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1. Introduction

W e consider the following extensible beam equation with localized non-linear damping and linear
memory on a bounded domain:

utt + ∆2u− k(0)(1 +
∫

Ω
|∇u|2dx)∆u−

∫ ∞

0
k′(s)∆u(t− s)ds + a(x)g(ut) + f (u) = q(x, t) + κ

m

∑
j=1

hjẆj(t),

u =
∂u
∂Γ

= 0, x ∈ ∂Γ, t ∈ R,

u(τ, x) = u0(τ, x), ut(τ, x) = u1(τ, x), x ∈ Γ, τ ∈ R,
(1)

where Γ is a bounded domain of Rn, k(0), k(∞) > 0 and k′(s) ≤ 0 for every s ∈ R+, ε is a positive
constant. The given function g(x, t) ∈ Ł2

loc(R, L2(Γ)) is a external force depending on t, hj ∈ H2(Γ) and W(t)
is an independent two sided real-valued Wiener processes on probability space. The function a(x) satisfies

a(x) ∈ L∞(Γ), a(x) ≥ α0 > 0, in Γ (2)

where α0 is constant. The function f ∈ C1(R) satisfies

(A1) : | f ′(s)| ≤ C1(1 + |s|γ−1) , ∀ s ∈ R,

(A2) : lim inf|s|→∞
| f (s)|

s > −λ1,

(A3) : F(s) =
∫ s

0 f (r)dr ≥ C2(|s|γ+1 − 1),

(A4) : s f (s) ≥ C3(F(s)− 1),

(A5) : C2(|s|γ+1 − 1) ≤ F(s) ≤ 1
C3
(s f (s) + C3),

(3)

where Ci are positive constants (i = 1, 2, 3, 4), 1 ≤ γ ≤ n+2
n−2 , n ≥ 3 and λ1 is the best constant in the

Poincáre-type inequality

λ1

∫
Ω
|u|2dx ≤

∫
Ω
|∇u|2dx.
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The damping function g satisfies |g′(s)| ≥ 0, g(s) strictly increasing, and

|h(0)| = 0, 0 < α1 ≤ |h′(s)| ≤ α2 < ∞. (4)

As like to [1,2], we define a new variable

η(x, t, s) = u(x, t)− u(x, t− s), ηt =
∂

∂t
η , ηs =

∂

∂s
η. (5)

Let µ(s) = k′(s). Equation (1) transforms into the following system:

utt + ∆2u− (1 + k(0)
∫

Ω
|∇u|2dx)∆u−

∫ ∞

0
µ(s)∆η(s)ds + a(x)g(ut) + f (u) = q(x, t) + κ

m

∑
j=1

hjẆj;

ηt = −ηs + ut,

u(t, x) = 0, x ∈ ∂Γ, t > 0;

η(x, t, s) = 0, x ∈ ∂Γ, t > 0, s ∈ R+;

u(τ, x) = u0(x), ut(τ, x) = u1(x), x ∈ Γ;

η(x, τ, s) = η0(x, s) = u0(x)− u0(x,−s), x ∈ Γ, s ∈ R+.

(6)

The following hypotheses are necessary to obtain our main results, infer to [3–5].

(a) The memory kernel µ is required to satisfy the following hypotheses hold:
(H1) : µ ∈ C1(R+) ∩L1(R+),

(H2) : µ(s) ≥ 0, µ′(s) ≤ 0 , ∀s ∈ R+,

(H3) : µ′(s) + k1µ(s) ≤ 0 , ∀s ∈ R+and σ > 0,

(H4) : m0 :=
∫ ∞

0 µ(s)ds < ∞.

. (7)

(b) We need the following condition on q(x, t) ∈ Ł2
loc(R, L2(Γ)), there exists a positive constant σ satisfy that

(Q1) :
∫ τ
−∞ eσr‖q(·, r)‖2dr < ∞, ∀ r ∈ R,

(Q2) : ‖q(x, t)‖2 = supr∈R
∫
‖q(., r‖2ds < ∞ ∀ r ∈ R,

(Q3) : limk→∞
∫ τ
−∞

∫
|x|≥k eσr|g(x, r)|2dxdr = 0, ∀τ ∈ R.

(8)

The basic concepts and notions of random attractors for the infinite dimensional was recently presented
by in [6–9]. A random attractor of RDS is a measurable and compact invariant random set attracting all orbits.
whilst such an attracting set exists, it is the smallest attracting compact set and the largest invariant set. In
recent years, a random attractor for autonomous and non-autonomous stochastic dynamical systems have
been studied by many authors, see for example [10–16] and the references therein.

