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1. Introduction

F ixed point theory has been one of the most influential research topics in various fields of engineering
and science. It is widely applied in solving linear algebraic equations, ordinary differential equations,

integral equations, partial differential equations. The first most significant result of metric fixed point theory
was given by the polish mathematician Stefan Banach, in 1922, which is known as Banach contraction principle.
The famous Banach contraction principle states that in a complete metric space, a contraction self-map has a
unique fixed point. It is one of the cornerstones in the development of nonlinear analysis.

The concept of b-metric spaces was introduced by Bakhtin [2] in 1989, who used it to prove a
generalization of the Banach contraction principle in spaces endowed with such kind of metrics. Since then,
this notion has been used by many authors to obtain various fixed point theorems. In 1993, Czewick [3]
used b-metric space on his papers for their fixed point theorems on contraction mappings in the b-metric
space. Then many authors also used the b-metric space for their fixed point theorems for several contraction
mappings [4–8] and then other authors developed the b-metric space to become a quasi b-metric space [8,9].
The quasi b-metric space has been used on some weak contraction mappings, and the weak contraction
mapping was introduced by [10]. The quasi αb-metric space was introduced by Nurwahyu [1]. It was
developed from b-metric space by ignoring symmetry and modifying the triangular inequality condition of
b-metric and they proposed and proved theorems which involve the existence and uniqueness of fixed point
for weak contraction mappings in quasi αb-metric space.

The purpose of this study is to establish a theorem involving a pair of mappings satisfying a weakly
contraction type T-coupling in the context of quasi αb-metric space and then prove the existence and
uniqueness of coupled coincidence and coupled common fixed points. The concept of weakly compatibility
of the pair of maps is applied to show the uniqueness of coupled common fixed point. This work is offers
extension to the published work of Nurwahyu and Aris [1]. Finally, an illustrative example is presented to
verify that all the conditions of the theorem are fulfilled.

2. Preliminaries

Now, we present relevant definitions and results that will be retrieved in the sequel.

Definition 1. [2] Let X be a non-empty set and b ≥ 1 be any given real number.
Let d : X× X → [0, ∞) be a function satisfying the following conditions:
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(a) d(x, y) = d(y, x) = 0⇔ x = y.
(b) d(x, y) = d(y, x).
(c) d(x, y) ≤ b [d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is known as b-metric on X and the pair (X, d) is called a b-metric space.

Definition 2. [1] Let X be a non-empty set and 0 ≤ α < 1 and b ≥ 1 be a given real number. Let d : X × X →
[0, ∞) be a function satisfying the the following conditions:

(a) d(x, y) = d(y, x) = 0⇔ x = y.
(b) d(x, y) ≤ αd(y, x) + 1

2 b [d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is known as quasi αb-metric on X and the pair (X, d) is called a quasi αb-metric space.

Definition 3. [12] Let (X, d) be a quasi αb-metric space and T : X → X be a self-map, then T is said to be a
contraction mapping if there exists a constant k ∈ [0, 1) called a contraction factor, such that

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X.

Definition 4. [1] Let (X, d) be a quasi αb-metric space with 0 ≤ α < 1 and b ≥ 1. A mapping T : X 7−→ X is
called a weak contraction on X if there exists a function ϕ : [0, ∞) 7−→ [0, ∞), ϕ(t) = 0 iff t = 0 and satisfying
the following condition:

d(Tx, Ty) ≤ d(x, y)− δϕ (d(x, y))

for all x, y ∈ X where 0 < δ ≤ 1.

Definition 5. [1] A sequence {xn} in a quasi αb-metric space (X, d) is said to converge to a point x ∈ X if and
only if

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0.

Definition 6. [1] A sequence {xn} in a quasi αb-metric space (X, d) is called a Cauchy sequence if for every
ε > 0, there exists a positive integer n0 such that for m, n > n0, we have d(xn, xm) < ε. That is,

lim
n,m→∞

d(xn, xm) = lim
n,m→∞

d(xm, xn) = 0.

Definition 7. [1] A quasi αb-metric space is called complete if every Cauchy sequence converges to an element
in the same metric space.

Definition 8. [12] Let X be a nonempty set and T : X → X a self-map. We say that x is a fixed point of T if
Tx = x.

