ such that $x_i \in J_L^{\star}(x)$ for any $i \ge i_0$. Hence $x_i \equiv^J x$ and $x_j \equiv^J x$ for any $i, j \ge i_0$ and so $x_i \equiv^J x_j$ for any $i, j \ge i_0$. Therefore $\frac{x_i}{T} = \frac{x_j}{T}$ for any $i, j \ge i_0$. Thus $\{x_i\}_{i\in D}$ is a cauchy net in X.

Definition 4. [11] Let (A, Q) be a uniform space.

- (i) A net $\{x_i\}_{i \in D}$ in A is said to converge to a point $x \in A$ if for each $q \in Q$ there exists $i_0 \in D$ such that $(x_i, x) \in q$ for any $i \ge i_0$.
- (ii) A net $\{x_i\}_{i\in D}$ in A is said to be a Cauchy net if for each $q \in Q$ there exists $i_0 \in D$ such that $(x_i, x_j) \in q$ for any $i, j \ge i_0$.

Let *C* be the set of all Cauchy sequence in (X, U^*) . define a binary relation on *C* in the following way. For each $\{x_i\}_{i\in D}$, $\{y_j\}_{j\in D} \in C$, $\{x_i\}_{i\in D} \sim \{y_j\}_{j\in D}$ if and only if for all $U \in U^*$ there exist $i_0, j_0 \in D$ such that $(x_i, y_i) \in G$ for any $i \ge i_0$ and $j \ge j_0$.

Theorem 3. The relation \sim is a congruence relation on *C*.

Proof. Since (X, \mathcal{U}^*) is a uniform space, $\triangle \subseteq U$ for any $U \in \mathcal{U}^*$. Hence $(x_i, x_i) \in U$ for any $i \in D$ and so $\{x_i\}_{i\in D} \sim \{x_i\}_{i\in D}$. Let $\{x_i\}_{i\in D} \sim \{y_j\}_{j\in D}$. Then for all $U \in \mathcal{U}^*$ there exist $i_0, j_0 \in D$ such that $(x_i, y_j) \in U$ for any $i \ge i_0$ and $j \ge j_0$. Since $U \in \mathcal{U}^*$, $U^{-1} \in \mathcal{U}^*$. By definition of U^{-1} we have $(y_j, x_i) \in U^{-1}$ for any $i \ge i_0$

and $j \ge j_0$. Hence $\{y_j\}_{j\in D} \sim \{x_i\}_{i\in D}$. Let $\{x_i\}_{i\in D} \sim \{y_j\}_{j\in D}$ and $\{y_j\}_{j\in D} \sim \{z_i\}_{i\in D}$. Let $U \in \mathcal{U}^*$. There exists $V \in \mathcal{U}^*$ such that $V \circ V \subseteq U$. Since $\{x_i\}_{i\in D} \sim \{y_j\}_{j\in D}$, there exist $i_0, j_0 \in D$ such that $(x_i, y_j) \in V$ for any $i \ge i_0, j \ge j_0$. Similarly, there exist $k_0, l_0 \in D$ such that $(y_j, z_k) \in V$ for any $j \ge l_0, k \ge k_0$. Since D is an upward directed set, there exsits $n \in D$ such that $j_0, l_0 \le n$. If $j \ge n$, then $(x_i, y_j) \in V$ and $(y_j, z_k) \in V$ for any $i \ge i_0$ and $k \ge k_0$. Hence $(x_i, z_k) \in V \circ V \subseteq U$ for any $i \ge i_0$ and $k \ge k_0$ and so $\{x_i\}_{i\in D} \sim \{z_k\}_{k\in D}$. Thus \sim is an equivalence relation on C. Finally, we show that \sim is congruence. Let $I \in \eta$, $\{x_i\}_{i\in D} \sim \{y_j\}_{j\in D}$ and $\{z_k\}_{k\in D} \sim \{w_l\}_{l\in D}$. Hence there exist i_0, j_0, k_0 and $l_0 \in D$ such that $(x_i, y_j) \in I_L^*$ for any $i \ge i_0, j \ge j_0$ and $(z_k, w_l) \in I_L^*$ for any $k \ge k_0$ and $l \ge i_0$. Let $i \ge i_0, j \ge j_0$ and $k \ge k_0$. Then $y_j \in I_L^*$ for any $i \ge i_0, j \ge j_0$ and $l \ge l_0$, then $(y_j * z_k, y_j * w_l) \in I_L^*$. Thus $(x_i * y_j, z_k * w_l) \in I_L^*$ for any $i \ge i_0, j \ge j_0, k \ge k_0$ and $l \ge l_0$. Since for each $U \in \mathcal{U}^*$ there exists $I \in \eta$ such that $I_L^* \subseteq U$, $(x_i * y_j, z_k * w_l) \in U$ for $i \ge i_0, j \ge j_0, k \ge k_0$ and $l \ge l_0$. Hence \sim is a congruence relation on C. \Box