In the deterministic case; that is, κ = 0 in (1), the asymptotic behavior of the solution for global attractors
an extensible beam equation with localized nonlinear damping with memory has been studied in [5,17–19].

In [20], for the case of µ = 0 in (1), the authors investigated the existence of random attractor for the
stochastic an extensible beam equation with localized nonlinear damping without memory. But, there were no
results even for the bounded case. While it is far just our interest in this paper. To the best of our knowledge,
the dynamics of system (1) involving but essential difficulties in showing compactness by using the uniform
estimates on the tails of solution. Motivated by a similar technique of [16].

The rest of the paper is organized as follows. In Section 2, we recall some basic concepts and properties
for general random dynamical systems. In Section 3, we first provide some basic settings about (1) and show
that it generates a random dynamical system in proper function space. In Section 4, we prove the existence of
a unique random attractor of the random dynamical system by bounded absorbing set and using a compact
measurable pullback attracting set.



Open J. Math. Sci. 2020, 4, 400-416 402

2. Preliminaries

In this section, we recall some basic concepts related to random attractors for stochastic dynamical
systems. The readers are referred to [6–8] for more details. Which are crucial for getting our main results.
Let (Ω,F , P) be a probability space and (X, d) be a Polish space with the Borel σ-algebra B(X). The distance
between x ∈ X and B⊆ X is denoted by d(x, B). If B⊆ X and C⊆ X, the Hausdorff semi-distance from B to C
is denoted by way of d(B, C) = supx∈B d(x, C).

Definition 1. (Ω,F , P, (θt)t∈R) is called a metric dynamical system if θ : R × Ω −→ Ω is (B(R) ×
F ,F )-measurable, θ0 is the identity on Ω, θs+t = θt ◦ θs for all s,t ∈ R and θ0P = P for all t∈ R.

Definition 2. A mapping Φ(t, τ , ω, x) : R+ ×R×Ω× X → X is called continuous cocycle on X over R and
(Ω,F , P, (θt)t∈R), if for all τ ∈ R , ω ∈ Ω and t, s ∈ R+, the following conditions are satisfied:

i) Φ(t, τ, ω, x) : R+ ×R×Ω× X → X is a (B(R+)×F ,B(R)) measurable mapping,
ii) Φ(0, τ, ω, x) is identity on X,

iii) Φ(t + s, τ, ω, x) = Φ(t, τ + s, θsω, , x) ◦Φ(s, τ, ω, , x),
iv) Φ(t, τ, ω, x) : X → X is continuous.

Definition 3. Let 2X be the collection of all subsets of X, a set valued mapping (τ, ω) 7→ D(t ω) : R×Ω 7→ 2X

is called measurable with respect to F in Ω if D(t ω) is a (usually closed) nonempty subset of X and the
mapping ω ∈ Ω 7→ d(X, B(τ, ω)) is (F ,B(R))-measurable for every fixed x ∈ X and τ ∈ R. Let B =

B(t, ω) ∈ D(t, ω) : τ ∈ R, ω ∈ Ω is called a random set.

Definition 4. A random bounded set B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D of X is called tempered with respect
to {θ(t)}t∈Ω, if for p-a.e ω ∈ Ω ,

lim
t 7→∞

e−βt d(B(θ−tω)) = 0 , ∀ β > 0 ,

where d(B) = supx∈B ‖x‖X .

Definition 5. Let D be a collection of random subset of X and K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, then K is
called an absorbing set of Φ ∈ D if for all τ ∈ R, ω ∈ Ω and B ∈ D, there exists, T = T(τ, ω, B) > 0 such that

Φ(t , τ, θ−tω, B(τ, θ−tω)) ⊆ K(τ, ω) , ∀ t ≥ T.

Definition 6. Let D be a collection of random subset of X, the Φ is said to be D-pullback asymptotically
compact in X if for p-a.e ω ∈ Ω , {Φ(tn , θ−tn ω , xn)}∞

n=1 has a convergent subsequence in X when tn 7→ ∞ and
xn ∈ B(θ−tn ω) with {B(ω)}ω∈Ω ∈ D.

Definition 7. Let D be a collection of random subset of X and A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, then A
is called a D-random attractor (or D-pullback attractor) for Φ, if the following conditions are satisfied for all
t ∈ R+, τ ∈ R and ω ∈ Ω

i) A(τ, ω) is compact, and ω 7→ d(x,A(ω)) is measurable for every x ∈ X,
ii) A(τ, ω) is invariant, that is Φ(t, τ, ω,A(τ, ω)) = A(τ + t, θtω), ∀ t ≥ τ,

iii) A(τ, ω) attracts every set in D, that is for every B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D,
limt 7→∞ dX(Φ(t, τ, θ−tω, B(τ, θ−tω)),A(τ, ω)) = 0, where dX is the Hausdorff semi-distance given by
dX(Y, Z) = supy∈Y infz∈Z ‖y− z‖X for any Y ∈ X and Z ∈ X.

