Article

Completion of BCC-algebras

S. Mehrshad

Faculty of Sciences, Zabol University of Zabol, Iran.; smehrshad@uoz.ac.ir
Received: 25 March 2020; Accepted: 27 September 2020; Published: 2 October 2020.

Abstract

In this paper, we study some properties of induced topology by a uniform space generated by a family of ideals of a BCC-algebra. Also, by using Cauchy nets we construct a uniform space which is completion of this space.

Keywords: BCC-algebra, uniform space, cauchy net, ideal.
MSC: 06B10, 03G10.

1. Introduction

In 1966, Y. Imai and K. Iséki in [1] introduced a class of algebras of type (2,0) called BCK-algebras which generalizes on one hand the notion of algebra of sets whit the set subtraction as the only fundamental non-nullary operation, on the other hand the notion of implication algebra. K. Iséki posed an interesting problem whether the class of BCK-algebras form a variety. In connection with this problem Y. Komori in [2] introduced a notion of BCC-algebras which is a generalization of notion BCK-algebras and proved that class of all BCC-algebras is not a variety. W. A. Dudek in [3] redefined the notion of BCC-algebras by using a dual form of the ordinary definition. Further study of BCC-algebras was continued [4-6].

In 1937, André Weil in [7] introduced the concept of a uniform space as a generalization of the concept of a metric space in which many non-topological invariants can be defined. The study of quasi uniformities started in 1948 with Nachbin's investigations on uniform preordered spaces. Mehrshad and Kouhestani in [8] introduced a quasi-uniformity on a BCC-algebra by a family of ideals and studied some properties of this structure. Now, in this present work, we consider the set C of all cauchy nets on BCC-algebras X and define a congruence relation \sim on this set. Then we consider the quotient BCC-algebra $\mathcal{C}=\frac{\mathcal{C}}{\sim}$ and prove that \mathcal{C} is a BCC-algebra. We construct a uniformity on \mathcal{C} and show that this uniformity is a completion of uniform space on X induced by a family of ideals of X.

2. Preliminary

BCC-algebras

A BCC-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms, for all $x, y, z \in X$:
(1) $((x * y) *(z * y)) *(x * z)=0$,
(2) $0 * x=0$,
(3) $x * 0=x$
(4) $x * y=0$ and $y * x=0$ imply $x=y$.

A non empty subset S of BCC-algebra X is called subalgebra of X if it is closed under BCC-operation. For a BCC-algebra X, we denote $x \wedge y=y *(y * x)$ for all $x, y \in X$. On any BCC-algebra X one can define the natural order \leq putting

$$
x \leq y \Leftrightarrow x * y=0 .
$$

It is not difficult to verify that this order is partial and 0 is its smallest element. In BCC-algebra X, following hold: for any $x, y, z \in X$
(5) $(x * y) *(z * y) \leq x * z$,
(6) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$,
(7) $x \wedge y \leq x, y$
(8) $x * y \leq x$
(9) $(x * y) * z \leq x *(y * z)$
(10) $x * x=0$,
(11) $(x * y) * x=0$ [see, [6]].

Definition 1. [9] Let X be a BCC-algebra and $\varnothing \neq I \subseteq X . I$ is called an ideal of X if it satisfies the following conditions:
(12) $0 \in I$,
(13) $x * y \in I$ and $y \in I$ imply $x \in I$.

If I is an ideal in BCC-algebra of X, then I is a subalgebra. Moreover, if $x \in I$ and $y \leq x$, then $y \in I$. An ideal I is said to be regular ideal if the relation

$$
x \equiv^{I} y \Longleftrightarrow x * y, y * x \in I
$$

is a congruence relation. In this case we denote $x / I=\left\{y: x \equiv^{I} y\right\}$ and $X / I=\{x / I: x \in X\} . X / I$ is a BCC-algebra by $x / I * y / I=(x * y) / I$.

Uniform and quasi uniform space

Let A be a non-empty set and $\varnothing \neq \mathcal{F} \subseteq P(A)$. Then \mathcal{F} is called a filter on $P(A)$, if for each $F_{1}, F_{2} \in \mathcal{F}$:
(i) $F_{1} \in \mathcal{F}$ and $F_{1} \subseteq F$ imply $F \in \mathcal{F}$,
(ii) $F_{1} \cap F_{2} \in \mathcal{F}$,
(iii) $\varnothing \notin \mathcal{F}$.

