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Abstract: This article maintains that the impossibility of trisection is based on a cubic polynomial whose
trigonometric content is not clear; or, the impossibility may be referring to one particular trisection method
even if the cubic equation does constitute the equation of trisection. It next proceeds to trisection "indirectly"
by attempting to construct one of the two trisectors on the basis of reductio ad absurdum.
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1. Introduction

T he Trisection of an arbitrary acute angle by means of a straightedge and a compass was deemed by the
ancient Greeks to be impossible. In Book IV of his "Mathematical Collections", Pappus of Alexandria (c.

290-c. 350) writes: "Ěgeometers of the past who sought by planes to solve the Ě problem of the trisection of an
angle, which is by its nature a solid problem, were unable to succeed. For they were as yet unfamiliar with the
conic sections and were baffled for that reason. But later with the help of the conics they trisected the angle
using the following ’vergings’ for the solution..." [1, p. 146].

In 1837, Pierre Laurent Wantzel (1814-1848, [2]) "proved" the impossibility formally. From the triple-angle
formulas of Trigonometry, we know that, for angle ω that;

tan3ω− 3 tan 3ωtan2ω− 3 tan ω + tan 3ω = 0. (1)

This, equation is supposed to be an irreducible polynomial equation, x3 − 3Ax2 − 3x + A = 0, and cubic
roots are not geometrically constructible. Yet, from Franciscus Vieta’s (1540-1603) recurrence formulas, we have
tan (ν + 1)ω = [tan (νω) + tan ω]/[1− tan (νω) tan ω], or letting tan (ν + 1)ω = α and tan ω = x, and using
the recurrence formula for tan (νω),

α− xα
tan (ν− 1)ω + x

1− x tan (ν− 1)ω
− tan (ν− 1)ω + x

1− x tan (ν− 1)ω
− x = 0,

and using again the recurrence formula for tan (ν− 1)ω,

α− xα

tan(ν−2)ω+x
1−x tan(ν−2)ω + x

1− tan(ν−2)ω+x
1−x tan(ν−2)ω x

−
tan(ν−2)ω+x

1−x tan(ν−2)ω + x

1− tan(ν−2)ω+x
1−x tan(ν−2)ω x

− x = 0,

or letting tan (ν− 2)ω ≡ y, and after some operations,

x3 − 3
α− y

1 + αy
x2 − 3x +

α− y
1 + αy

= 0. (2)

This cubic equation is again of the form of the trisection polynomial: x3 − 3Ax2 − 3x + A = 0. But, it is
neither an equation for ν-section, because one should have xν rather than x3, nor an equation for the trisection
of an angle equal to 3ω, because then (α− y)/(1 + αy) = α⇒ y

(
α2 + 1

)
= 0 and hence, that either y = 0 or

α2 = −1, which are both absurd results. Even more absurd would be to let (α− y)/(1 + αy) = A in order to
make (2) look like what is supposed to be a trisection equation.
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There is clearly a problem on whether the geometric solvability of trisection should be judged on the basis
of cubic polynomials like those under (1) or (2). To complicate the matter even further, note that inserting ν = 2
in (α− y)/(1 + αy) = [tan (ν + 1)ω− tan (ν− 1)ω] / [1− tan (ν + 1)ω tan (ν− 1)ω] to get:

tan (3ω)− tan ω

1− tan (3ω) tan ω
=

α− x
1− αx

,

which when in turn is inserted in (2), gives the quartic equation:

αx4 + 4x3 − 6αx2 − 4x + α = 0. (3)

Could (3) be the true equation of trisection? Or, if (1) and (2) are those equations, indeed, does the
impossibility refers to one only specific trisection method? In any case, the next section presents a trisection
attempt by seeking to construct one of the two trisectors; it does on the basis of reductio ad absurdum.

2. The Geometry of Trisector

Problem:
Trisect a given acute angle ω, with the aid of a straightedge and a compass.