Definition 9. [13] An element (x, y) ∈ X × X , where X is any non-empty set, is called a coupled fixed point
of the mapping F : X× X → X if F(x, y) = x and F(y, x) = y.

Definition 10. [14]. Let (X, d) be a quasi αb-metric space and A and B be two non-empty subsets of X. Then a
function F : X × X → X is said to be a coupling with respect to A and B if F(x, y) ∈ B and F(y, x) ∈ A where
x ∈ A and y ∈ B.

Definition 11. [15]. Let A and B be any two non-empty subsets of a quasi αb-metric space (X, d) and
T : X → X be a self-map on X. Then T is said to be SCC-Map with respect to A and B), if

(a) T(A) ⊆ A and T(B) ⊆ B,
(b) T(A) and T(B) are closed in X.

Definition 12. [16] An element (x, y) ∈ X × X is called a coupled coincidence point of the mappings F :
X × X → X and g : X → X if F(x, y) = g(x) and F(y, x) = g(y), and (gx, gy) is called coupled point of
coincidence.
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Definition 13. [16] An element (x, y) ∈ X × X, where X is any non-empty set, is called a coupled common
fixed point of the mappings F : X× X → X and and g : X → X if F(x, y) = g(x) = x and F(y, x) = g(y) = y.

Definition 14. [16] The mappings F : X×X → X and g : X → X are called weakly Compatible if g(F(x, y)) =
F(gx, gy) and g(F(y, x)) = F(gy, gx) whenever gx = F(x, y) and gy = F(y, x).

Definition 15. A function ω : [0, ∞)→ [0, ∞) is called an altering distance function, if the following properties
are satisfied:

(a) ω is monotonically non-deceasing and continuous.
(b) ω(t) = 0 if and only if t = 0.

Theorem 1. [1] Let (X, d) be a complete quasi αb-metric space with 0 ≤ α < 1 and b ≥ 1. Let F : X → X be a self-map
satisfying the following condition:

d(Fx, Fy) ≤ min
{

d(x, Fx), d(Fy, y)
}
− k ·ω

(
max

{
d(x, Fx), d(Fy, y)

})
for all x, y ∈ X and k > 0, ω : [0, ∞) → [0, ∞) is a continuous function and ω(t) = 0 iff t = 0. Then F has a unique
fixed point in X.

3. Main results

At this stage, we state our theorem and come up with the main findings.

Theorem 2. Let A and B be any two non-empty closed subsets of a complete quasi αb-metric space (X, d) with 0 ≤ α < 1
, b ≥ 1 , and k > 0. Let T : X → X is SCC- Map on X (with respect to A and B) and F : X × X → X be a T-coupling
(with respect to A and B) if there exists an altering distance function ω such that

d[F(x, y), F(u, v)] ≤ min
{

d(Tx, F(x, y)), d(F(v, u), Tv)
}
− k ·ω

(
max

{
d(Tx, F(x, y)), d(F(v, u), Tv)

})
(1)

for any x, v ∈ A and y, u ∈ B, then

(i) F(X× X) ⊆ T(X)
(ii) T(A) ∩ T(B) 6= ∅

(iii) T and F have a coupled coincidence point in A× B.
(iv) If T and F are weakly compatible, then T and F have a unique coupled common fixed point in A× B.

Proof. Since A and B are non-empty subsets of X and T is a type-T coupling with respect to A and B, then for
x0 ∈ A and y0 ∈ B, we define the sequences {xn} and {yn} in A and B respectively such that

Tx1 = F(x0, y0) and Ty1 = F(y0, x0).

This can be done because F(X × X) ⊆ T(X). Continuing this process, we can construct two sequences {xn}
and {yn} in X such that

Txn+1 = F(xn, yn) and Tyn+1 = F(yn, xn) (2)

and then, we have d(Txn, Txn+1) = d
[
F(xn−1, yn−1), F(xn, yn)

]
. Using equations (1) and (2), we have

d(Txn, Txn+1) = d[F(xn−1, yn−1), F(xn, yn)]

≤ min
{

d(Txn−1, F(xn−1, yn−1)), d(F(yn, xn), Tyn)
}

− k·w
(

max
{

d(Txn−1, F(xn−1, yn−1)), d(F(yn, xn), Tyn)
})

≤ min
{

d(Txn−1, T(xn−1, yn−1)), d(F(yn, xn), Tyn)
}

≤ d(Txn−1, Fxn).