A subset \mathcal{B} of a filter \mathcal{F} on A is a base of \mathcal{F} iff, every set of \mathcal{F} contains a set of \mathcal{B}. If \mathcal{F} is a family of nonempty subsets of A, then we denote generated filter by \mathcal{F} with $\operatorname{fil}(\mathcal{F})$.

A quasi-uniformity on a set A is a filter Q on $P(X \times X)$ such that
(i) $\triangle=\{(x, x) \in A \times A: x \in A\} \subseteq q$, for each $q \in Q$,
(ii) For each $q \in Q$, there is a $p \in Q$ such that $p \circ p \subseteq q$ where

$$
p \circ p=\{(x, y) \in A \times A: \exists z \in A \text { s.t }(x, z),(z, y) \in p\} .
$$

The pair (A, Q) is called a quasi-uniform space. If Q is a quasi-uniformity on a set A, then $q^{-1}=$ $\left\{q^{-1}: q \in Q\right\}$ is also a quasi-uniformity on A called the conjugate of Q. It is well-known that if a quasi-uniformity satisfies condition: $q \in Q$ implies $q^{-1} \in Q$, then Q is a uniformity. Also Q is a uniformity on A provided

$$
\forall q \in Q \exists p \in Q \text { s.t } p^{-1} \circ p \subseteq q
$$

Furthermore, $Q^{*}=Q \vee Q^{-1}$ is a uniformity on A. A subfamily \mathcal{C} of quasi-uniformity Q is said to be a base for Q iff, each $q \in Q$ contains some member of \mathcal{C}. The topology $T(Q)=\{G \subseteq X: \forall x \in G \exists q \in Q$ s.t $q(x) \subseteq G\}$ is called the topology induced by the quasi-uniformity Q [See, [10]].

3. Main results

Let X be a BCC-algebra and η be an arbitrary family of ideals of X which is closed under intersection.
Theorem 1. [8] Let X be a BCC-algebra. The set $\mathcal{I}=\left\{I_{L}: I \in \eta\right\}$ is a base for a quasi uniformity \mathcal{U} on X, where $I_{L}=\{(x, y) \in X \times X: y * x \in I\}$.

Lemma 1. [8] Let I be a regular ideal of BCC-algebra X. Define $I_{L}^{-1}=\left\{(x, y) \in X \times X:(y, x) \in I_{L}\right\}$ and $I_{L}^{\star}=$ $I_{L} \cap I_{L}^{-1}$. Then following holds:
(i) $I_{L}^{-1}=\{(x, y) \in X \times X: x * y \in I\}$,
(ii) $I_{L}^{-1}(x)=\{y \in X: x * y \in I\}$,
(iii) $I_{L}^{-1}(0)=X$,
(iv) $I_{L}^{\star}=\left\{(x, y) \in X \times X: x \equiv^{I} y\right\}$,
(v) $I_{L}^{\star}(x)=\left\{y \in X: x \equiv^{I} y\right\}=x / I$,
(vi) if $x \in I$, then $I_{L}^{\star}(x)=I$.

Theorem 2. [8] Let $\mathcal{U}^{\star}=\left\{U \subseteq X \times X: \exists I \in \eta I_{L}^{\star} \subseteq U\right\}$. Then the pair $\left(X, \mathcal{U}^{\star}\right)$ is a uniform space. Moreover, $\left(X, T\left(\mathcal{U}^{\star}\right)\right)$ is a topological BCC-algebra, where $T\left(\mathcal{U}^{\star}\right)=\left\{G \subseteq X: \forall x \in G \exists I \in \eta I_{L}^{\star}(x) \subseteq G\right\}$ is the induced topology by \mathcal{U}^{\star} on X.

Let $J=\bigcap_{I \in \eta} I$. Then $\mathcal{U}^{\star}=\left\{U \subseteq X \times X: J_{L}^{\star} \subseteq U\right\}$ and $\tau_{J}=\left\{G \subseteq X: \forall x \in G J_{L}^{\star}(x) \subseteq G\right\}$.
Proposition 1. $T\left(\mathcal{U}^{\star}\right)=\tau_{J}$, where $J=\bigcap_{I \in \eta} I$.
Proof. Let $x \in G \in T\left(\mathcal{U}^{\star}\right)$. Then there exists $I \in \eta$ such that $I_{L}^{\star}(x) \subseteq G$. Since for any $I \in \eta J \subseteq I$, we get $J_{L}^{\star} \subseteq I_{L}^{\star}$. Hence $J_{L}^{\star}(x) \subseteq I_{L}^{\star}(x) \subseteq G$ and so $G \in \tau_{J}$. Thus $T\left(\mathcal{U}^{\star}\right) \subseteq \tau_{J}$. Conversely, let $x \in G \in \tau_{J}$. Then $J_{L}^{\star}(x) \subseteq G$. Since η is closed under intersection, $J \in \eta$ and so $J_{L}^{\star} \in \mathcal{U}^{\star}$. Hence $G \in T\left(\mathcal{U}^{\star}\right)$. Therefore $\tau_{J} \subseteq T\left(\mathcal{U}^{\star}\right)$.

