Existence results for a class of nonlinear degenerate \((p, q)\)-biharmonic operators

Albo Carlos Cavalheiro

Department of Mathematics, State University of Londrina, Londrina-86057-970, PR-Brazil.; accava@gmail.com

Received: 3 September 2020; Accepted: 3 October 2020; Published: 8 October 2020.

Abstract: In this paper we are interested in the existence of solutions for Navier problem associated with the degenerate nonlinear elliptic equations in the setting of the weighted Sobolev spaces.

Keywords: Degenerate nonlinear elliptic equations, weighted Sobolev spaces.

MSC: 35J70, 35J60, 35J30.

1. Introduction

In this paper, we prove the existence of (weak) solutions in the weighted Sobolev space \(W^{2,p}(\Omega, \omega)\) (see Definition 3 and Definition 4) for the Navier problem

\[
\begin{cases}
Lu(x) = f_0(x) - \sum_{j=1}^n D_j f_j(x), & \text{in } \Omega, \\
u(x) = \Delta u(x) = 0, & \text{on } \partial \Omega,
\end{cases}
\]

where \(L\) is the partial differential operator

\[Lu(x) = \Delta [\omega(x) (|\Delta u|^{p-2} + |\Delta u|^{q-2})] - \sum_{j=1}^n D_j [\omega(x) A_j(x, u(x), \nabla u(x))],\]

where \(D_j = \partial / \partial x_j\), \(\Omega\) is a bounded open set in \(\mathbb{R}^n\), \(\omega\) is a weight function, \(\Delta\) is the usual Laplacian operator, \(2 \leq q < p < \infty\) and the functions \(A_j : \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) \((j = 1, \ldots, n)\) satisfying the following conditions:

(H1) \(x \rightarrow A_j(x, \eta, \xi)\) is measurable on \(\Omega\) for all \((\eta, \xi) \in \mathbb{R} \times \mathbb{R}^n\), \((\eta, \xi) \rightarrow A_j(x, \eta, \xi)\) is continuous on \(\mathbb{R} \times \mathbb{R}^n\) for almost all \(x \in \Omega\).

(H2) there exist a constant \(\theta_1 > 0\) such that

\[|A(x, \eta, \xi) - A(x, \eta', \xi')| |(\xi - \xi')| \geq \theta_1 |\xi - \xi'|^p,
\]

whenever \(\xi, \xi' \in \mathbb{R}^n, \xi \neq \xi'\), where \(A(x, \eta, \xi) = (A_1(x, \eta, \xi), \ldots, A_n(x, \eta, \xi))\) (where a dot denote here the Euclidian scalar product in \(\mathbb{R}^n\)).

(H3) \(A(x, \eta, \xi) \cdot \xi \geq \lambda_1 |\xi|^p\)\), where \(\lambda_1\) is a positive constant.

(H4) \(|A(x, \eta, \xi)| \leq K_1(x) + h_1(x)|\eta|^{p/p'} + h_2(x)|\xi|^{p/p'}\), where \(K_1, h_1\) and \(h_2\) are positive functions, with \(h_1, h_2 \in L^\infty(\Omega), \) and \(K_1 \in L^{p'/2}(\Omega, \omega)\) (with \(1/p + 1/p' = 1\)).

By a weight, we shall mean a locally integrable function \(\omega\) on \(\mathbb{R}^n\) such that \(0 < \omega(x) < \infty\) for a.e. \(x \in \mathbb{R}^n\). Every weight \(\omega\) gives rise to a measure on the measurable subsets on \(\mathbb{R}^n\) through integration. This measure will be denoted by \(\mu\). Thus, \(\mu(E) = \int_E \omega(x) \, dx\) for measurable sets \(E \subset \mathbb{R}^n\).

In general, the Sobolev spaces \(W^{k,p}(\Omega)\) without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. In the particular case where \(p = q = 2\) and \(\omega \equiv 1\), we have the equation

\[\Delta^2 u - \sum_{j=1}^n D_j A_j(x, u, \nabla u) = f,\]
where $\Delta^2 u$ is the biharmonic operator. If $p = q, \omega \equiv 1$ and $A(x, \eta, \xi) = |\xi|^{p-2}\xi$, we have the equation

$$\Delta(|\Delta|^{p-2} \Delta u) - \text{div}(|\nabla u|^{p-2}\nabla u) = f.$$

Biharmonic equations appear in the study of mathematical model in several real-life processes as, among others, radar imaging (see [1]) or incompressible flows (see [2]).

For degenerate partial differential equations, i.e., equations with various types of singularities in the coefficients, it is natural to look for solutions in weighted Sobolev spaces (see [3–6]). In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is disturbed in the sense that some degeneration or singularity appears. There are several very concrete problems from practice which lead to such differential equations, e.g. from glaciology, non-Newtonian fluid mechanics, flows through porous media, differential geometry, celestial mechanics, climatology, petroleum extraction and reaction-diffusion problems (see some examples of applications of degenerate elliptic equations in [7,8]).

A class of weights, which is particularly well understood, is the class of A_p-weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see [9]). These classes have found many useful applications in harmonic analysis (see [10]). Another reason for studying A_p-weights is the fact that powers of distance to submanifolds of \mathbb{R}^n often belong to A_p (see [11]). There are, in fact, many interesting examples of weights (see [12] for p-admissible weights).

In the non-degenerate case (i.e. with $\omega(x) \equiv 1$), for all $f \in L^p(\Omega)$, the Poisson equation associated with the Dirichlet problem

$$\begin{cases} -\Delta u = f(x), & \text{in } \Omega \\ u(x) = 0, & \text{on } \partial \Omega \end{cases}$$

is uniquely solvable in $W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ (see [13]), and the nonlinear Dirichlet problem

$$\begin{cases} -\Delta_p u = f(x), & \text{in } \Omega \\ u(x) = 0, & \text{on } \partial \Omega \end{cases}$$

is uniquely solvable in $W_0^{1,p}(\Omega)$ (see [14]), where $\Delta_p u = \div(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian operator. In the degenerate case, the weighted p-Biharmonic operator has been studied by many authors (see [15] and the references therein), and the degenerated p-Laplacian was studied in [6].

The following theorem will be proved in Section 3.

Theorem 1. Let $2 \leq q < p < \infty$ and assume (H1)-(H4). If $\omega \in A_p$, $\frac{f_j}{\omega} \in L^{q_j}(\Omega, \omega)$ ($j = 0, 1, \ldots, n$) then the problem (P) has a unique solution $u \in X = W^{2,p}(\Omega, \omega) \cap W_0^{1,p}(\Omega, \omega)$. Moreover, we have

$$\|u\|_X \leq \frac{1}{\gamma^{p/p'}} \left(C_1 \|f_0/\omega\|_{L^{p'}(\Omega, \omega)} + \sum_{j=1}^{n} \|f_j/\omega\|_{L^{p'}(\Omega, \omega)} \right)^{p'/p},$$

where $\gamma = \min \{\lambda_1, 1\}$ and C_1 is the constant in Theorem 3.