Analysis:
Suppose that we have trisected angle ∠ΘΩΣ = ω in Figure 1, which also contains the following elements:

Bisector ΩT forms with half-line ΩB, angle ∠TΩB = ε + (ω/2) = 45◦. Also, ω1 = ω4 = (ω/3) and ω2 =

ω3 = (ω/6). The right triangle M IΩΓ, which is formed having hypotenuse the line segment ΩI of trisector
ΩO, is an isosceles triangle as is triangle M TΩB so that ΩΓ = ΓI = ΓB, σ + τ = 90◦, σ = ψ = τ + υ + χ,
ζ = κ = τ = (ω/6). Given now that α = ι = ε = b, 2b + ω = 90◦, ϕ + (ω/2) = 90◦, ψ + (ω/6) = 90◦, and
ψ = ϕ + (ω/3), routine calculations of triangle angles yield also the following list of angles:

β = 45◦ − (ω/6), γ = 90◦ − b = 45◦ + (ω/2) = b + ω, δ = 90◦ + b + (ω/6), η = 45◦ + (ω/3),
θ = b + (ω/2) = 45◦, λ = 45◦ + (ω/6), µ = ν = ϕ + (ω/3), ρ = ω/3, t = 90◦ − (ω/6) = ϕ + (ω/3) = s,
m + n = b + ω, υ + χ = 90◦ − (ω/3), and ξ = 45◦ + (ω/6) = 90◦ + b + (ω/3).

That is, according to this analysis, trisection imposes that ΣO = ΣI. Nevertheless, the Analysis does not
determine angles m, n, υ, and χ. It appears through the sum m + n = ω + a that m = ω and n = α = b, and
this is what will be assumed below.

Figure 1. Construction of Trisector

Construction of Trisector ΩO (ΩI):
Given acute angle ∠ΘΩΣ = ω to trisect, draw bisector ΩT and form next based on it, angle ε + (ω/2) =

45◦ and the isosceles right triangles M ΘAΣ, M TΩB, and M TΩ∆. From point Σ, draw a line parallel to ΩΘ
and meeting the downward extension of T∆ at point Γ. The hypotenuse ΩI of the isosceles triangle M ΩΓI
formed having side equal to ΩΓ, constitutes a segment of the sought trisector ΩO of ∠ΘΩΣ = ω.
Proof (by Contradiction):

In Figure 1, we have by construction, ΩΓ = ΓI = ΓB, σ + τ = 90◦, σ = ψ = τ + υ + χ, ζ = κ = τ = ω2,
α = ι = ε = b, 2b + ω = 90◦, ϕ + (ω/2) = ϕ + ω1 + ω2 = 90◦, ϕ + ω1 = ψ, and ψ + ω2 = 90◦, where the
distinction between ω1and ω2 has been based on the construction of ΩI. Given these relationships, simple
calculations of triangle angles yield all of the angles mentioned in the Analysis, with ω1and ω2 being now in
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the place of ω/3 and ω/6, respectively. I have to show that µ = ν = ϕ + ω1 = ϕ + ω2 + (ω1/2)⇒ ω1 = 2ω2.
Suppose that this equality does not hold and that ΣOΣI. Suppose that some other chord, ΣO′, not ΣO, is equal
to ΣI. But, then, ρ 6= ω2 + (ω1/2), which would be absurd if that other chord was the one connected with
the trisector. The contradiction can be seen through the following metrics, too. Let d denote distance in the
xy-plane as in Figure 2, where it is assumed that SO′ > SO:

dSO =
[
(x2 − x1)

2 + (y2 − y1)
2
] 1

2

dSO′ =
[
(x3 − x1)

2 + (y3 − y1)
2
] 1

2

dOO′ =
[
(x3 − x2)

2 + (y3 − y2)
2
] 1

2

dSI =
[
(x4 − x1)

2 + (y4 − y1)
2
] 1

2

The inequalities obeyed by x and y need not be observed because differences are squared. Now, if SO′ = SI or
the same, dSO′ = dSI , one obtains that:

(x3 − x4) [(x3 − x4)− 2x1]− (y3 − y4) [2y1 − (y3 − y4)] = 0

which can be the case when x1 = (x3 − x4)/2 and y1 = (y3 − y4)/2, given that x3 6= x4 and y3 6= y4. But,
both results are absurd. Similar absurd findings derive when SO′ < SO is assumed. Hence, it cannot be that
SO′ > SO.
Quod Erat Demonstrandum. . .

Figure 2. The Metrics of the Contradiction Argument

3. Epilogue

The lesson coming out of this article is that there may be geometric constructions deemed impossible
on the basis of improper algebra. There have been many geometric trisection attempts through the ages.
Suffices to mention those in Forum Geometricorum or in Survey Review and in the literature cited therein. But,
the method followed each time leads either to approximate solutions, doing justice to impossibility results, or
lacks a methodology, acknowledging Galileo’s presumption that "Two truths cannot contradict one another"
given the truth of impossibility results. The present essay offers an exact trisection based on a method that
does not dispute the truth of these results.
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