Definition 2. [11]

(i) A poset (D, \leq) is called an upward directed set if for any $i, j \in D$ there exists $k \in D$ such that $i \leq k$ and $j \leq k$.
(ii) Let (D, \leq) be an upward directed set and X be a BCC-algebra. The mapping $x: D \rightarrow X$ is called a net in X and denoted by $\left\{x_{i}\right\}_{i \in D}$.

Definition 3. Let $\left\{x_{i}\right\}_{i \in D}$ be a net in topological space $\left(X, \tau_{J}\right)$. Then
(i) $\left\{x_{i}\right\}_{i \in D}$ is called converges to $x \in X$ if for any neighborhood G of x there exists $i_{0} \in D$ such that $x_{i} \in G$ for any $i \geq i_{0}$. In this case we write $x_{i} \rightarrow x$.
(ii) $\left\{x_{i}\right\}_{i \in D}$ is called Cauchy if there exists $i_{0} \in D$ such that $\frac{x_{i}}{J}=\frac{x_{j}}{J}$ for any $i, j \geq i_{0}$.

Proposition 2. Let $\left\{x_{i}\right\}_{i \in D}$ and $\left\{y_{i}\right\}_{i \in D}$ be two nets in $\left(X, \tau_{J}\right)$. Then
(i) If $x, y \in X, x_{i} \rightarrow x$ and $y_{i} \rightarrow y$, then $x_{i} * y_{i} \rightarrow x * y$.
(ii) Each convergent net in X is a cauchy net.

Proof. (i) Let $x * y \in G \in \tau_{J}$. Then $J_{L}^{\star}(x * y) \subseteq G$. Since $x_{i} \rightarrow x$ and $J_{L}^{\star}(x)$ is a neighbohood of x, there exists $i_{0} \in D$ such that $x_{i} \in J_{L}^{\star}(x)$ for any $i \geq i_{0}$. Similarly, there exists $i_{1} \in D$ such that $y_{i} \in I_{L}^{\star}(y)$ for any $i \geq i_{1}$. Since D is an upward directed set, there exists $i_{2} \in D$ such that $i_{0}, i_{1} \leq i_{2}$. Hence by Lemma (1) $x_{i} * y_{i} \in J_{L}^{\star}(x) * J_{L}^{\star}(y)=\frac{x}{J} * \frac{y}{J}=\frac{x * y}{J}=J_{L}^{\star}(x * y) \subseteq G$ for any $i \geq i_{2}$ and so $x_{i} * y_{i} \rightarrow x * y$.
(ii) Let $\left\{x_{i}\right\}_{i \in D}$ be a net in X and $x_{i} \rightarrow x \in X$. Since $J_{L}^{\star}(x)$ is a neighborhood of x, there exists $i_{0} \in D$ such that $x_{i} \in J_{L}^{\star}(x)$ for any $i \geq i_{0}$. Hence $x_{i} \equiv J x$ and $x_{j} \equiv J x$ for any $i, j \geq i_{0}$ and so $x_{i} \equiv{ }^{J} x_{j}$ for any $i, j \geq i_{0}$. Therefore $\frac{x_{i}}{J}=\frac{x_{j}}{J}$ for any $i, j \geq i_{0}$. Thus $\left\{x_{i}\right\}_{i \in D}$ is a cauchy net in X.

Definition 4. [11] Let (A, Q) be a uniform space.
(i) A net $\left\{x_{i}\right\}_{i \in D}$ in A is said to converge to a point $x \in A$ if for each $q \in Q$ there exists $i_{0} \in D$ such that $\left(x_{i}, x\right) \in q$ for any $i \geq i_{0}$.
(ii) A net $\left\{x_{i}\right\}_{i \in D}$ in A is said to be a Cauchy net if for each $q \in Q$ there exists $i_{0} \in D$ such that $\left(x_{i}, x_{j}\right) \in q$ for any $i, j \geq i_{0}$.