2. Definitions and basic results

Let ω be a locally integrable nonnegative function in \mathbb{R}^n and assume that $0 < \omega < \infty$ almost everywhere. We say that ω belongs to the Muckenhoupt class A_p, $1 < p < \infty$, or that ω is an A_p-weight, if there is a constant $C = C_{p, \omega}$ such that

$$\left(\frac{1}{|B|} \int_B \omega(x) \, dx \right)^{1/(1-p)} \leq C,$$

for all balls $B \subset \mathbb{R}^n$, where $|.|$ denotes the n-dimensional Lebesgue measure in \mathbb{R}^n. If $1 < q \leq p$, then $A_q \subset A_p$ (see [10,12,16] for more information about A_p-weights). The weight ω satisfies the doubling condition if there exists a positive constant C such that $\mu(B(x, 2r)) \leq C \mu(B(x, r))$, for every ball $B = B(x, r) \subset \mathbb{R}^n$, where $\mu(B) = \int_B \omega(x) \, dx$. If $\omega \in A_p$, then μ is doubling (see Corollary 15.7 in [12]).

As an example of A_p-weight, the function $\omega(x) = |x|^\alpha$, $x \in \mathbb{R}^n$, is in A_p if and only if $-n < \alpha < n(p-1)$ (see Corollary 4.4, Chapter IX in [10]).
If \(\omega \in A_p \), then
\[
\left(\frac{|E|}{|B|} \right)^p \leq \frac{C \mu(E)}{\mu(B)},
\]
whenever \(B \) is a ball in \(\mathbb{R}^n \) and \(E \) is a measurable subset of \(B \) (see 15.5 strong doubling property in [12]). Therefore, if \(\mu(E) = 0 \) then \(|E| = 0 \). The measure \(\mu \) and the Lebesgue measure \(|.| \) are mutually absolutely continuous, i.e., they have the same zero sets \((\mu(E) = 0 \text{ if and only if } |E| = 0) \); so there is no need to specify the measure when using the ubiquitous expression almost everywhere and almost every, both abbreviated a.e.

Definition 1. Let \(\omega \) be a weight, and let \(\Omega \subset \mathbb{R}^n \) be open. For \(0 < p < \infty \) we define \(L^p(\Omega, \omega) \) as the set of measurable functions \(f \) on \(\Omega \) such that
\[
\|f\|_{L^p(\Omega, \omega)} = \left(\int_{\Omega} |f(x)|^p \omega(x) \, dx \right)^{1/p} < \infty.
\]

If \(\omega \in A_p \), \(1 < p < \infty \), then \(\omega^{-1/(p-1)} \) is locally integrable and we have \(L^p(\Omega, \omega) \subset L^1_{\text{loc}}(\Omega) \) for every open set \(\Omega \) (see Remark 1.2.4 in [17]). It thus makes sense to talk about weak derivatives of functions in \(L^p(\Omega, \omega) \).

Definition 2. Let \(\Omega \subset \mathbb{R}^n \) be a bounded open set, \(1 < p < \infty \), \(k \) be a nonnegative integer and \(\omega \in A_p \). We shall denote by \(W^{k,p}(\Omega, \omega) \), the weighted Sobolev spaces, the set of all functions \(u \in L^p(\Omega, \omega) \) with weak derivatives \(D^\alpha u \in L^p(\Omega, \omega) \), \(1 \leq |\alpha| \leq k \). The norm in the space \(W^{k,p}(\Omega, \omega) \) is defined by
\[
\|u\|_{W^{k,p}(\Omega, \omega)} = \left(\int_{\Omega} |u|^p \omega \, dx + \sum_{1 \leq |\alpha| \leq k} \int_{\Omega} |D^\alpha u|^p \omega \, dx \right)^{1/p}.
\]

If \(\omega \in A_p \), then \(W^{k,p}(\Omega, \omega) \) is the closure of \(C^\infty(\Omega) \) with respect to the norm (1) (see Corollary 2.1.6 in [17]). We also define the space \(W_{0}^{k,p}(\Omega, \omega) \) as the closure of \(C_{0}^\infty(\Omega) \) with respect to the norm (1). We have that the spaces \(W^{k,p}(\Omega, \omega) \) and \(W_{0}^{k,p}(\Omega, \omega) \) are Banach spaces.

The space \(W_{0}^{1,p}(\Omega, \omega) \) is the closure of \(C^\infty(\Omega) \) with respect to the norm (1). Equipped with this norm, \(W_{0}^{1,p}(\Omega, \omega) \) is a reflexive Banach space (see [18] for more information about the spaces \(W^{1,p}(\Omega, \omega) \)). The dual of space \(W_{0}^{1,p}(\Omega, \omega) \) is the space
\[
[W_{0}^{1,p}(\Omega, \omega)]^* = \{ T = f_0 - \text{div}(F), F = (f_1, ..., f_n) : \text{\frac{f_j}{\omega}} \in L^p(\Omega, \omega), j = 0, 1, ..., n \}.
\]

It is evident that a weight function \(\omega \) which satisfies \(0 < c_1 \leq \omega(x) \leq c_2 \) for \(x \in \Omega \) (where \(c_1 \) and \(c_2 \) are constants), give nothing new (the space \(W_{0}^{1,p}(\Omega, \omega) \) is then identical with the classical Sobolev space \(W_{0}^{1,p}(\Omega) \)). Consequently, we shall be interested above all in such weight functions \(\omega \) which either vanish somewhere in \(\Omega \) or increase to infinity (or both).

In this paper we use the following results.

Theorem 2. Let \(\omega \in A_p \), \(1 < p < \infty \), and let \(\Omega \) be a bounded open set in \(\mathbb{R}^n \). If \(u_m \to u \) in \(L^p(\Omega, \omega) \) then there exist a subsequence \(\{u_{m_k}\} \) and a function \(\Phi \in L^p(\Omega, \omega) \) such that
(i) \(u_{m_k}(x) \to u(x) \), \(m_k \to \infty \) a.e. on \(\Omega \);
(ii) \(|u_{m_k}(x)| \leq \Phi(x) \) a.e. on \(\Omega \).

Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [19].