(3)

Thus, we have a non-negative and non-increasing sequence {Txn}. Therefore, there exists L ≥ 0 such that
lim

n→∞
d(Txn, Txn+1) = L. Since ω is continuous on [0, ∞) and using (3) and for n→ ∞, we get L ≤ L− K·ω(L).
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It follows that, ω(L) = 0 which in turn implies that L = 0 since ω is an altering distance function. Similarly,
we can obtain that lim

n→∞
d(Tyn, Tyn+1) = 0.

Now, we show that {Txn} and {Tyn} are Cauchy sequences in T(X). Let m > n ≥ 1 and using Equations
(1) and (2), we have

d(Txn, Txm) = d[F(xn−1, yn−1), F(xm−1, ym−1)]

≤ min
{

d(Txn−1, F(xn−1, yn−1)), d(F(ym−1, xm−1), Tym−1)
}

− k·w
(

max
{

d(Txn−1, F(xn−1, yn−1)), d(F(ym−1, xm−1), Tym−1)
})

≤ min
{

d(Txn−1, Txn), d(Txm, Tym−1)
}

≤ d(Txn−1, Txn).

(4)

Similarly, we can show that
d(Txm, Txn) ≤ d(Txm−1, Txm). (5)

Taking Equations (4) and (5) as n, m → ∞, we get d(Txn, Txm) → 0 and d(Txm, Txn) → 0. Following the
same procedure as above, we can show that d(Tyn, Tym) → 0 and d(Tym, Tyn) → 0. Hence {Txn} and {Tyn}
are Cauchy sequences in T(A) and T(B) respectively. Since T(A) and T(B) are closed subset of a complete
quasi αb-metric space X, we conclude that {Txn} and {Tyn} are convergent in T(A) and T(B) respectively.
Thus, there exist r ∈ T(A) and s ∈ T(B) such that

Txn → r and Tyn → s as n→ ∞. (6)

Using Equations (1) and (2), we have

d(Txn, Tyn) = d[F(xn−1, yn−1), F(yn−1, xn−1)]

≤ min
{

d(Txn−1, F(xn−1, yn−1)), d(F(xn−1, yn−1), Txn−1)
}

− k·w
(

max
{

d(Txn−1, F(xn−1, yn−1)), d(F(xn−1, yn−1), Txn−1)
})

≤ min
{

d(Txn−1, F(xn−1, yn−1)), d(F(xn−1, yn−1), Txn−1)
}

≤ d(Txn−1, Txn).

(7)

Similarly, we can show that
d(Tyn, Txn) ≤ d(Tyn−1, Tyn). (8)

Taking Equations (7) and (8) as n, m→ ∞, we get

d(Txn, Tyn)→ 0 and d(Tyn, Txn)→ 0. (9)

Therefore, from (6) and (9), we have
s = r. (10)

As r ∈ T(A) and s ∈ T(B) ⇒ s = r ∈ T(A) ∩ T(B). This proves Part (i), i.e., T(A) ∩ T(B) 6= ∅. Now,
since r ∈ T(A) and s ∈ T(B), there exist x ∈ A and y ∈ B such that r = T(x) and s = T(y). From Equations
(6) and (10) we have

Txn → T(x), Tyn → T(y) (11)

T(x) = T(y). (12)

Using Definition 2, we have

d
(
r, F(x, y)

)
≤ αd(F(x, y), r) +

1
2

b
[
d(r, Txn) + d

(
Txn, F(x, y)

)]
, (13)

and
d
(

F(x, y), r
)
≤ αd(r, F(x, y)) +

1
2

b
[
d(Txn, r) + d

(
F(x, y), Txn

)]
. (14)
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Applying (1) and (2) in (13) and (14) and taking their limits as n→ ∞, we get

d
(
r, F(x, y)

)
≤ αd

(
F(x, y), r

)
, (15)

and
d
(

F(x, y), r
)
≤ αd

(
r, F(x, y)

)
. (16)

Substituting (16) into (15), we get

(1− α2)d
(
r, F(x, y)

)
≤ 0. (17)

This is only possible if d
(
r, F(x, y)

)
= 0 since 0 ≤ α < 1. Similarly, we can show that d

(
F(x, y), r

)
= 0.