Let $C = \frac{C}{2}$. Define a binary operation on C as follow:

$$*: \mathcal{C} \times \mathcal{C} \to \mathcal{C} \quad \left(\frac{\{x_i\}_{i \in D}}{\sim}, \frac{\{y_j\}_{j \in D}}{\sim}\right) \to \frac{\{x_i * y_j\}_{i, j \in D}}{\sim}$$

Theorem 4. $\left(\mathcal{C}, *, \frac{\{0\}_{i \in D}}{\sim}\right)$ is a BCC-algebra.

Proof. The proof is clear. \Box

Let $\mathcal{V} = \{ \hat{U} : U \in \mathcal{U}^{\star} \}$ where,

$$\hat{U} = \left\{ \left(\frac{\{x_i\}_{i \in D}}{\sim}, \frac{\{y_j\}_{j \in D}}{\sim} \right) \in \mathcal{C} \times \mathcal{C} : \exists i_0, j_0 \in D : \forall i \ge i_0, j \ge j_0, \ (x_i, y_j) \in U \right\}.$$

Theorem 5. *The pair* (C, V) *is a uniform space.*

Proof. Let $\hat{U} \in \mathcal{V}$ and $\frac{\{x_i\}_{i\in D}}{\sim} \in \mathcal{C}$. Since $\{x_i\}_{i\in D} \sim \{x_i\}_{i\in D}$, there exists $i_0 \in D$ such that $(x_i, x_i) \in U$ for any $i \geq i_0$. Hence $\left(\frac{\{x_i\}_{i\in D}}{\sim}, \frac{\{x_i\}_{i\in D}}{\sim}\right) \in \hat{U}$. Since $\frac{\{x_i\}_{i\in D}}{\sim} \in \mathcal{C}$ is arbitrary, we get $\Delta \subseteq \hat{U}$. Let $\hat{U} \in \mathcal{V}$. Then $U \in \mathcal{U}^*$ and so $U^{-1} \in \mathcal{U}^*$. Hence $\hat{U^{-1}} \in \mathcal{V}$. We show that $\hat{U^{-1}} = (\hat{U})^{-1}$. Let $\left(\frac{\{x_i\}_{i\in D}}{\sim}, \frac{\{y_i\}_{j\in D}}{\sim}\right) \in (\hat{U})^{-1}$. Then $\left(\frac{\{y_i\}_{j\in D}}{\sim}, \frac{\{x_i\}_{i\in D}}{\sim}\right) \in \hat{U}$. Hence there exist $i_0, j_0 \in D$ such that $(y_j, x_i) \in U$ for any $i \geq i_0$ and $j \geq j_0$ and $j \geq j_0$. Therefore $\left(\frac{\{x_i\}_{i\in D}}{\sim}, \frac{\{y_i\}_{j\in D}}{\sim}\right) \in \hat{U^{-1}}$ and hence $(\hat{U})^{-1} \subseteq \hat{U^{-1}}$. Similarly, we have $\hat{U^{-1}} \subseteq (\hat{U})^{-1}$. Thus $(\hat{U})^{-1} \in \mathcal{V}$ for any $\hat{U} \in \mathcal{V}$. Let $\hat{U} \in \mathcal{V}$. Then $U \in \mathcal{U}^*$. There exists $V \in \mathcal{U}^*$ such that $V \circ V \in U$. We claim that $\hat{V} \circ \hat{V} \subseteq \hat{U}$. Let $\left(\frac{\{x_i\}_{i\in D}}{\sim}\right) \in \hat{V} \circ \hat{V}$. There exists $\frac{\{x_i\}_{i\in D}}{\sim} \in \mathcal{C}$ such that $\left(\frac{\{x_i\}_{i\in D}}{\sim}, \frac{\{y_i\}_{j\in D}}{\sim}\right) \in \hat{V}$ and $\left(\frac{\{y_i\}_{j\in D}}{\sim}, \frac{\{z_k\}_{k\in D}}{\sim}\right) \in \hat{V} \circ \hat{V}$. There exists $\frac{\{x_i\}_{i\in D}}{\sim} \in \mathcal{C}$ such that $(x_i, y_i) \in \hat{V}$ for any $i \geq i_0, i_j \neq j_0$ and $(y_j, z_k) \in \mathcal{V}$ for any $i \geq i_0, k \geq k_0$. Since D is an upward direcred set, there exists $n \in D$ such that $n \geq j_0$, $k \geq k_0$ and $O\left(\frac{\{x_i\}_{k\in D}}{\sim}, \frac{\{x_i\}_{k\in D}}{\sim}\right) \in \hat{U}$. Let $\hat{U}, \hat{V} \in \mathcal{V}$. Then $U, \mathcal{V} \in \mathcal{U}^*$ and so $\mathcal{U} \cap \hat{V} \in \mathcal{V}$. We show that $\widehat{\mathcal{U} \cap \hat{V}} = \hat{U} \cap \hat{V}$. Let $\hat{U}, \hat{V} \in \mathcal{V}$. Then $U, V \in \mathcal{U}^*$ and so $\mathcal{U} \cap \hat{V} \in V$. We show that $\widehat{\mathcal{U} \cap \hat{V}} = \hat{U} \cap \hat{V}$. Let $\hat{U}, \hat{V} \in \mathcal{V}$ is an upward direcred set, there exists $n \in D$ such that $n \geq j_0$, $k \geq k_0$ and so $\left(\frac{\{x_i\}_{k\in D}}{\sim}\right\right) \in \hat{U} \cap \hat{V}$. Then $U, \mathcal{V} \in \mathcal{U}^*$ and so $\mathcal{U} \cap \hat{V} \in \mathcal{V}$. We show that $\widehat{\mathcal{U} \cap \hat{V}} = \hat{U} \cap \hat{V}$. Let $\hat{U}, \hat{V} \in \mathcal{V}$. Then $U, \mathcal{V} \in \mathcal{U}^*$ and so $\mathcal{U} \cap \hat{V} \in \mathcal{V$

let $\hat{U} \in \mathcal{V}$ and $\hat{U} \subseteq \tilde{V} \subseteq \mathcal{C} \times \mathcal{C}$. We have to show that $\tilde{V} \in \mathcal{V}$. Let $(x, y) \in U \in \mathcal{U}^*$. Then $\left(\frac{\{x\}_{i \in D}}{\sim}, \frac{\{y\}_{j \in D}}{\sim}\right) \in \hat{U}$ and so $\left(\frac{\{x\}_{i \in D}}{\sim}, \frac{\{y\}_{j \in D}}{\sim}\right) \in \tilde{V}$. Thus $(x, y) \in V$ and so $U \subseteq V$. Hence $V \in \mathcal{U}^*$ and so $\tilde{V} \in \mathcal{V}$.

Theorem 6. (C, *, T(V)) is a topological BCC-algebra where,

$$T(\mathcal{V}) = \left\{ G \in \mathcal{C} : \forall \ \frac{\{x\}_{i \in D}}{\sim} \ \exists \hat{\mathcal{U}} \in \mathcal{V} \ s.t. \ \hat{\mathcal{U}}\left(\frac{\{x\}_{i \in D}}{\sim}\right) \subseteq G \right\}.$$