Theorem 3. (The weighted Sobolev inequality) Let \(\Omega \) be an open bounded set in \(\mathbb{R}^n \) and \(\omega \in A_p \) \((1 < p < \infty) \). There exist constants \(C_\Omega \) and \(\delta \) positive such that for all \(u \in W_{0}^{1,p}(\Omega, \omega) \) and all \(k \) satisfying \(1 \leq k \leq n/(n-1) + \delta \),
\[
\|u\|_{L^p(\Omega, \omega)} \leq C_\Omega \|\nabla u\|_{L^p(\Omega, \omega)}.
\]
Definition 4. We say that an element $u \in C_0^\infty(\Omega)$ (see Theorem 1.3 in [20]). To extend the estimates (2) to arbitrary $u \in W_0^{1,p}(\Omega, \omega)$, we let $\{u_n\}$ be a sequence of $C_0^\infty(\Omega)$ functions tending to u in $W_0^{1,p}(\Omega, \omega)$. Applying the estimates (2) to differences $u_{m_1} - u_{m_2}$, we see that $\{u_n\}$ will be a Cauchy sequence in $L^p(\Omega, \omega)$. Consequently the limit function u will lie in the desired spaces and satisfy (2).

Lemma 1. Let $1 < p < \infty$.
(a) There exists a constant $\alpha_p > 0$ such that
\[
|x|^{p-2}x - |y|^{p-2}y \leq \alpha_p |x - y|(|x| + |y|)^{p-2},
\]
for all $x, y \in \mathbb{R}^n$;
(b) There exist two positive constants β_p, γ_p such that for every $x, y \in \mathbb{R}^n$
\[
\beta_p (|x| + |y|)^{p-2}|x - y|^2 \leq (|x|^{p-2}x - |y|^{p-2}y).|x - y| \leq \gamma_p (|x| + |y|)^{p-2}|x - y|^2.
\]

Proof. See [14], Proposition 17.2 and Proposition 17.3.

Definition 3. We denote by $X = W^{2,p}(\Omega, \omega) \cap W_0^{1,p}(\Omega, \omega)$ with the norm
\[
\|u\|_X = \left(\int_{\Omega} |\nabla u|^p \omega \, dx + \int_{\Omega} |\Delta u|^p \omega \, dx \right)^{1/p}.
\]

Definition 4. We say that an element $u \in X = W^{2,p}(\Omega, \omega) \cap W_0^{1,p}(\Omega, \omega)$ is a (weak) solution of problem (P) if
\[
\int_{\Omega} |\Delta u|^{p-2} \Delta u \, dx + \int_{\Omega} |\Delta u|^{p-2} \Delta \varphi \, dx + \sum_{j=1}^n \int_{\Omega} A_j(x, u(x), \nabla u(x)) \partial_j \varphi(x) \omega(x) \, dx
= \int_{\Omega} f_0(x) \varphi(x) \, dx + \sum_{j=1}^n \int_{\Omega} f_j(x) \partial_j \varphi(x) \, dx,
\]
for all $\varphi \in X$.

Remark 1. If $0 < \eta < p < \infty$ then, by Hölder’s inequality,
\[
\|u\|_{L^p(\Omega, \omega)} \leq C_{p,\eta} \|u\|_{L^p(\Omega, \omega)}^{1/\eta},
\]
where $C_{p,\eta} = \left(\int_{\Omega} \omega \, dx \right)^{(p-\eta)/p} = \|\omega\|_{L^p(\Omega)}^{1/\eta}$. In fact,
\[
\|u\|_{L^p(\Omega, \omega)} = \int_{\Omega} |u|^p \omega \, dx
\leq \left(\int_{\Omega} |u|^\eta \frac{\omega^{p/\eta}}{\omega^{p/\eta}} \, dx \right)^{\eta/p} \left(\int_{\Omega} \omega^{p/\eta} \, dx \right)^{(p-\eta)/p} = \|u\|_{L^p(\Omega, \omega)}^{\eta/p} \|\omega\|_{L^p(\Omega)}^{p/\eta}.
\]

3. Proof of Theorem 1

The basic idea is to reduce the Problem (P) to an operator equation $Au = T$ and apply the theorem below.

Theorem 4. Let $A : X \to X^*$ be a monotone, coercive and hemicontinuous operator on the real, separable, reflexive Banach space X. Then the following assertions hold:
(a) For each $T \in X^*$ the equation $Au = T$ has a solution $u \in X$;
(b) If the operator A is strictly monotone, then equation $Au = T$ is uniquely solvable in X.

Step 1. For \(j = 1, \ldots, n\) we define the operator \(F_j : X
ightarrow L^{p'}(\Omega, \omega)\) as

\[
(F_j u)(x) = \mathcal{A}_j(x, u(x), \nabla u(x)).
\]

We now show that the operator \(F_j\) is bounded and continuous.

(i) Using (H4), we obtain

\[
\|F_j u\|_{L^{p'}(\Omega, \omega)} = \int_\Omega |F_j u(x)|^{p'} \omega dx \\
\leq \int_\Omega \left(K_1 + h_1 |u|^{p/p'} + h_2 |\nabla u|^{p/p'} \right)^{p'} \omega dx \\
\leq C_p \int_\Omega \left((K_1^{p'} + h_1^{p'} |u|^{p} + h_2^{p'} |\nabla u|^{p} \right) \omega dx \\
= C_p \left[\int_\Omega K_1^{p'} \omega dx + \int_\Omega h_1^{p'} |u|^{p} \omega dx + \int_\Omega h_2^{p'} |\nabla u|^{p} \omega dx \right],
\]

where the constant \(C_p\) depends only on \(p\). We have, by Theorem 3 (with \(k = 1\)),

\[
\int_\Omega h_1^{p'} |u|^{p} \omega dx \leq \|h_1\|_{L^{p'}(\Omega)} \int_\Omega |u|^{p} \omega dx \\
\leq C_p^{\Omega} \|h_1\|_{L^{p'}(\Omega)} \int_\Omega |\nabla u|^{p} \omega dx \\
\leq C_p^{\Omega} \|h_1\|_{L^{p'}(\Omega)} \|u\|_{X}^{p},
\]

and

\[
\int_\Omega h_2^{p'} |\nabla u|^{p} \omega dx \leq \|h_2\|_{L^{p'}(\Omega)} \int_\Omega |\nabla u|^{p} \omega dx \\
\leq \|h_2\|_{L^{p'}(\Omega)} \|u\|_{X}^{p}.
\]