Lemma 1. Let D be a neighborhood-closed collection of (τ, ω)-parameterized families of nonempty subsets of X and Φ
be a continuous cocycle on X over R and (Ω,z, P, (θt)t∈R). Then Φ has a pullback D-attractor A in D if and only if
Φ is pullback D-asymptotically compact in X and Φ has a closed, z-measurable pullback D-absorbing set K ∈ D, the
unique pullback D-attractor A = A(τ , ω) is given

A(τ, ω) =
⋂

r≥0

⋃
t≥r

Φ(t, τ − t, θ−tω, K(τ − t, θ−tω)) τ ∈ R , ω ∈ Ω.
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3. Existence and uniqueness of solution

In this Section, first, we collect some important results that will help to achieve our goal. Let A =

∆2, A
1
2 = −∆ and D(A) = {u ∈ H4 : ∆ ∈ H1

0 . We can define the powers Aν is Hilbert space and a norm
hold D(A

ν
4 ) = Vν = ‖A

ν
4 u‖2, ν ∈ R. Especially, V0 ↪→ L2 and V1 ↪→ H2 ∩ H1

0 . We denote that the injection
Vν1 ↪→ Vν2 is compact embeddings, if ν1 > ν2 in conjunction with the generalized Poincaré inequality;

‖u‖4
ν+1 ≥ λ1‖u‖4

ν,

where λ1 is the first eigenvalue of A. Additionally we outline the subsequent
(u, v) =

∫
Γ uvdx = ‖u‖‖v‖,

(u, u) = ‖u‖2,

((u, v)) =
∫

Γ4u4vdx = ‖4u‖‖4v‖,
((u, u)) =

∫
Γ4u4udx = ‖4u‖2.

(9)

Much like [18], for the memory kernel hypotheses µ(·), we suppose L2
µ(R+; Vν) the Hilbert space of

function η : R+ −→ Vν endowed with the inner product and norm respectively,
(u, v)µ,ν =

∫ ∞
0 µ(s)(A

ν
4 u(s), A

ν
4 v(s))ds,

(η1, η2)µ,ν =
∫ ∞

0 µ(s)(A
ν
4 η1(s), A

ν
4 η2(s))ds,

‖η‖2
µ,ν = (A

ν
4 η, A

ν
4 η)µ =

∫ ∞
0 µ(s)‖η‖2

νds,

(10)

specially, ‖u‖2
µ,ν = ‖u‖2

µ,1. Let, we define the product Hilbert space E = V0 ×V1 × L2
µ(R+; V1).

To convert the version of Problem (6) with a random perturbation term right into a deterministic one
with a random parameter ω, we introduce an Ornstein-Uhlenbeck process driven by means of the Brownian
motion, which satisfies the subsequent differential equation

dzj + δzjdt = dWj(t), (11)

Its unique stationary solution is given by

zj(θtωj) = −δ
∫ 0

−∞
eδs(θtωj)(s)ds, s ∈ R, t ∈ R, ωj ∈ Ω. (12)

From [6,16], it is recognized that the random variable |zj(ωj)| is tempered and there is an invariant set
Ω̄ ⊆ Ω of full P measure such that zj(θtωj) = zj(t, ωj) is continuous in t, for each ω ∈ Ω̄. For comfort, we shall
write Ω̄ as Ω. It follows from Proposition 3.4 in [16], that for any ε > 0, there exists a tempered characteristic
g(ω) > 0 such that

m

∑
j=1

(|zj(ωj)|2 + |zj(ωj)|γ+2) ≤ g(ω), (13)

where g(ω) satisfies for, p-a.e. ω ∈ Ω,

g (θtω) ≤ eε|t| g (ω), t ∈ R. (14)

Then, it follows from the above inequality, for p-a.e. ω ∈ Ω,

m

∑
j=1

(|zj(θtωj)|2 + |zj(θtωj)|γ+2) ≤ eε|t| g (ω), t ∈ R. (15)

Put κh(x)z(θtω) = κ ∑m
j=1 hjzj(θtωj), which solves dz + δzdt = ∑m

j=1 hjẆj(t).
Let v(t, τ, x, ω) = ut + εu− κh(x)z(θtω), we handy to reduce (6) to an evolution equation of the first-order

in time random partial differential equation (RPDE):
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

ut = v− εu + κh(x)z(θtω),

vt − εv + ε2u + Au +
∫ ∞

0
µ(s)A

1
2 η(s)ds = (1 + k(0)