Proof. Let $\frac{\{x_i\}_{i\in D}}{\sim} * \frac{\{y_j\}_{j\in D}}{\sim} \in G \in T(\mathcal{V})$. Then there exists $U \in \mathcal{U}^*$ such that $\hat{\mathcal{U}}\left(\frac{\{x_i * y_j\}_{i,j\in D}}{\sim}\right) \subseteq G$. Since $U \in \mathcal{U}^*$, there exists $I \in \eta$ such that $I_L^* \subseteq U$. Clearly, $\hat{I}_L^*\left(\frac{\{x_i * y_j\}_{i,j\in D}}{\sim}\right) \subseteq \hat{\mathcal{U}}\left(\frac{\{x_i * y_j\}_{i,j\in D}}{\sim}\right)$. We claim that $\hat{I}_L^*\left(\frac{\{x_i\}_{j\in D}}{\sim}\right) * \hat{I}_L^*\left(\frac{\{y_j\}_{j\in D}}{\sim}\right) \subseteq \hat{I}_L^*\left(\frac{\{x_i * y_j\}_{i,j\in D}}{\sim}\right)$. Let $\frac{\{a_k\}_{k\in D}}{\sim} \in \hat{I}_L^*\left(\frac{\{x_i\}_{i\in D}}{\sim}\right)$ and $\frac{\{b_l\}_{l\in D}}{\sim} \in \hat{I}_L^*\left(\frac{\{y_j\}_{j\in D}}{\sim}\right)$. Then $\left(\frac{\{x_i\}_{i\in D}}{\sim}, \frac{\{a_k\}_{k\in D}}{\sim}\right) \in \hat{I}_L^*$ and $\left(\frac{\{y_j\}_{j\in D}}{\sim}, \frac{\{b_l\}_{l\in D}}{\sim}\right) \in \hat{I}_L^*$. Hence there exist i_0, j_0, k_0 and $l_0 \in D$ such that $(x_i, a_k) \in I_L^*$ and $(y_j, b_l) \in I_L^*$ for any $i \ge i_0, j \ge j_0, k \ge k_0$ and $l \ge l_0$. Thus $x_i \equiv I$ a_k and $y_j \equiv I$ b_l and so $x_i * y_j \equiv I$ $a_k * b_l$ for any $i \ge i_0, j \ge j_0, k \ge k_0$ and $l \ge l_0$. Therefore $(x_i * y_j, a_k * b_l) \in I_L^*$ for any $i \ge i_0, j \ge j_0, k \ge k_0$ and $l \ge l_0$ and $\hat{I}_L^*\left(\frac{\{x_i * y_j\}_{i,j\in D}}{\sim}\right)$. Thus $\hat{I}_L^*\left(\frac{\{x_i\}_{i\in D}}{\sim}\right) * \hat{I}_L^*\left(\frac{\{y_j\}_{j\in D}}{\sim}\right) \subseteq \hat{I}_L^*\left(\frac{\{x_i * y_j\}_{i,j\in D}}{\sim}\right)$. \Box

Definition 5. [11] The uniform space (*A*, *Q*) is *complete* if each cauchy net in *A* is convergent.

Definition 6. [11] Let (A, Q) be a uniform space. a uniform space (\hat{A}, \hat{Q}) is said to be a *completion* of (A, Q) if

- (i) (\hat{A}, \hat{Q}) is a complete uniform space.
- (ii) (\hat{A}, \hat{Q}) with its topology induced by its uniform structure is homeomorphic to a dense subspace of (\hat{A}, \hat{Q}) .

Theorem 7. The uniform space (C, V) is a completion of (X, U^*) .

Proof. Let $i: X \to C$ be defined by $i(x) = \frac{\{x\}_{i \in D}}{\sim}$. Clearly, *i* is one to one. We show that i(X) is dense in C. Let $\hat{U}\left(\frac{\{x_i\}_{i \in D}}{\sim}\right) \in T(\mathcal{V})$. Then

$$\begin{split} \hat{U}\left(\frac{\{x_i\}_{i\in D}}{\sim}\right) \cap i\left(X\right) &= \left\{i\left(x\right): \left(\frac{\{x_i\}_{i\in D}}{\sim}, i\left(x\right)\right) \in \hat{U}\right\}, \\ &= \left\{i\left(x\right): \exists i_0 \in D \ \forall i \ge i_0 \ s.t. \ (x_i, x) \in U\right\}, \\ &= \left\{i\left(x\right): \exists i_0 \in D \ \forall i \ge i_0 \ s.t. \ x \in U\left(x_i\right)\right\}, \\ &= \left\{i\left(x\right): x \in \bigcup_{i\in D} \bigcap_{i_0 \le i} U\left(x_i\right)\right\}, \\ &= i\left(V\right) \end{split}$$