Let C be the set of all Cauchy sequence in $\left(X, \mathcal{U}^{\star}\right)$. define a binary relation on C in the following way. For each $\left\{x_{i}\right\}_{i \in D},\left\{y_{j}\right\}_{j \in D} \in C,\left\{x_{i}\right\}_{i \in D} \sim\left\{y_{j}\right\}_{j \in D}$ if and only if for all $U \in \mathcal{U}^{\star}$ there exist $i_{0}, j_{0} \in D$ such that $\left(x_{i}, y_{j}\right) \in G$ for any $i \geq i_{0}$ and $j \geq j_{0}$.

Theorem 3. The relation \sim is a congruence relation on C.
Proof. Since $\left(X, \mathcal{U}^{\star}\right)$ is a uniform space, $\triangle \subseteq U$ for any $U \in \mathcal{U}^{\star}$. Hence $\left(x_{i}, x_{i}\right) \in U$ for any $i \in D$ and so $\left\{x_{i}\right\}_{i \in D} \sim\left\{x_{i}\right\}_{i \in D}$. Let $\left\{x_{i}\right\}_{i \in D} \sim\left\{y_{j}\right\}_{j \in D}$. Then for all $U \in \mathcal{U}^{\star}$ there exist $i_{0}, j_{0} \in D$ such that $\left(x_{i}, y_{j}\right) \in U$ for any $i \geq i_{0}$ and $j \geq j_{0}$. Since $U \in \mathcal{U}^{\star}, U^{-1} \in \mathcal{U}^{\star}$. By definition of U^{-1} we have $\left(y_{j}, x_{i}\right) \in U^{-1}$ for any $i \geq i_{0}$
and $j \geq j_{0}$. Hence $\left\{y_{j}\right\}_{j \in D} \sim\left\{x_{i}\right\}_{i \in D}$. Let $\left\{x_{i}\right\}_{i \in D} \sim\left\{y_{j}\right\}_{j \in D}$ and $\left\{y_{j}\right\}_{j \in D} \sim\left\{z_{i}\right\}_{i \in D}$. Let $U \in \mathcal{U}^{\star}$. There exists $V \in \mathcal{U}^{\star}$ such that $V \circ V \subseteq U$. Since $\left\{x_{i}\right\}_{i \in D} \sim\left\{y_{j}\right\}_{j \in D}$, there exist $i_{0}, j_{0} \in D$ such that $\left(x_{i}, y_{j}\right) \in V$ for any $i \geq i_{0}, j \geq j_{0}$. Similarly, there exist $k_{0}, l_{0} \in D$ such that $\left(y_{j}, z_{k}\right) \in V$ for any $j \geq l_{0}, k \geq k_{0}$. Since D is an upward directed set, there exsits $n \in D$ such that $j_{0}, l_{0} \leq n$. If $j \geq n$, then $\left(x_{i}, y_{j}\right) \in V$ and $\left(y_{j}, z_{k}\right) \in V$ for any $i \geq i_{0}$ and $k \geq k_{0}$. Hence $\left(x_{i}, z_{k}\right) \in V \circ V \subseteq U$ for any $i \geq i_{0}$ and $k \geq k_{0}$ and so $\left\{x_{i}\right\}_{i \in D} \sim\left\{z_{k}\right\}_{k \in D}$. Thus \sim is an equivalence relation on C. Finally, we show that \sim is congruence. Let $I \in \eta,\left\{x_{i}\right\}_{i \in D} \sim\left\{y_{j}\right\}_{j \in D}$ and $\left\{z_{k}\right\}_{k \in D} \sim\left\{w_{l}\right\}_{l \in D}$. Hence there exist i_{0}, j_{0}, k_{0} and $l_{0} \in D$ such that $\left(x_{i}, y_{j}\right) \in I_{L}^{\star}$ for any $i \geq i_{0}, j \geq j_{0}$ and $\left(z_{k}, w_{l}\right) \in I_{L}^{\star}$ for any $k \geq k_{0}$ and $l \geq i_{0}$. Let $i \geq i_{0}, j \geq j_{0}$ and $k \geq k_{0}$. Then $y_{j} \in I_{L}^{\star}\left(x_{i}\right)$ and $z_{k} \in L_{L}^{\star}\left(z_{k}\right)$. Thus $y_{j} * z_{k} \in I_{L}\left(x_{i}\right) * z_{k} \subseteq I_{L}^{\star}\left(x_{i}\right) * I_{L}^{\star}\left(z_{k}\right)=I_{L}^{\star}\left(x_{i} * z_{k}\right)$ and so $\left(x_{i} * z_{k}, y_{j} * z_{k}\right) \in I_{L}^{\star}$. Similarly, If $j \geq j_{0}, k \geq k_{0}$ and $l \geq l_{0}$, then $\left(y_{j} * z_{k}, y_{j} * w_{l}\right) \in I_{L}^{\star}$. Thus $\left(x_{i} * y_{j}, z_{k} * w_{l}\right) \in I_{L}^{\star} \circ I_{L}^{\star}$ subseteq I_{L}^{\star} for any $i \geq i_{0}, j \geq j_{0}, k \geq k_{0}$ and $l \geq l_{0}$. Since for each $U \in \mathcal{U}^{\star}$ there exists $I \in \eta$ such that $I_{L}^{\star} \subseteq U,\left(x_{i} * y_{j}, z_{k} * w_{l}\right) \in U$ for $i \geq i_{0}, j \geq j_{0}, k \geq k_{0}$ and $l \geq l_{0}$. Hence \sim is a congruence relation on C.