Hence F(x, y) = r. Moreover, we can show that F(y, x) = s. Hence, (Tx, Ty) is coupled point of coincedence of
T and F. Now, we claim that (Tx, Ty) is the unique coupled point of coincidence of T and F. Suppose not. So,
we have another coupled point of coincedence say (Tx∗, Ty∗) where (x∗, y∗) ∈ X2 with Tx∗ = F(x∗, y∗) and
Ty∗ = F(y∗, x∗). Using Equations (1) and (2), we have

d(Tx, Tx) = d[F(x, y), F(x, y)]

≤ min
{

d(Tx, F(x, y)), d(F(y, x), gy)
}
− k·w

(
max

{
d(Tx, F(x, y)), d(F(y, x), Ty)

})
= min

{
d(Tx, Tx), d(Ty, Ty)

}
− k·w

(
max

{
d(Tx, Tx), d(Ty, Ty)

})
≤ min

{
d(Tx, Tx), d(Ty, Ty)

}
− k·w

(
max

{
d(Tx, Tx), d(Ty, Ty)

})
.

(18)

From (18), it follows that d(Tx, Tx) ≤ d(Tx, Tx)− k·w
(

max
{

d(Tx, Tx), d(Ty, Ty)
})

. Hence d(Tx, Tx) =

0 and d(Ty, Ty) = 0. Now, let us consider d(Tx, Tx∗). Using Equations (1) and (2), we have

d(Tx, Tx∗) = d[F(x, y), F(x∗, y∗)]

≤ min
{

d(Tx, F(x, y)), d(F(y∗, x∗), Ty∗)
}
− k·w

(
max

{
d(Tx, F(x, y)), d(F(y∗, x∗), ty∗)

})
= min

{
d(Tx, Tx), d(Ty∗, Ty∗)

}
− k·w

(
max

{
d(Tx, Tx), d(Ty∗, Ty∗)

})
.

(19)

From (19), it follows that d(Tx, Tx∗) ≤ 0. Hence d(Tx, Tx∗) = 0. Again, using Equations (1) and (2), we
have

d(Tx∗, Tx) = d[F(x∗, y∗), F(x, y)]

≤ min
{

d(Tx∗, F(x∗, y∗)), d(F(y, x), Ty)
}
− k·w

(
max

{
d(Tx∗, F(x∗, y∗)), d(F(y, x), Ty)

})
= min

{
d(Tx∗, Tx∗), d(Ty, Ty)

}
− k·w

(
max

{
d(Tx∗, Tx∗), d(Ty, Ty)

})
.

(20)

From (20), it follows that d(Tx∗, Tx) ≤ 0. Hence d(Tx∗, Tx) = 0. From Equations (19) and (20), we
deduce that Tx = Tx∗. Similarly, we can show that Ty = Ty∗. Therefore, we have a unique coupled point
of coincidence.
Now, we show that T and F have coupled common fixed point. In order to do that, we consider d

(
Tx, F(x, x)

)
.

Using (1), we have

d(Tx, F(x, x)) = d[F(x, y), F(x, x)]

≤ min
{

d(Tx, F(x, y)), d(F(x, x), Tx)
}
− k·w

(
max

{
d(Tx, F(x, y)), d(F(x, x), Tx)

})
= min

{
d(Tx, Tx), d(F(x, x), Tx)

}
− k·w

(
max

{
d(Tx, Tx), d(F(x, x), Tx)

})
≤ min

{
0, d(F(x, x), Tx)

}
− k·w

(
max

{
0, d(F(x, x), Tx)

})
.