∫
Ω
|∇u|2dx)A

1
2 u− a(x)g(ut)− f (u) + g(x, t) + εκh(x)z(θtω),

ηt + ηs = −εu + v + κh(x)z(θtω),

u(x, τ) = u0(x), ut(τ, x) = u1(x), x ∈ Γ,

v(x, τ) = v0(x) = u1(x) + εu0(x)− κh(x)z(θtω),

η(x, τ, s) = η0 = u0(x)− u0(x,−s), x ∈ Γ, s ∈ R+.
(16)

Consequently the stochastic system for the system (16) becomes{
ψ′ + H(ψ) = Q(ψ, t, ω)

ψ(τ, ω) = (u0(x), u1(x) + εu0(x)− κh(x)z(θtω), η0)
> , ψ = (u, v, η)>,

(17)

in which ψ =

 u
v
η

 , H(ψ) =

 εu− v
−εv + ε2u + Au +

∫ ∞
0 µ(s)A

1
2 η(s)ds

εu− v + ηs

 and Q(ψ, ω, t) =

 κh(x)z(θtω)

(1 + k(0)
∫

Ω |∇u|2dx)4u− a(x)g(ut)− f (u) + g(x, t) + εκh(x)z(θtω)

κh(x)z(θtω)

 . By [21], we have the fact that H

is the infinitesimal generators of C0-semigroup eHt on E(Γ). It is not difficult to check that the function
Q(ψ, ω, t) : E→ E is locally Lipschitz continuous with respect to ψ and bounded for each ω ∈ Ω.

In order to obtain the random attractor of the Problem (17) has a unique solution in the mild sense, by the
classical semigroup theory of existence and uniqueness of solutions of evolution differential equations [21], we
get the following result.

Theorem 1. Let (2)-(5) and (7)-(8) hold. Then, for every τ ∈ R, ω ∈ Ω and χτ ∈ E(Γ), the Problem (17) has a unique
solution χ(t, τ, ω, χτ) which is continuous with respect to (u0, v0, η0)

> ∈ E(Γ) such that χτ and χ(t, τ, ω, χτ) satisfies
the integral equation

χ(t, τ, ω, χτ) = e−H(t)χτ(ω) +
∫ t

0
e−H(t−r)Q(χ, r, ω)dr. (18)

Moreover, χ(t, τ, ω, χτ) is continuous in χτ and measurable in ω.

Theorem 2. Let (2)-(4) and (7)-(8) hold. Then, for any τ ∈ R, ω ∈ Ω and χτ ∈ E(Γ), such that χ(t, τ, ω, χτ) ∈
E(Γ) is a solution of the Problem (17) satisfy the properties of continuous random dynamical system over R and
(Ω,F , P, (θt)t∈R). We can show that for P-a.s. every ω ∈ Ω, for all T > 0

(1) if χτ(ω) ∈ E, then χ(T, ω, χτ) = χ(T, ω, χτ) ∈ C([t, t + T); E),
(2) χ(t, τ, ω, χτ) is jointly continuous into t and measurable in χτ(ω),
(3) the solution mapping of (18) holds the properties of continuous cocycle.

From the Theorem 1, we can define a continuous random dynamical system over R and (Ω,F , P, (θt)t∈R),
that is, Φ(t, τ, ω, χτ) : R×R+ ×Ω× E 7→ E, t ≥ τ, such that

Φ(t, τ, θ−τω, χτ(θ−τω)) = χ(t, τ, θ−τω, χτ(θ−τω)),

= (u(t, τ, θ−τω, χτ(θ−τω)), v(t, τ, θ−τω, χ tau(θ−τω)), η(t, τ, θ−τω, χτ(θ−τω), s))>,

Φ(0, τ, θ−τω, χτ(θ−τω)) = χ(τ, τ, θ−τω, χτ(θ−τω)),

= (u(τ, τ, θ−τω, χτ(θ−τω)), v(τ, τ, θ−τω, χτ(θ−τω)), η(τ, τ, θτω, χτ(θτω), s))>,

Φ(τ, τ − t, θ−tω, χτ(θ−τω)) = χ(τ, τ − t, θ−τω, χτ(θ−τω)).
(19)