Let $\mathcal{C}=\frac{\mathcal{C}}{\sim}$. Define a binary operation on \mathcal{C} as follow:

$$
*: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C} \quad\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right) \rightarrow \frac{\left\{x_{i} * y_{j}\right\}_{i, j \in D}}{\sim}
$$

Theorem 4. $\left(\mathcal{C}, *, \frac{\{0\}_{i \in D}}{\sim}\right)$ is a BCC-algebra.
Proof. The proof is clear.
Let $\mathcal{V}=\left\{\hat{U}: U \in \mathcal{U}^{\star}\right\}$ where,

$$
\hat{U}=\left\{\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right) \in \mathcal{C} \times \mathcal{C}: \exists i_{0}, j_{0} \in D: \forall i \geq i_{0}, j \geq j_{0},\left(x_{i}, y_{j}\right) \in U\right\}
$$

Theorem 5. The pair $(\mathcal{C}, \mathcal{V})$ is a uniform space.
Proof. Let $\hat{U} \in \mathcal{V}$ and $\frac{\left\{x_{i}\right\}_{i \in D}}{\sim} \in \mathcal{C}$. Since $\left\{x_{i}\right\}_{i \in D} \sim\left\{x_{i}\right\}_{i \in D}$, there exists $i_{0} \in D$ such that $\left(x_{i}, x_{i}\right) \in U$ for any $i \geq i_{0}$. Hence $\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{x_{i}\right\}_{i \in D}}{\sim}\right) \in \hat{U}$. Since $\frac{\left\{x_{i}\right\}_{i \in D}}{\sim} \in \mathcal{C}$ is arbitrary, we get $\triangle \subseteq \hat{U}$. Let $\hat{U} \in \mathcal{V}$. Then $U \in \mathcal{U}^{\star}$ and so $U^{-1} \in \mathcal{U}^{\star}$. Hence $\widehat{U^{-1}} \in \mathcal{V}$. We show that $\widehat{U^{-1}}=(\hat{U})^{-1}$. Let $\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right) \in(\hat{U})^{-1}$. Then $\left(\frac{\left\{y_{j}\right\}_{j \in D}}{\sim}, \frac{\left\{x_{i}\right\}_{j \in D}}{\sim}\right) \in \hat{U}$. Hence there exist $i_{0}, j_{0} \in D$ such that $\left(y_{j}, x_{i}\right) \in U$ for any $i \geq i_{0}$ and $j \geq j_{0}$ and so $\left(x_{i}, y_{j}\right) \in U^{-1}$ for any $i \geq i_{0}$ and $j \geq j_{0}$. Therefore $\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right) \in \widehat{u^{-1}}$ and hence $(\hat{U})^{-1} \subseteq \widehat{U^{-1}}$. Similarly, we have $\widehat{U^{-1}} \subseteq(\hat{U})^{-1}$. Thus $(\hat{U})^{-1} \in \mathcal{V}$ for any $\hat{U} \in \mathcal{V}$. Let $\hat{U} \in \mathcal{V}$. Then $U \in \mathcal{U}^{\star}$. There exists $V \in \mathcal{U}^{\star}$ such that $V \circ V \in U$. We claim that $\hat{V} \circ \hat{V} \subseteq \hat{U}$. Let $\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{z_{k}\right\}_{k \in D}}{\sim}\right) \in \hat{V} \circ \hat{V}$. There exists $\frac{\left\{x_{i}\right\}_{\in D}}{\sim} \in \mathcal{C}$ such that $\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right) \in \hat{V}$ and $\left(\frac{\left\{y_{j}\right\}_{j \in D}}{\sim}, \frac{\left\{z_{k}\right\}_{k \in D}}{\sim}\right) \in \hat{V}$. Hence there exist i_{0}, j_{0}, k_{0} and $l_{0} \in D$ such that $\left(x_{i}, y_{j}\right) \in V$ for any $i \geq i_{0}, j \geq j_{0}$ and $\left(y_{j}, z_{k}\right) \in V$ for any $j \geq l_{0}, k \geq k_{0}$. Since D is an upward direcred set, there exists $n \in D$ such that $n \geq j_{0}, l_{0}$. If $j \geq n$, then $\left(x_{i}, y_{j}\right) \in V$ and $\left(y_{j}, z_{k}\right) \in V$ for any $i \geq i_{0}, k \geq k_{0}$. Hence $\left(x_{i}, z_{k}\right) \in V \circ V \subseteq U$ for any $i \geq i_{0}, k \geq k_{0}$ and so $\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{z_{k}\right\}_{k \in D}}{\sim}\right) \in \hat{U}$. Let $\hat{U}, \hat{V} \in \mathcal{V}$. Then $U, V \in \mathcal{U}^{\star}$ and so $U \cap \in V \in \mathcal{U}^{\star}$. Hence $\widehat{U \cap V} \in \mathcal{V}$. We show that $\widehat{U \cap V}=\hat{U} \cap \hat{V}$. Let $\left(\frac{\left\{x_{i}\right\}_{\epsilon D}}{\sim}, \frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right) \in \hat{U} \cap \hat{V}$. Then $\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right) \in \hat{U}$ and $\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{y_{j}\right\}_{i \in D}}{\sim}\right) \in \hat{V}$. There exist i_{0}, j_{0}, i_{1} and $j_{1} \in D$ such that $\left(x_{i}, y_{j}\right) \in U$ for any $i \geq i_{0}, j \geq j_{0}$ and $\left(x_{i}, y_{j}\right) \in V$ for any $i \geq i_{1}, j \geq j_{1}$. There exist $i_{2}, j_{2} \in D$ such that $i_{0}, i_{1} \leq i_{2}$ and $j_{0}, j_{1} \leq j_{2}$. Hence $\left(x_{i}, y_{j}\right) \in U$ and $\left(x_{i}, y_{j}\right) \in V$ for any $i \geq i_{2}$ and $j \geq j_{2}$ and so $\left(x_{i}, y_{j}\right) \in U \cap V$ for any $i \geq i_{2}$ and $j \geq j_{2}$. Hence $\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right) \in \widehat{U \cap V}$ and so $\hat{U} \cap \hat{V} \subseteq \widehat{U \cap V}$. Similarly, we can show that $\widehat{U \cap V} \subseteq \hat{U} \cap \hat{V}$. Finally,
let $\hat{U} \in \mathcal{V}$ and $\hat{U} \subseteq \widetilde{V} \subseteq \mathcal{C} \times \mathcal{C}$. We have to show that $\widetilde{V} \in \mathcal{V}$. Let $(x, y) \in U \in \mathcal{U}^{\star}$. Then $\left(\frac{\{x\}_{i \in D}}{\sim}, \frac{\{y\}_{j \in D}}{\sim}\right) \in \hat{U}$ and so $\left(\frac{\{x\}_{i \in D}}{\sim}, \frac{\{y\}_{j \in D}}{\sim}\right) \in \widetilde{V}$. Thus $(x, y) \in V$ and so $U \subseteq V$. Hence $V \in \mathcal{U}^{\star}$ and so $\widetilde{V} \in \mathcal{V}$.

Theorem 6. $(\mathcal{C}, *, T(\mathcal{V}))$ is a topological BCC-algebra where,

$$
T(\mathcal{V})=\left\{G \in \mathcal{C}: \forall \frac{\{x\}_{i \in D}}{\sim} \exists \hat{U} \in \mathcal{V} \text { s.t. } \hat{U}\left(\frac{\{x\}_{i \in D}}{\sim}\right) \subseteq G\right\}
$$