Therefore, in (3) we obtain

\[
\|F_j u\|_{L^{p'}(\Omega, \omega)} \leq C_p^{1/p'} \left(\|K\|_{L^{p'}(\Omega, \omega)} + (C_p^{\Omega} \|h_1\|_{L^{p'}(\Omega)} + \|h_2\|_{L^{p'}(\Omega)} \|u\|_{X}^{p/p'}) \right).
\]
(ii) Let \(u_m \to u \) in \(X \) as \(m \to \infty \). We need to show that \(F_j u_m \to F_j u \) in \(L^{p'}(\Omega, \omega) \). We will apply the Lebesgue Dominated Theorem. If \(u_m \to u \) in \(X \), then \(|\nabla u_m| \to |\nabla u| \) in \(L^p(\Omega, \omega) \). Using Theorem \(2 \), there exist a subsequence \(\{ u_{m_k} \} \) and a function \(\Phi_1 \) in \(L^p(\Omega, \omega) \) such that
\[
D_j u_{m_k}(x) \to D_j u(x), \text{ a.e. in } \Omega,
\]
\[
|\nabla u_{m_k}(x)| \leq \Phi_1(x), \text{ a.e. in } \Omega.
\]

By Theorem \(3 \) (with \(k = 1 \)),
\[
\|u_{m_k}\|_{L^p(\Omega, \omega)} \leq C_{\Omega} \|\nabla u_{m_k}\|_{L^p(\Omega, \omega)} \leq C_{\Omega} \|\Phi_1\|_{L^p(\Omega, \omega)}.
\]

Next, applying (H4) we obtain
\[
\|F_j u_{m_k} - F_j u\|_{L^{p'}(\Omega, \omega)} = \int_{\Omega} |F_j u_{m_k}(x) - F_j u(x)|^{p'} \omega \, dx
\]
\[
= \int_{\Omega} |A_j(x, u_{m_k}, \nabla u_{m_k}) - A_j(x, u, \nabla u)|^{p'} \omega \, dx
\]
\[
\leq C_p \int_{\Omega} \left(|A_j(x, u_{m_k}, \nabla u_{m_k})|^{p'} + |A_j(x, u, \nabla u)|^{p'} \right) \omega \, dx
\]
\[
\leq C_p \left[\int_{\Omega} \left(K_1 + h_1 |u_{m_k}|^{p/p'} + h_2 |\nabla u_{m_k}|^{p/p'} \right)^{p'} \omega \, dx
\]
\[
+ \int_{\Omega} \left(K_1 + h_1 |u|^{p/p'} + h_2 |\nabla u|^{p/p'} \right)^{p'} \omega \, dx \right]
\]
\[
\leq C_p \left[\int_{\Omega} K_1^{p'} \omega \, dx + \|h_1\|_{L^{p'}(\Omega)}^{p'} \int_{\Omega} |u_{m_k}|^p \omega \, dx + \|h_2\|_{L^{p'}(\Omega)}^{p'} \int_{\Omega} |\nabla u_{m_k}|^p \omega \, dx
\]
\[
+ \int_{\Omega} K_1^{p'} \omega \, dx + \|h_1\|_{L^{p'}(\Omega)}^{p'} \int_{\Omega} |u|^p \omega \, dx + \|h_2\|_{L^{p'}(\Omega)}^{p'} \int_{\Omega} |\nabla u|^p \omega \, dx \right]
\]
\[
\leq 2C_p \left[\int_{\Omega} K_1^{p'} \omega \, dx + \|h_1\|_{L^{p'}(\Omega)}^{p'} \int_{\Omega} \Phi_1^{p'} \omega \, dx + \|h_2\|_{L^{p'}(\Omega)}^{p'} \int_{\Omega} \Phi_1^{p'} \omega \, dx \right]
\]
\[
= 2C_p \left[K_1^{p'} \int_{\Omega} \omega \, dx + \|h_1\|_{L^{p'}(\Omega)}^{p'} \int_{\Omega} \Phi_1^{p'} \omega \, dx + \|h_2\|_{L^{p'}(\Omega)}^{p'} \int_{\Omega} \Phi_1^{p'} \omega \, dx \right].
\]

By condition (H1), we have
\[
F_j u_{m_k}(x) = A_j(x, u_{m_k}(x), \nabla u_{m_k}(x)) \to A_j(x, u(x), \nabla u(x)) = F_j u(x),
\]
as \(m_k \to +\infty \). Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain
\[
\|F_j u_{m_k} - F_j u\|_{L^{p'}(\Omega, \omega)} \to 0,
\]
that is, \(F_j u_{m_k} \to F_j u \) in \(L^{p'}(\Omega, \omega) \). We conclude from the Convergence Principle in Banach spaces (see Proposition 10.13 in [22]) that
\[
F_j u_m \to F_j u \text{ in } L^{p'}(\Omega, \omega).
\]

Step 2. We define the operator \(G_1 : X \to L^{p'}(\Omega, \omega) \) by
\[
(G_1 u)(x) = |\Delta u(x)|^{p-2} \Delta u(x).
\]
This operator is continuous and bounded. In fact,
(i) We have
\[\|G_1u\|_{L^p'(\Omega, \omega)}^{p'} = \int_{\Omega} |\Delta u|^{p-2} \Delta u |\omega dx \]
\[= \int_{\Omega} |\Delta u|^{(p-1)p'} \omega dx \]
\[= \int_{\Omega} |\Delta u|^{p'} \omega dx \]
\[\leq \|u\|_X^p. \]

Hence, \(\|G_1u\|_{L^p'(\Omega, \omega)} \leq \|u\|_X^{p'/p'} \).

(ii) If \(u_m \to u \) in \(X \) then \(\Delta u_m \to \Delta u \) in \(L^p(\Omega, \omega) \). By Theorem 2, there exist a subsequence \(\{u_{m_k}\} \) and a function \(\Phi_2 \in L^p(\Omega, \omega) \) such that
\[\Delta u_{m_k}(x) \to \Delta u(x), \text{ a.e. in } \Omega, \tag{5} \]
\[|\Delta u_{m_k}(x)| \leq \Phi_2(x), \text{ a.e. in } \Omega. \tag{6} \]

Hence, using Lemma 1(a), we obtain (since \(2 \leq q < p < \infty \)) with \(\theta = p/p' = p - 1 \) and \(\theta' = (p-1)/(p-2) \),
\[\|G_1u_{m_k} - G_1u\|_{L^p'(\Omega, \omega)} = \int_{\Omega} |G_1u_{m_k} - G_1u|^{p'} \omega dx \]
\[= \int_{\Omega} |\Delta u_{m_k}|^{p-2} \Delta u_{m_k} - |\Delta u|^{p-2} \Delta u |^{p'} \omega dx \]
\[\leq \int_{\Omega} \left[a_p |\Delta u_{m_k} - \Delta u| \left(|\Delta u_{m_k}| + |\Delta u| \right)^{(p-2)} \right]^{p'} \omega dx \]
\[\leq a_p^{p'} \int_{\Omega} |\Delta u_{m_k} - \Delta u|^{p'} \left(2 \Phi_2 \right)(p-2)^p \omega dx \]
\[\leq 2^{(p-2)p'} a_p^{p'} p' \left(\int_{\Omega} |\Delta u_{m_k} - \Delta u|^{p'} \omega dx \right)^{1/p} \left(\int_{\Omega} \Phi_2^{(p-2)p'} \omega dx \right)^{1/p} \]
\[\leq a_p^{p'} 2^{(p-2)p'} ||u_{m_k} - u||_X^{p'} \||\Phi_2||_L^p(\Omega, \omega)^{(p-2)p'} \]

since \((p-2)p' = (p-2) \left(\frac{p-1}{p-1} \right) \frac{p-1}{p-2} = p \) if \(p \neq 2 \). Hence
\[\|G_1u_{m_k} - G_1u\|_{L^p'(\Omega, \omega)} \leq 2^{p-2} a_p ||\Phi_2||_L^p(\Omega, \omega)^{p-2} ||u_{m_k} - u||_X. \]

Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain (when \(m_k \to \infty \))
\[\|G_1u_{m_k} - G_1u\|_X \to 0, \]
that is, \(G_1u_{m_k} \to G_1u \) in \(L^p'(\Omega, \omega) \). By the Convergence Principle in Banach spaces (see Proposition 10.13 in [22]), we have
\[G_1u_{m_k} \to G_1u \text{ in } L^p'(\Omega, \omega). \tag{7} \]

Step 3. We define the operator \(G_2 : X \to L^p'(\Omega, \omega) \) by
\[(G_2u)(x) = |\Delta u(x)|^{p-2} \Delta u(x). \]

We also have that the operator \(G_2 \) is continuous and bounded. In fact,
(i) We have, with \(r = (p-1)/(q-1) > 1 \) and \(r' = (p-1)/(p-q) \), that
\[
\|G_2u\|_{L_r^p(\Omega, \omega)}^p = \int_\Omega |\Delta u|^{q-2} \Delta u |\Delta u|^{r'} \omega \, dx
= \int_\Omega |\Delta u|^{(q-1)r'} \omega \, dx
\leq \left(\int_\Omega |\Delta u|^{(q-1)r'} \omega \, dx \right)^{1/r} \left(\int_\Omega \omega \, dx \right)^{1/r'}
= \left(\int_\Omega |\Delta u|^{p} \omega \, dx \right)^{(q-1)/(p-1)} \left(\int_\Omega \omega \, dx \right)^{(p-q)/(p-1)}
= C_{p,q} \|\Delta u\|_{L^p(\Omega, \omega)}^{(q-1)p'}
\leq C_{p,q} \|u\|_{X}^{(q-1)p'},
\]
where \(C_{p,q} = \left(\int_\Omega \omega \, dx \right)^{(p-q)/(p-1)} \). Hence \(\|G_2u\|_{L_r^p(\Omega, \omega)} \leq C_{p,q}^{1/p'} \|u\|_{X}^{(q-1)1/p'} \).

(ii) If \(u_m \to u \) in \(X \) then \(\Delta u_m \to \Delta u \) in \(L^p(\Omega, \omega) \). If \(2 < q < p < \infty \), by (5), (6) and Lemma 1(a), we have
\[
\|G_2u_m - G_2u\|_{L_r^p(\Omega, \omega)}^{p'} = \int_\Omega \left| \Delta u_m - \Delta u \right|^{(q-2)p'} \omega \, dx
\leq \int_\Omega \left[a_q |\Delta u_m - \Delta u| (|\Delta u_m| + |\Delta u|) \right]^{(q-2)p'} \omega \, dx
= a_q^{p'} \int_\Omega \left| \Delta u_m - \Delta u \right|^{p'} (|\Delta u_m| + |\Delta u|)^{(q-2)p'} \omega \, dx
\leq 2^{(q-2)p'} a_q^{p'} \int_\Omega \left| \Delta u_m - \Delta u \right|^{p'} \Phi_2(\omega) \, dx. \tag{8}
\]
For \(s = p/p' = p - 1 > 1 \) and \(s' = (p-1)/(p-2) \), we have in (8)
\[
\|G_2u_m - G_2u\|_{L_r^p(\Omega, \omega)}^{p'} \leq 2^{(q-2)p'} a_q^{p'} \int_\Omega \left| \Delta u_m - \Delta u \right|^{p'} \Phi_2(\omega) \, dx
\leq 2^{(q-2)p'} a_q^{p'} \left(\int_\Omega \left| \Delta u_m - \Delta u \right|^{p'/s'} \omega \, dx \right)^{1/s'} \left(\int_\Omega \Phi_2(\omega) \, dx \right)^{1/s'}
= 2^{(q-2)p'} a_q^{p'} \left(\int_\Omega \left| \Delta u_m - \Delta u \right|^{p'/s} \omega \, dx \right)^{p'/p} \left(\int_\Omega \Phi_2(\omega) \, dx \right)^{(p-2)/(p-1)}.
\]
Now, since \(0 < \eta = \frac{(q-2)p}{(p-2)} < p \), then by Remark 1, we have \(\|\Phi_2\|_{L^p(\Omega, \omega)} \leq C_{p,q} \|\Phi_2\|_{L^p(\Omega, \omega)} \). Therefore, we obtain
\[
\|G_2u_m - G_2u\|_{L_r^p(\Omega, \omega)}^{p'} \leq 2^{(q-2)p'} a_q^{p'} \left(\int_\Omega \left| \Delta u_m - \Delta u \right|^{p'/s} \omega \, dx \right)^{p'/p} \left(\int_\Omega \Phi_2(\omega) \, dx \right)^{(p-2)/(p-1)} \cdot \|u_m - u\|_{X}^{(q-2)p'}.
\]
Hence \(\|G_2u_m - G_2u\|_{L_r^p(\Omega, \omega)} \leq 2^{q-2} a_q \|\Phi_2\|_{L^p(\Omega, \omega)}^{q-2} \|u_m - u\|_{X}^{(q-2)p'} \).