It generates a random dynamical system. Moreover

Φ̂(τ, τ, θ−τω, χτ(θ−τω) : χ(τ, τ, θ−τω, χτ(θ−τω) + (0, κh(x)z(θτω), 0)> 7→ ϕ(t, ω) + (0, κh(x)z(θτω), 0)>.
(20)
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To show the conjugation of the solution for the stochastic partial differential Equation (17) and the
random partial differential Equation (19), introducing the homeomorphism P(θtω)(y, w, ζ(s))> = (y, w −
εy + κh(x)z(θtω), ζ(s))> , (y, w, ζ(s))> ∈ E(Γ) with an inverse homeomorphism P−1(θtω)(y, w, ζ(s))> =

(y, w + εy− κz(θtω), ζ(s))>, then we have the transformation

Φ̂(τ, t, ω) = P(θtω)Φ(t, ω)P−1(θtω), E 7→ E, t ≥ τ. (21)

Consider the equivalent RDS and introduce the isomorphism and has the inverse isomorphism:
Φ̌(τ, t, ω) = TεΦ̂(t, ω)T−ε : χτ 7→ ϕ(t + τ, τ, θ−τω, χτ(θ−τω)),

ϕ′ + H(ϕ) = Q̄(ϕ, t, ω),

ϕ(τ, ω) = ϕτ = (u0(x), y1(x)− εy0(x), η0)
>,

(22)

where
ϕ = (y, w, η)> = (y, yt + εy, η)>,

Tε ϕ = (y, w, η)> = (y, w + εy, η)>,

T−ε ϕ = (y, w, η)> = (y, w− εy, η)>,

H(ϕ) =

 εy− w
−εw + ε2y + Ay +

∫ ∞
0 µ(s)A

1
2 η(s)ds

εy− w + ηs

 ,

and

Q̄(ϕ, ω, t) =

 0
(1 + k(0)

∫
Ω |∇y|2dx)4y− a(x)g(yt)− f (y) + g(x, t) + κh(x)z(θtω)

0


is also a random dynamical systems corresponding to the Equation (17). Therefore, Φ, Φ̂ and Φ̌ are equivalent
to each other in dynamics.

4. Random absorbing set

In this section, we will show boundedness of the solutions for Equation (17). The existence of a pullback
absorbing set Φ ∈ D and the asymptotic compactness of the random dynamical system associated with the
Equation (17). We always assume that D is the collection of all tempered subsets of E(Γ) from now on.

Lemma 2. Let (2)-(4) and (7)-(8) hold. Then, for any τ ∈ R, ω ∈ Ω and χτ−t ∈ E(Γ), there exists a random ball
{K(ω)}ω∈Ω ∈ D centered at 0 with random radius M(ω) ≥ 0 such that {K(ω)} is a random absorbing set for Φ in
D, that is, for any B={B(ω)}ω∈Ω ∈ D, P-almost surely, there exists a T = T(τ, ω, B) > 0 and χτ−t(ω) ∈ B(ω) such
that

‖χ (r, τ − t, θ−τω, χτ−t)‖2
E ≤ M2

0(ω), (23)

where M0(ω) is a positive random function, that is

Φ(t, τ, θ−tω, B(τ, θ−tω)) ⊆ K(τ, ω) f or all t ≥ T. (24)

Proof. Taking the inner product of the first term of (23) with χ = (u, v, η) ∈ E, v = du
dt + εu− κh(x)z(θtω),

we find that (
χ′, χ

)
+ (H(χ), χ) = (F(t, x, χ), χ) . (25)

Using Hölder, Young and Poincarè inequalities and after simple computation, we gain

(H(χ), χ) =

 εu− v
−εv + ε2u + Au +

∫ ∞
0 µ(s)A

1
2 η(s)ds

εu− v + ηs


 u

v
η


= ε‖∆u‖2 + ε2(u, v)− ε‖v‖2 + (εu + ηs, η)
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= ε‖∆u‖2 + ε2(u, v)− ε‖v‖2 − δ

4
‖∇η‖2

µ −
m0ε2

2λ
‖∆u‖2 +

δ

2
‖∇η‖2

µ

= ε‖∆u‖2 + ε2(u, v)− ε‖v‖2 − m0ε2

2
‖∇u‖2 +

δ

4
‖∇η‖2

µ. (26)

Using Cauchy-Schwartz inequality and Young inequality, we obtain

(F(t, x, χ), χ) =

 kh(x)z(θtω)

(1 + k(0)
∫

Ω |∇y|2dx)A
1
2 u− a(x)g(ut)− f (u) + g(x, t) + κh(x)z(θtω)

kh(x)z(θtω)


 u

v
η

 . (27)

From (3)(A2),(A4)
, we obtain

−
(

1 + k(0)‖∇u‖2)4u, v
)
= −

((
1 + k(0)‖∇u‖2

)
∇,∇(du

dt
+ εu− ah(x)z(θtω)