(21)

From (21), it follows that
d(Tx, F(x, x)) ≤ − k·w

(
d(F(x, x), Tx)

)
. (22)
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From (22), we can deduce that d
(

F(x, x), Tx
)
= 0 and d

(
Tx, F(x, x)

)
= 0. Hence Tx = F(x, x). Now, let

Tx = u, then we have that u = Tx = F(x, x). Since T and F are weakly compatible, we have Tu = T(Tx) =
T(F(x, x)) = F(Tx, Tx) = F(u, u). Hence (Tu, Tu) is a coupled point of coincidence and (u, u) is a coupled
coincidence point of T and F. The uniqueness of coupled point of coincidence implies that Tu = u = Tx.
Therefore F(u, u) = Tu = u.That is (u, u) is the coupled common fixed point of T and F. Finally, we show
the uniqueness of a coupled common fixed point of T and F. let (u∗, u∗) ∈ X2 be another coupled common
fixed point of F and T. That is, u∗ = Tu∗ = F(u∗, u∗). Hence (Tu, Tu) and (Tu∗, Tu∗) are two coupled points
of coincidence of T and F. The uniqueness of coupled point of coincidence implies that Tu = Tu∗ and so
F(u∗, u∗) = u∗ = u. Hence (u, u) is the unique coupled common fixed point of T and F.

Remark 1. If we take T = I (the identity map) and change the mapping F : X × X → X to F : X → X , then
Theorem 2 will reduce to Theorem 1 of Nurwahyu and Aris [1].

Example 1. Let X = [0, 5] which is defined by d(x, y) = |x − y| and A = {1} and B = {1, 2}. Then A and B
are closed subsets of X. We define F : X × X → X by F(x, y) = min{x, y}, for all x, y ∈ X. Let T : X → X be
defined by

T(x) =

{
1 if 0 ≤ x < 2,

2 if 2 ≤ x ≤ 5.

Also, we define ω : [0, ∞) → [0, ∞) by ω(t) = t2. Then, clearly ω is altering distances function. T(A) =

{1} and T(B) = {1, 2}. So, T(A) and T(B) are closed subsets of a complete quasi αb-metric space X = [0, 5].
Hence T : X → X is a SCC-Map. Now, we show that T is F-coupling with respect to A and B as T(A)∩ B = {1}
and T(B) ∩ A = {1}. So, for all x ∈ A and y ∈ B, we have F(x, y) = 1 ∈ B and F(y, x) = 1 ∈ A, i.e.,
F(x, y) ∈ T(A) ∩ B and F(y, x) ∈ T(B) ∩ A which show that F is a T-coupling with respect to A and B. Now,
it remains to prove that F is a contractive T-coupling w.r.t. A and B. Let x, v ∈ A and y, u ∈ B i.e., x = 1 and
y = 1, 2. Four cases will arise for y and u.

Case (i): x = v = 1 and y = u = 1.
Case (ii): x = v = 1 and y = 1, u = 2.
Case (iii): x = v = 1 and y = 2, u = 1.
Case (iv): x = v = 1 and y = u = 2.
For Case (i), i.e., x = v = 1 and y = u = 1, we have F(x, y) = F(u, v) = F(v, u) = F(1, 1) = 1,

T(x) = T(v) = T(1) = 1, d(1, 1) = 0, and

d[F(x, y), F(u, v)] ≤ min
{

d(Tx, F(x, y)), d(F(v, u), Tv)
}
− k ·ω

(
max

{
d(Tx, F(x, y)), d(F(v, u), Tv)

})
,

d(0) ≤ 0− k ·ω(0),

0 ≤ 0,

which proves Case (i).
In a similar fashion, we can show for the other three cases. Hence, T and F satisfy all the conditions of

Theorem 2. Thus T and F have a strong coupled fixed points in A ∩ B. Clearly T(A) ∩ T(B) = {1} 6= ∅. 1 is
the unique strong coupled coincidence point and (1, 1) is the unique coupled common fixed point of T and g
in A ∩ B as T(1) = F(1, 1) = min{1, 1} = 1.

4. Conclusion

In this paper, we have established a theorem involving a pair of mappings satisfying a weakly contraction
type T-coupling in the context of quasi αb-metric space and then prove the existence and uniqueness of coupled
coincidence and coupled common fixed points. The concept of weakly compatibility of the pair of maps is
applied to show the uniqueness of coupled common fixed point. We also provide an example in support of
our main result. Our work extended the published work of Nurwahyu and Aris [1].
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