In the case \(2 < q < p < \infty \), we have \((G_2u)(x) = \Delta u(x) \) and
\[
\|G_2u_m - G_2u\|_{L_r^p(\Omega, \omega)}^{p'} = \int_\Omega \left| \Delta u_m - \Delta u \right|^{p'} \omega \, dx
\leq \left(\int_\Omega \left| \Delta u_m - \Delta u \right|^{p} \omega \, dx \right)^{p'/p} \left(\int_\Omega \omega \, dx \right)^{(p-2)/(p-1)}
\leq \|u_m - u\|_{X}^{p'} \left(\int_\Omega \omega \, dx \right)^{(p-2)/(p-1)}.
\]
Therefore, for $2 \leq q < p < \infty$, by the Dominated Convergence Theorem we obtain (when $m_k \to \infty$)

$$
\|G_{2u_{m_k}} - G_{2u}\|_{L^{p'}(\Omega, \omega)} \to 0,
$$

that is, $G_{2u_{m_k}} \to G_{2u}$ in $L^{p'}(\Omega, \omega)$. By the Convergence Principle in Banach spaces, we have

$$
G_{2u_{m}} \to G_{2u} \text{ in } L^{p'}(\Omega, \omega). \quad (9)
$$

Step 4. Since $f_j \in L^{p'}(\Omega, \omega) \ (j = 0, 1, ..., n)$, then $T \in [W_0^{1,p}(\Omega, \omega)]^* \subset X^*$. Moreover, we have by Theorem 3 (with $k = 1$),

$$
|T(\varphi)| \leq \int_\Omega |f_0||\varphi| \, dx + \sum_{j=1}^n \int_\Omega |f_j||D_j\varphi| \, dx
$$

$$
= \int_\Omega \frac{|f_0|}{\omega}|\varphi| \, \omega \, dx + \sum_{j=1}^n \int_\Omega \frac{|f_j|}{\omega}|D_j\varphi| \, \omega \, dx
$$

$$
\leq \frac{\|f_0/\omega\|_{L^{p'}(\Omega, \omega)}}{\|\varphi\|_{L^p(\Omega, \omega)}} \|\varphi\|_{L^p(\Omega, \omega)} + \sum_{j=1}^n \frac{\|f_j/\omega\|_{L^{p'}(\Omega, \omega)}}{\|\varphi\|_{L^p(\Omega, \omega)}} \|D_j\varphi\|_{L^{p'}(\Omega, \omega)}
$$

$$
\leq \frac{C_{\Omega} \|f_0/\omega\|_{L^{p'}(\Omega, \omega)}}{\|\varphi\|_{L^p(\Omega, \omega)}} \|\varphi\|_{L^{p'}(\Omega, \omega)} + \frac{\|f_j/\omega\|_{L^{p'}(\Omega, \omega)}}{\|\varphi\|_{L^p(\Omega, \omega)}} \|\varphi\|_{L^{p'}(\Omega, \omega)}
$$

Moreover, we also have

$$
|B(u, \varphi)| \leq |B_1(u, \varphi)| + |B_2(u, \varphi)| + |B_3(u, \varphi)| \quad (10)
$$

In (10) we have, using (H4), we have

$$
\int_\Omega |A(x, u, \nabla u)||\nabla \varphi| \, \omega \, dx \leq \int_\Omega \left(K_1 + h_1|u|^{p/p'} + h_2|\nabla u|^{p/p'} \right) \|\nabla \varphi\| \, \omega \, dx
$$

$$
\leq K_1 \|\nabla \varphi\|_{L^{p'}(\Omega, \omega)} + \|\nabla h_1\|_{L^\infty(\Omega)} \|u\|_{L^{p'}(\Omega, \omega)} \|\nabla \varphi\|_{L^{p'}(\Omega, \omega)}
$$

$$
+ \|h_2\|_{L^\infty(\Omega)} \|\nabla u\|_{L^{p'}(\Omega, \omega)} \|\nabla \varphi\|_{L^{p'}(\Omega, \omega)}
$$

$$
\leq \left(K_1 \|\nabla \varphi\|_{L^{p'}(\Omega, \omega)} + (C_{\Omega}^{p/p'} h_1 L^\infty(\Omega) + \|h_2\|_{L^\infty(\Omega)}) \|u\|_{L^{p'}(\Omega, \omega)} \|\nabla \varphi\|_{L^{p'}(\Omega, \omega)} \right) \|\varphi\|_X
$$

and

$$
\int_\Omega |\Delta u|^{p-2} |\Delta u| |\Delta \varphi| \, \omega \, dx = \int_\Omega |\Delta u|^{p-1} |\Delta \varphi| \, \omega \, dx
$$

$$
\leq \left(\int_\Omega |\Delta u|^{p} \, \omega \, dx \right)^{1/p'} \left(\int_\Omega |\Delta \varphi|^{p} \, \omega \, dx \right)^{1/p}
$$

$$
\leq \|u\|_{L^{p'}(X)} \|\varphi\|_X,
$$

and

$$
\int_\Omega |\Delta u|^{q-2} |\Delta u| |\Delta \varphi| \, \omega \, dx = \int_\Omega |\Delta u|^{q-1} |\Delta \varphi| \, \omega \, dx
$$

$$
\leq \left(\int_\Omega |\Delta u|^{(q-1)p'} \, \omega \, dx \right)^{1/p'} \left(\int_\Omega |\Delta \varphi|^{q} \, \omega \, dx \right)^{1/p}
$$

$$
= \|\Delta u\|_{L^{q-1}(\Omega, \omega)} \|\Delta \varphi\|_{L^{p'}(\Omega, \omega)}.
$$
Since $0 < \eta = p'(q - 1) = \frac{p(q - 1)}{p - 1} < p$, then by Remark 1 we have
\[\| \Delta u \|_{L^p(\Omega, \omega)} \lesssim C_{p,\eta} \| \Delta u \|_{L^p(\Omega, \omega)}. \]

Hence
\[
\int_{\Omega} |\Delta u|^q |\Delta u| \, |\Delta \phi| \, \omega \, dx \leq \| \Delta u \|_{L^p(\Omega, \omega)}^{q-1} \| \Delta \phi \|_{L^p(\Omega, \omega)} \]
\[
\leq C_{p,\eta}^{-1} \| \Delta u \|_{L^p(\Omega, \omega)}^{q-1} \| \Delta \phi \|_{L^p(\Omega, \omega)} \]
\[
\leq C_{p,\eta}^{-1} \| u \|_X^{q-1} \| \phi \|_X. \]

Hence, in (10) we obtain, for all $u, \phi \in X$
\[
|B(u, \phi)| \leq \left[\| K_1 \|_{L^p(\Omega, \omega)} + C_{p}^{p'/p'} \| h_1 \|_{L^\infty(\Omega)} \| u \|_X^{p'/p'} + \| h_2 \|_{L^\infty(\Omega, \omega)} \| u \|_X^{p'/p'} + \| u \|_X \| \phi \|_X \right] \| \Delta u \|_{L^p(\Omega, \omega)} \]
\[
\leq C_{p,\eta}^{-1} \| u \|_X^{q-1} \| \phi \|_X. \]