)
≤ −

(
1 + k(0)‖∇u‖2

)(1
2

d
dt
‖∇u‖2 +

ε

2
‖∇u‖2

)
+

κ2

2ε
‖∇h(x))‖2|z(θtω)|2, (28)

and from (2) and (4), it is easy to show that

(a(x)g(ut), v) = (α0g(ϑ) (v− εu + κh(x)z(θtω)− g(0)) , v)

≤ α0α1‖v‖2 + α0
(
−α2εu + g′(ϑ)κh(x)z(θtω, v

)
, (29)

where ϑ is between 0 and v− εu + κh(x)z(θtω).

(q(x, t), v) = ‖q(x, t)‖‖v‖ ≤ ‖q(x, t)‖2

2(α0α1 − ε)
+

α0α1 − ε

2
‖v‖2, (30)

((kh(x)z(θtω), u)) ≤ ‖∆u‖ ‖∆h(x)‖ |z(θtω)| ≤ ε

4
‖4u‖2 +

k2

ε
‖∆h(x)‖2 |z(θtω)|2 , (31)

(kh(x)z(θtω), η)µ ≤
m0k2

δ
‖∇h(x)‖2 |z(θtω)|2 + δ

4
‖∇η‖2

µ, (32)

(α0g′(ϑ)− 2ε)κh(x)z(θtω), v) ≤
2α2

2κ2

α0α1 − ε
‖h(x)‖2 |z(θtω)|2 + α0α1 − ε

8
‖v‖2 . (33)

By second term for right hand side of (26) and (29), we can get

ε(ε− α2α0)(u, v) ≥ −α0α2ε

λ
‖∇u‖‖v‖ ≥

2(α2
0α2

2ε2)

(α0α1 − ε)λ2 ‖∇u‖2 − α0α1 − ε

8
‖v‖2. (34)

About the nonlinearity, by (4), Hölder inequality and the Sobolev embedding theorem, we estimate that

( f (u), v) = ( f (u),
du
dt

+ εu− κh(x)z(θr−τω)) ≥ d
dt

F(u) + εC3(F(u)− |Γ|) + ( f (u), κh(x)z(θr−τω)). (35)

From (3)(A3)−(A5)
, we have

( f (u), κh(x)z(θr−τω)) ≤ C1

∫
Γ
(1 + |u|γ)κh(x)z(θr−τω)dx

≤ C1κ‖h(x)‖|z(θr−τω)|+ C1κ
∫

Γ
(|u|γ+1)

γ
γ+1 ‖h(x)‖Lγ+1(U)|z(θr−τω)|

γ
γ+1

≤ C1κ‖h(x)‖|z(θr−τω)|+ C1κ(
1

C2
F(u) +

∫
Γ

dx)
γ

γ+1 ‖h(x)‖Lγ+1(Γ)|z(θr−τω)|
γ

γ+1

≤ C1κ‖h(x)‖|z(θr−τω)|+ κεC1

2
|Γ|+ εC1

2C2
F(u) + C

γ
γ+1
1 κ

γ
γ+1 ‖h(x)‖γ+1

H1
0 (Γ)
|z(θr−τω)|γ+1. (36)
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Inserting the above two inequalities together, it yields that

( f (u), v) =

d
dt

F(u) +
ε
(

2C3 − C1C−1
2

)
2

(F(u)− |Γ|) + C1κ‖h(x)‖|z(θr−τω)|+ C
γ

γ+1
1 κγ+1‖h(x)‖γ+1

H1
0 (Γ)
|z(θr−τω)|γ+1, (37)

Collecting all inequalities (25)–(37), it leads to

d
dt

‖v‖2 + ‖∇u‖2 + (1 + k(0)‖∇u‖2)‖∇u‖2 +
δ

4
‖∇η‖2

µ −
ε
(

2C3 − C1C−1
2

)
2

∫
Γ

F(u)dx


+

α0α1 − ε

2
‖v‖2 + 2ε(1 + k(0)‖∇u‖2)‖∇u‖2 + 2ε2(m−

α2
0α2

2
(α0α1 − ε)λ2 )‖∇u‖2 +

δ

4
‖∇η‖2

µ

≤ ‖q(x, t)‖2

(α0α1 − ε)
+ C1κ‖h(x)‖|z(θr−τω)|+ C

γ
γ+1
1 κγ+1‖h(x)‖γ+1

H1
0 (Γ)
|z(θr−τω)|γ+1

+ εk2 ‖∆h(x)‖2 |z(θr−τω)|2 +
2α2

2κ2

α0α1 − ε
‖h(x)‖2 |z(θr−τω)|2 + m0k2

δ
‖∇h(x)‖2 |z(θr−τω)|2

+
κ2

2ε
‖∇h(x))‖2|z(θr−τω)|2 +

ε
(

2C3 − C1C−1
2

)
2

|Γ|. (38)