Proof. Let $\frac{\left\{x_{i}\right\}_{i \in D}}{\sim} * \frac{\left\{y_{j}\right\}_{j \in D}}{\sim} \in G \in T(\mathcal{V})$. Then there exists $U \in \mathcal{U}^{\star}$ such that $\hat{U}\left(\frac{\left\{x_{i} * y_{j}\right\}_{i, j \in D}}{\sim}\right) \subseteq G$. Since $U \in \mathcal{U}^{\star}$, there exists $I \in \eta$ such that $I_{L}^{\star} \subseteq U$. Clearly, $\widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i} * y_{j}\right\}_{i, j \in D}}{\sim}\right) \subseteq \hat{U}\left(\frac{\left\{x_{i} * y_{j}\right\}_{i, j \in D}}{\sim}\right.$. $)$ We claim that $\widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}\right) * \widehat{I_{L}^{\star}}\left(\frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right) \subseteq \widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i} * y_{j}\right\}_{i, j \in D}}{\sim}\right)$. Let $\frac{\left\{a_{k}\right\}_{k \in D}}{\sim} \in \widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}\right)$ and $\frac{\left\{b_{l}\right\}_{l \in D}}{\sim} \in \widehat{I_{L}^{\star}}\left(\frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right)$. Then $\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, \frac{\left\{a_{k}\right\}_{k \in D}}{\sim}\right) \in \widehat{I_{L}^{\star}}$ and $\left(\frac{\left\{y_{j}\right\}_{j \in D}}{\sim}, \frac{\left\{b_{l}\right\}_{l \in D}}{\sim}\right) \in \widehat{I_{L}^{\star}}$. Hence there exist i_{0}, j_{0}, k_{0} and $l_{0} \in D$ such that $\left(x_{i}, a_{k}\right) \in I_{\hat{L}}^{\star}$ and $\left(y_{j}, b_{l}\right) \in I_{L}^{\star}$ for any $i \geq i_{0}, j \geq j_{0}, k \geq k_{0}$ and $l \geq l_{0}$. Thus $x_{i} \equiv^{I} a_{k}$ and $y_{j} \equiv^{I} b_{l}$ and so $x_{i} * y_{j} \equiv^{I} a_{k} * b_{l}$ for any $i \geq i_{0}, j \geq j_{0}, k \geq k_{0}$ and $l \geq l_{0}$. Therefore $\left(x_{i} * y_{j}, a_{k} * b_{l}\right) \in I_{L}^{\star}$ for any $i \geq i_{0}, j \geq j_{0}, k \geq k_{0}$ and $l \geq l_{0}$ and so $\left(\frac{\left\{x_{i} * y_{j}\right\}_{i, j \in D}}{\sim}, \frac{\left\{a_{k} * b_{l}\right\}_{k, l \in D}}{\sim}\right) \in \widehat{I_{L}^{\star}}$. Hence $\frac{\left\{a_{k} * b_{l}\right\}_{k, l \in D}}{\sim} \in \widehat{I}_{L}^{\star}\left(\frac{\left\{x_{i} * y_{j}\right\}_{i, j \in D}}{\sim}\right)$. Thus $\widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}\right) * \widehat{I}_{L}^{\star}\left(\frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right) \subseteq$ $\widehat{I}_{L}^{\star}\left(\frac{\left\{x_{i} * y_{j}\right\}_{i, j \in D}}{\sim}\right)$.

Definition 5. [11] The uniform space (A, Q) is complete if each cauchy net in A is convergent.
Definition 6. [11] Let (A, Q) be a uniform space. a uniform space (\hat{A}, \hat{Q}) is said to be a completion of (A, Q) if (i) (\hat{A}, \hat{Q}) is a complete uniform space.
(ii) (A, Q) with its topology induced by its uniform structure is homeomorphic to a dense subspace of ($\hat{A}, \hat{Q})$.

Theorem 7. The uniform space $(\mathcal{C}, \mathcal{V})$ is a completion of $\left(X, \mathcal{U}^{\star}\right)$.
Proof. Let $i: X \rightarrow \mathcal{C}$ be defined by $i(x)=\frac{\{x\}_{i \in D}}{\sim}$. Clearly, i is one to one. We show that $i(X)$ is dense in \mathcal{C}. Let $\hat{U}\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}\right) \in T(\mathcal{V})$. Then

$$
\begin{aligned}
\hat{U}\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}\right) \cap i(X) & =\left\{i(x):\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}, i(x)\right) \in \hat{U}\right\} \\
& =\left\{i(x): \exists i_{0} \in D \forall i \geq i_{0} \text { s.t. }\left(x_{i}, x\right) \in U\right\} \\
& =\left\{i(x): \exists i_{0} \in D \forall i \geq i_{0} \text { s.t. } x \in U\left(x_{i}\right)\right\} \\
& =\left\{i(x): x \in \bigcup_{i \in D} \bigcap_{i_{0} \leq i} U\left(x_{i}\right)\right\} \\
& =i(V)
\end{aligned}
$$