where $V = \bigcup_{i \in D} \bigcap_{i_0 \leq i} U(x_i)$. Hence $\hat{U}\left(\frac{\{x_i\}_{i \in D}}{\sim}\right) \cap i(X) \neq \emptyset$ and so i(X) is dense in \mathcal{C} . It is easy to see that $i : X \to i(X)$ is a homeomorphism. Now we show that the uniform space $(\mathcal{C}, \mathcal{V})$ is complete. Let $\left\{\frac{\{x_i^{\alpha}\}_{i \in D}}{\sim}\right\}_{\alpha \in D}$ be a cauchy net in \mathcal{C} . We have to show that it is convergent. Let $U \in \mathcal{U}^*$. Since $\left\{\frac{\{x_i^{\alpha}\}_{i \in D}}{\sim}\right\}_{\alpha \in D}$ is a cauchy net, there exists $\gamma \in D$ such that $\left(\frac{\{x_i^{\alpha}\}_{i \in D}}{\sim}, \frac{\{x_i^{\beta}\}_{i \in D}}{\sim}\right) \in \hat{\mathcal{U}}$ for any $\alpha, \beta \geq \gamma$. Hence there exist $\alpha_0, \beta_0 \in D$ such that $\left(x_i^{\alpha}, x_i^{\beta}\right) \in U$ for any $\alpha \geq \alpha_0$ and $\beta \geq \beta_0$. We define the net of $\{y_j\}_{j \in D}$ by $y_j = x_i^{\beta_0}$ for any $j \in D$. Clearly, $\left(\frac{\{x_i^{\alpha}\}_{i \in D}}{\sim}, \frac{\{y_j\}_{j \in D}}{\sim}\right) \in \hat{\mathcal{U}}$ for any $\alpha \geq \alpha_0$. Therefore $\left\{\frac{\{x_i^{\alpha}\}_{i \in D}}{\sim}\right\}_{\alpha \in D}$ is convergent to $\frac{\{y_j\}_{j \in D}}{\sim}$. \Box

4. Conclusion

The aim of this paper was to study the concept of completion of a quasi-uniformity on a BCC-algebra. This work can be the basis for further and deeper research of the properties of BCC-algebras.

Conflicts of Interest: "The author declares no conflict of interest."

References

- [1] Imai, Y. & Iséki, K. (1966). On axioms system of propositional calculi XIV. Proceedings of the Japan Academy, 42, 19-22.
- [2] Komori, Y. (1983). The variety generated by BCC-algebras is finitely basded. *Reports of the Faculty of Science, Shizuoka University*, *17*, 13-16.
- [3] Dudek, W. A. (1990). On BCC-algebras. Logique et Analyse, 33(129/130), 103-111.
- [4] Dudek, W. A. (1999). A new characterization of ideals in BCC-algebras. Novi Sad Journal of Mathematics, 29(1), 139-145.
- [5] Dudek, W. A., & Zhang, X. (1998). On ideals and congruences in BCC-algebras. *Czechoslovak Mathematical Journal*, 48(1), 21-29.
- [6] Dudek, W. A., & Zhang, X. (1992). On proper BCC-algebras. *Bulletin of the Institute of Mathematics, Academia Sinica*, 20(2), 137-150.
- [7] Weil, A. (1973). sur les espaces a structuure uniforme et sur la topologibgeneral, Gauthier-villars, Paris.
- [8] Mehrshad, S., & Kouhestani, N. (2017). A quasi-uniformity on BCC-algebras. Annals of the University of Craiova-Mathematics and Computer Science Series, 44(1), 64-77.
- [9] Hao, J. (1998). Ideal theory of BCC-algebras. Scientiae Mathematicae, 1(3), 373-381.
- [10] Fletcher, P. & Lindgren, W. F.(1982). Quasi-uniform Spaces, Lecture Notes in Pure and Applied Mathematics, Marcel dekker, New York, 77.
- [11] Husain, T. (Ed.). (2012). Topology and maps (Vol. 5). Springer Science & Business Media.

© 2020 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).