Thus

‖ϕ‖2
E(Γ) = ‖v‖

2 + ‖∇u‖2 + (1 + k(0)‖∇u‖2)‖∇u‖2 + δ
4‖∇η‖2

µ −
ε(2C3−C1C−1

2 )
2

∫
Γ F(u)dx, (39)

and

$ (θr−τω) =
‖q(x, t)‖2

(α0α1 − ε)
+ C1κ‖h(x)‖|z(θr−τω)|+ C

γ
γ+1
1 κγ+1‖h(x)‖γ+1

H1
0 (Γ)
|z(θr−τω)|γ+1

+ εk2 ‖∆h(x)‖2 |z(θr−τω)|2 +
2α2

2κ2

α0α1 − ε
‖h(x)‖2 |z(θr−τω)|2 + m0k2

δ
‖∇h(x)‖2 |z(θr−τω)|2

+
κ2

2ε
‖∇h(x))‖2|z(θr−τω)|2 +

ε
(

2C3 − C1C−1
2

)
2

|Γ|. (40)

Since ε ∈ (0, 1) be small enough such that ε2
(

m− α2
0α2

2
(α0α1−ε)λ2

)
> 0, α0α1−ε

2 > 0,
ε(2C3−C1C−1

2 )
2 > 0, we

will choose σ =

(
α0α1−ε

2 , 2ε2(m− α2
0α2

2
(α0α1−ε)λ2 )

)
and σ̃ = min{σ,

ε(2C3−C1C−1
2 )

2 , δ
4}, which gives

d
dt
‖ϕ(r)‖2

E + σ̃‖ϕ(r)‖2
E ≤ $(θr−τω). (41)

Applying Gronwall’s Lemma over [τ − t , r], we find that for r ≥ τ − t,

‖ϕ(r, τ − t, ω, ϕτ−t(ω))‖2
E ≤ e−σ̃−t)‖ϕτ−t‖2

E +
∫ τ

τ−t
$(θς−τω)e−σ̃(t−ς)dς. (42)

By replacing ω by θ−tω, we get from (42) such that for all t ≥ 0

‖ϕ(r, τ − t, θ−τω, ϕτ−t(θ−τω))‖2
E ≤ ‖χ(r, τ − t, θ−τω, χτ−t(θ−τω))‖2

E

≤ e−σ̃t‖χ(τ − t, τ − t, θ−τω, χτ−t(θ−τω))‖2
E +

∫ τ

τ−t
$(θς−τω)eσ̃(τ−ς)dς. (43)

Since z(θtω) is a tempered random variable and limt→±∞
z(θtω)

t = 0,
∫ 0
±∞

1
t z(θrω)dr = 0. Thus, there

exists M0(ω) and T = T(τ, ω, B) > 0 such that

lim sup
t→−∞

e−σ̃t‖χ(τ − t, θ−τω)‖2
E = 0,∫ 0

−∞ $(θς−τω)eσ̃((τ−ς))dς < +∞ = M2
0(ω),
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‖χ(r, τ − t, θ−τω, χτ−t(θ−τω))‖2
E ≤ M2

0(ω). (44)

The proof is completed.

Now we decompose the Equation (6) into two parts and also decompose the nonlinear growth term f ∈ C1

in Equation (3) into two parts f = f1 + f2, where f1, f2 satisfy the following respectively

(A1) : u fi(u) ≥ 0,

(A2) : | f ′1(u)| ≤ µ1(1 + |u|
4

n−2 ), ∀ u ∈ R, n ≥ 3

(A3) : | f2(u)| ≤ µ2(1 + |u|γ) , ∀ u ∈ R,

(A4) : Fi(u) =
∫ u

0 fi(r)dr,

(A5) : u fi(u) ≥ µi(F(u)− 1),

(A6) : k0(|u|γ+1 − 1) ≤ Fi(u) ≤ k1u fi(u) + Cµ .