Since $B(u, \cdot)$ is linear, for each $u \in X$, there exists a linear and continuous functional on X denoted by Au such that $(Au, \phi) = B(u, \phi)$, for all $u, \phi \in X$ (here (f, x) denotes the value of the linear functional f at the point x). Moreover
\[
\| Au \|_X \leq \| K_1 \|_{L^p(\Omega, \omega)} + C_{p}^{p'/p'} \| h_1 \|_{L^\infty(\Omega)} \| u \|_X^{p'/p'} + \| h_2 \|_{L^\infty(\Omega, \omega)} \| u \|_X^{p'/p'} + \| u \|_X \| \phi \|_X \]
where $\| Au \|_X = \sup \{ |(Au, \phi)| = |B(u, \phi)| : \phi \in X, \| \phi \|_X = 1 \}$ is the norm of the operators Au. Hence, we obtain the operator $A : X \rightarrow X^*$, $u \mapsto Au$. Consequently, Problem (P) is equivalent to the operator equation
\[
Au = T, \ u \in X. \]

Step 5. Using condition (H2) and Lemma 1(b), we have
\[
(Au_1 - Au_2, u_1 - u_2) = B(u_1, u_1 - u_2) - B(u_2, u_1 - u_2)
\]
\[
= \int_{\Omega} A(x, u_1, \nabla u_1) \cdot \nabla (u_1 - u_2) \, \omega \, dx + \int_{\Omega} |\Delta u_1|^{p-2} \Delta u_1 \, \Delta (u_1 - u_2) \, \omega \, dx
\]
\[
+ \int_{\Omega} |\Delta u_1|^{p-2} \Delta u_1 \, \Delta (u_1 - u_2) \, \omega \, dx - \int_{\Omega} A(x, u_2, \nabla u_2) \cdot \nabla (u_1 - u_2) \, \omega \, dx
\]
\[
- \int_{\Omega} |\Delta u_2|^{p-2} \Delta u_2 \, \Delta (u_1 - u_2) \, \omega \, dx - \int_{\Omega} |\Delta u_2|^{p-2} \Delta u_2 \, \Delta (u_1 - u_2) \, \omega \, dx
\]
\[
\geq \int_{\Omega} \left(A(x, u_1, \nabla u_1) - A(x, u_2, \nabla u_2) \right) \cdot \nabla (u_1 - u_2) \, \omega \, dx
\]
\[
+ \int_{\Omega} |\Delta u_1|^{p-2} \Delta u_1 - |\Delta u_2|^{p-2} \Delta u_2 \right) \Delta (u_1 - u_2) \, \omega \, dx
\]
\[
+ \int_{\Omega} \left(|\Delta u_1|^{p-2} \Delta u_1 - |\Delta u_2|^{p-2} \Delta u_2 \right) \Delta (u_1 - u_2) \, \omega \, dx
\]
\[
\geq \theta_1 \int_{\Omega} |\nabla (u_1 - u_2)|^p \, \omega \, dx + \beta \int_{\Omega} (|\Delta u_1| + |\Delta u_2|)^{p-2} \, |\Delta u_1 - \Delta u_2|^2 \, \omega \, dx
\]
\[
+ \beta \int_{\Omega} (|\Delta u_1| + |\Delta u_2|)^{p-2} \, |\Delta u_1 - \Delta u_2|^2 \, \omega \, dx
\]
\[
\geq \theta_1 \int_{\Omega} |\nabla (u_1 - u_2)|^p \, \omega \, dx + \beta \int_{\Omega} (|\Delta u_1 - \Delta u_2|)^{p-2} \, |\Delta u_1 - \Delta u_2|^2 \, \omega \, dx
\]
\[
+ \beta \int_{\Omega} (|\Delta u_1 - \Delta u_2|)^{p-2} \, |\Delta u_1 - \Delta u_2|^2 \, \omega \, dx
\]
\[
= \theta_1 \int_{\Omega} |\nabla (u_1 - u_2)|^p \, \omega \, dx + \beta \int_{\Omega} |\Delta u_1 - \Delta u_2| \, \omega \, dx
\]
\[
\geq \theta_1 \int_{\Omega} |\nabla (u_1 - u_2)|^p \, \omega \, dx + \beta \int_{\Omega} |\Delta u_1 - \Delta u_2| \, \omega \, dx
\]
\[
\geq \theta_1 \int_{\Omega} |\nabla (u_1 - u_2)|^p \, \omega \, dx + \beta \int_{\Omega} |\Delta u_1 - \Delta u_2| \, \omega \, dx
\]
\[
\geq \theta \| u_1 - u_2 \|_X^p. \]
where $\theta = \min \{ \theta_1, \theta_2 \}$. Therefore, the operator A is strongly monotone, and this implies that A is strictly monotone. Moreover, from (H3), we obtain

$$
\langle Au, u \rangle = B(u, u) = B_1(u, u) + B_2(u, u) + B_3(u, u)
$$

$$
= \int_\Omega A(x, u, \nabla u) \cdot \nabla u \omega \, dx + \int_\Omega |\Delta u|^{p-2} \Delta u \Delta u \omega \, dx + \int_\Omega |\Delta u|^{q-2} \Delta u \Delta u \omega \, dx
$$

$$
\geq \int_\Omega \lambda_1 |\nabla u|^p \omega \, dx + \int_\Omega |\Delta u|^p \omega \, dx + \int_\Omega |\Delta u|^q \omega \, dx
$$

$$
\geq \int_\Omega \lambda_1 |\nabla u|^p \omega \, dx + \int_\Omega |\Delta u|^p \omega \, dx
$$

$$
\geq \gamma \| u \|_X^p,
$$

where $\gamma = \min \{ \lambda_1, 1 \}$. Hence, since $2 \leq q < p < \infty$, we have

$$
\frac{\langle Au, u \rangle}{\| u \|_X} \to +\infty, \text{ as } \| u \|_X \to +\infty,
$$

that is, A is coercive.

Step 6. We need to show that the operator A is continuous. Let $u_m \to u$ in X as $m \to \infty$. We have

$$
|B_1(u_m, \varphi) - B_1(u, \varphi)| \leq \sum_{j=1}^n \int_\Omega |A_j(x, u_m, \nabla u_m) - A_j(x, u, \nabla u)||D_j \varphi| \omega \, dx
$$

$$
= \sum_{j=1}^n \int_\Omega \left| F_j u_m - F_j u \right| ||D_j \varphi| \omega \, dx
$$

$$
\leq \sum_{j=1}^n \| F_j u_m - F_j u \|_{L_p'(\Omega, \omega)} \| D_j \varphi \|_{L_p'(\Omega, \omega)}
$$

$$
\leq \left(\sum_{j=1}^n \| F_j u_m - F_j u \|_{L_p'(\Omega, \omega)} \right) \| \varphi \|_X,
$$

and

$$
|B_2(u_m, \varphi) - B_2(u, \varphi)| = \int_\Omega |\Delta u_m|^{p-2} \Delta u_m \Delta \varphi \omega \, dx - \int_\Omega |\Delta u|^{p-2} \Delta u \Delta \varphi \omega \, dx
$$