where $V=\bigcup_{i \in D} \bigcap_{i_{0} \leq i} U\left(x_{i}\right)$. Hence $\hat{U}\left(\frac{\left\{x_{i}\right\}_{i \in D}}{\sim}\right) \cap i(X) \neq \varnothing$ and so $i(X)$ is dense in \mathcal{C}. It is easy to see that $i: X \rightarrow i(X)$ is a homeomorphism. Now we show that the uniform space $(\mathcal{C}, \mathcal{V})$ is complete. Let $\left\{\frac{\left\{x_{i}^{\alpha}\right\}_{i \in D}}{\sim}\right\}_{\alpha \in D}$ be a cauchy net in \mathcal{C}. We have to show that it is convergent. Let $U \in \mathcal{U}^{\star}$. Since $\left\{\frac{\left\{x_{i}^{\alpha}\right\}_{i \in D}}{\sim}\right\}_{\alpha \in D}$ is a cauchy net, there exists $\gamma \in D$ such that $\left(\frac{\left\{x_{i}^{\alpha}\right\}_{i \in D}}{\sim}, \frac{\left\{x_{i}^{\beta}\right\}_{i \in D}}{\sim}\right) \in \hat{U}$ for any $\alpha, \beta \geq \gamma$. Hence there exist $\alpha_{0}, \beta_{0} \in D$ such that $\left(x_{i}^{\alpha}, x_{i}^{\beta}\right) \in U$ for any $\alpha \geq \alpha_{0}$ and $\beta \geq \beta_{0}$. We define the net of $\left\{y_{j}\right\}_{j \in D}$ by $y_{j}=x_{i}^{\beta_{0}}$ for any $j \in D$. Clearly, $\left(\frac{\left\{x_{i}^{\alpha}\right\}_{i \in D}}{\sim}, \frac{\left\{y_{j}\right\}_{j \in D}}{\sim}\right) \in \hat{U}$ for any $\alpha \geq \alpha_{0}$. Therefore $\left\{\frac{\left\{x_{i}^{\alpha}\right\}_{i \in D}}{\sim}\right\}_{\alpha \in D}$ is converges to $\frac{\left\{y_{j}\right\}_{j \in D}}{\sim}$.

4. Conclusion

The aim of this paper was to study the concept of completion of a quasi-uniformity on a BCC-algebra. This work can be the basis for further and deeper research of the properties of BCC-algebras.
Conflicts of Interest: "The author declares no conflict of interest."

References

[1] Imai, Y. \& Iséki, K. (1966). On axioms system of propositional calculi XIV. Proceedings of the Japan Academy, 42, 19-22.
[2] Komori, Y. (1983). The variety generated by BCC-algebras is finitely basded. Reports of the Faculty of Science, Shizuoka University, 17, 13-16.
[3] Dudek, W. A. (1990). On BCC-algebras. Logique et Analyse, 33(129/130), 103-111.
[4] Dudek, W. A. (1999). A new characterization of ideals in BCC-algebras. Novi Sad Journal of Mathematics, 29(1), 139-145.
[5] Dudek, W. A., \& Zhang, X. (1998). On ideals and congruences in BCC-algebras. Czechoslovak Mathematical Journal, 48(1), 21-29.
[6] Dudek, W. A., \& Zhang, X. (1992). On proper BCC-algebras. Bulletin of the Institute of Mathematics, Academia Sinica, 20(2), 137-150.
[7] Weil, A. (1973). sur les espaces a structuure uniforme et sur la topologibgeneral, Gauthier-villars, Paris.
[8] Mehrshad, S., \& Kouhestani, N. (2017). A quasi-uniformity on BCC-algebras. Annals of the University of Craiova-Mathematics and Computer Science Series, 44(1), 64-77.
[9] Hao, J. (1998). Ideal theory of BCC-algebras. Scientiae Mathematicae, 1(3), 373-381.
[10] Fletcher, P. \& Lindgren, W. F.(1982). Quasi-uniform Spaces, Lecture Notes in Pure and Applied Mathematics, Marcel dekker, New York, 77.
[11] Husain, T. (Ed.). (2012). Topology and maps (Vol. 5). Springer Science \& Business Media.
© 2020 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