$$
\leq \int_\Omega \left| |\Delta u_m|^{p-2} \Delta u_m - |\Delta u|^{p-2} \Delta u \right| |\Delta \varphi| \omega \, dx
$$

$$
\leq \int_\Omega |G_1 u_m - G_1 u| |\Delta \varphi| \omega \, dx
$$

$$
\leq \| G_1 u_m - G_1 u \|_{L_p'(\Omega, \omega)} \| \Delta \varphi \|_{L_p'(\Omega, \omega)}
$$

$$
\leq \| G_1 u_m - G_1 u \|_{L_p'(\Omega, \omega)} \| \varphi \|_X,
$$

and

$$
|B_3(u_m, \varphi) - B_3(u, \varphi)| = \int_\Omega |\Delta u_m|^{q-2} \Delta u_m \Delta \varphi \omega \, dx - \int_\Omega |\Delta u|^{q-2} \Delta u \Delta \varphi \omega \, dx
$$

$$
\leq \int_\Omega \left| |\Delta u_m|^{q-2} \Delta u_m - |\Delta u|^{q-2} \Delta u \right| |\Delta \varphi| \omega \, dx
$$

$$
\leq \int_\Omega |G_2 u_m - G_2 u| |\Delta \varphi| \omega \, dx
$$

$$
\leq \| G_2 u_m - G_2 u \|_{L_p'(\Omega, \omega)} \| \varphi \|_X,
$$

for all $\varphi \in X$. Hence

$$
|B(u_m, \varphi) - B(u, \varphi)| \leq |B_1(u_m, \varphi) - B_1(u, \varphi)| + |B_2(u_m, \varphi) - B_2(u, \varphi)| + |B_3(u_m, \varphi) - B_3(u, \varphi)|
$$

$$
\leq \left[\sum_{j=1}^n \| F_j u_m - F_j u \|_{L_p'(\Omega, \omega)} + \| G_1 u_m - G_1 u \|_{L_p'(\Omega, \omega)} + \| G_2 u_m - G_2 u \|_{L_p'(\Omega, \omega)} \right] \| \varphi \|_X.
$$
Then we obtain
\[\|Au_m - Au\| \leq \sum_{j=1}^{n} \|F_ju_m - F_ju\|_{L^p(\Omega,\omega)} + \|G_1u_m - G_1u\|_{L^p(\Omega,\omega)} + \|G_2u_m - G_2u\|_{L^p(\Omega,\omega)}. \]

Therefore, using (4), (7) and (9) we have \(\|Au_m - Au\| \to 0 \) as \(m \to +\infty \), that is, \(A \) is continuous and this implies that \(A \) is hemicontinuous.

Therefore, by Theorem 4, the operator equation \(Au = T \) has a unique solution \(u \in X \) and it is the unique solution for problem (P).

Step 7. In particular, by setting \(\varphi = u \) in Definition 4, we have
\begin{equation}
B(u,u) = B_1(u,u) + B_2(u,u) + B_3(u,u) = T(u).
\end{equation}

Hence, using (H3) and \(\gamma = \min \{\lambda_1, 1\} \), we obtain
\[
B_1(u,u) + B_2(u,u) + B_3(u,u)
= \int_{\Omega} \mathcal{A}(x, u, \nabla u, \nabla u \omega) \text{d}x + \int_{\Omega} |\Delta u|^{p-2} \Delta u \Delta u \omega \text{d}x + \int_{\Omega} |\Delta u|^{q-2} \Delta u \Delta u \omega \text{d}x
\geq \int_{\Omega} \lambda_1 |\nabla u|^p + \int_{\Omega} |\Delta u|^p \omega \text{d}x + \int_{\Omega} |\Delta u|^q \omega \text{d}x
\geq \int_{\Omega} \lambda_1 |\nabla u|^p + \int_{\Omega} |\Delta u|^p \omega \text{d}x
\geq \gamma \|u\|_X^p
\]

and
\[
T(u) = \int_{\Omega} f_0 u \text{d}x + \sum_{j=1}^{n} \int_{\Omega} f_j D_j u \text{d}x
\leq \|f_0 / \omega\|_{L^p(\Omega,\omega)} \|u\|_{L^p(\Omega,\omega)} + \sum_{j=1}^{n} \|f_j / \omega\|_{L^p(\Omega,\omega)} \|D_j u\|_{L^p(\Omega,\omega)}
\leq \left(C_0 \|f_0 / \omega\|_{L^p(\Omega,\omega)} + \sum_{j=1}^{n} \|f_j / \omega\|_{L^p(\Omega,\omega)} \right) \|u\|_X.
\]

Therefore, in (11), we obtain
\[
\gamma \|u\|_X^p \leq \left(C_0 \|f_0 / \omega\|_{L^p(\Omega,\omega)} + \sum_{j=1}^{n} \|f_j / \omega\|_{L^p(\Omega,\omega)} \right) \|u\|_X,
\]
and we obtain
\[
\|u\|_X \leq \frac{1}{\gamma^{p/p}} \left(C_0 \|f_0 / \omega\|_{L^p(\Omega,\omega)} + \sum_{j=1}^{n} \|f_j / \omega\|_{L^p(\Omega,\omega)} \right)^{p/p}.
\]

Example 1. Let \(\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\} \), the weight function \(\omega(x,y) = (x^2 + y^2)^{-1/2} (\omega \in A_4, p = 4 \) and \(q = 3 \), and the function
\[
\mathcal{A} : \Omega \times \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2 \text{ defined by}
\]
\[
\mathcal{A}(x,y, \xi, \xi) = h_2(x,y) |\xi| \xi,
\]
where \(h(x,y) = 2 e^{(x^2+y^2)} \). Let us consider the partial differential operator
\[
Lu(x,y) = \Delta [(x^2 + y^2)^{-1/2} (|\Delta u|^2 \Delta u + |\Delta u| \Delta u)] - \text{div} ((x^2 + y^2)^{-1/2} \mathcal{A}(x,y, u, \nabla u)).
\]

Therefore, by Theorem 1, the problem
\[
\begin{align*}
Lu(x) &= \cos(xy) - \frac{\partial}{\partial x} \left(\frac{\sin(xy)}{x^2 + y^2} \right) - \frac{\partial}{\partial y} \left(\frac{\sin(xy)}{x^2 + y^2} \right), & \text{in } \Omega \\
\quad u(x) &= 0, & \text{on } \partial \Omega
\end{align*}
\]

has a unique solution \(u \in X = W^{2,4}(\Omega, \omega) \cap W^{1,4}_0(\Omega, \omega) \).

Conflicts of Interest: “The author declares no conflict of interest.”

References