(45)

where µi, Cµ, k0, k1, i = 1, 2 are positive constants. Let for any τ ∈ R, ω ∈ Ω, there is a time T1 = T1(B0, ω)

satisfies

B̂(ω) = tt≥T̂χ (τ, τ − t, θ−τω; χτ−t(ω)) = χτ−t(ω) ∈ B̂(τ, θ−τω)) ⊆ B0(ω), ∀ t ≥ T̂, (46)

for any ω ∈ Ω, where T̂ = T̂(B0, ω) ≥ τ is the pullback absorbing time in Lemma 2, then it holds B̂(ω) ⊆
B0(ω) that

Φ(t, τ, θ−tω; B̂(τ, θ−tω)) = χ(r, τ − t, θ−τω; B̂(τ, θ−τω)) ⊆ B̂(τ, θ−τω)) ⊆ B0(ω), ∀ t ≥ Ť. (47)

In order to obtain the regularity estimates, we decompose the solution χ(t, τ, ω) =

(u(t, τ, ω), v(t, τ, ω), ηt(t, τ, s, ω))> of system (6) with initial data χ(τ, ω) = (u0, v0, ηt
0)
> into two parts

χ(t, τ, ω) = χ̂(t, τ, ω) + χ̌(t, τ, ω),

u = y + w,

ηt = η̂t + η̌t.

(48)

Then, we can rewrite the Equation (6) into the following systems

ytt + ∆2y− k(0)(1 +
∫

Ω
|∇y|2dx)∆y−

∫ ∞

0
µ∆η̂u(t− s)ds + a(x)g(yt) + f1(y) = q̂(x, t),

η̂t = −η1s + yt,

y(τ, x) = y0(x), yt(τ, x) = y1(x), x ∈ Γ, τ ∈ R,

η̂τ(x, τ, s) = y0(x)− y0(x,−s), x ∈ Γ, τ ∈ R, s ∈ R+,

(49)

Let χ̂(t, ω) = (ŷ, y̌, η̂t(t, s))>, ŷ = y and y̌ = ŷt + εŷ, which are equivalent with{
χ̂′ + H(χ̂) = F̂(χ̂, t, ω),

χ̂(τ, ω) = (ŷ0(x), ŷ1(x) + εŷ0(x), η̂0)
> , χ̂ = (ŷ, y̌, η̂)>,

(50)

where

H(χ̂) =

 εŷ− y̌
−εy̌ + ε2ŷ + Aŷ +

∫ ∞
0 µ(s)A

1
2 η̂(s)ds

εŷ− y̌ + η̂s

 ,

F̂(χ̂, ω, t) =

 0
(1 + k(0)

∫
Ω |∇ŷ|2dx)A

1
2 y1 − a(x)g(ŷt)− f1(ŷ) + q̂(x, t)

0

 ,
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and

wtt + ∆2w− k(0)(1 +
∫

Ω
|∇w|2dx)∆w−

∫ ∞

0
µ∆η̌ds + a(x)g(wt) + f (u)− f1(y) = q̌(x, t) + κ

m

∑
j=1

hjẆj,

η̌t = −η̌s + wt,

w(τ, x) = w0(τ, x), wt(τ, x) = w1(τ, x), x ∈ Γ, τ ∈ R,

η̌τ(x, τ, s) = w0(x, τ)− w0(x, τ − s), x ∈ Γ, τ ∈ R, s ∈ R+,
(51)

Since χ̌ =
(
ŵ, w̌, η̌t)>,

(
ŵ, w̌ = ŵt + δŵ− κz(θtω), η̌t)>,

w̌ = ŵt + δŵ− κz(θtω). (52)

The above equations leads to{
χ̌′ + H(χ̌) = F̌(χ̌, t, ω),

χ̌(τ, ω) = (ŵ0(x), ŵ1(x) + εŵ0(x)− κz(θtω), η̌0)
> , χ̌ = (ŵ, w̌, η̌)>,

(53)

in which

H(χ̌) =

 εŵ− w̌
−εw̌ + ε2ŵ + Aŵ +

∫ ∞
0 µ(s)A

1
2 η̌(s)ds

εŵ− w̌ + η̌s

 ,

and

F̌(χ̌, ω, t) =

 κz(θtω)

(1 + k(0)
∫

Ω |∇ŵ|2dx)A
1
2 ŵ− a(x)g(ŵt)− f (u) + f1(ŷ) + q̂(x, t) + κz(θtω)

κz(θtω)

 .

Now we need to establish some priori estimates for the solutions of Equation (50) and Equation (53),
which are the basis of our later analysis.

Lemma 3. Let (2)-(5),(7)-(8) and (45) hold. Let B̂(τ, ω) ⊆ B0(τ, ω), B̂ = {B̂(τ, ω)}ω∈Ω ∈ D(E) and χ̂0(ω) ∈
B̂(τ, ω). Then there exists T̂ = T̂(B̂, ω) > 0 and M0(ω), such that the solution χ̂(T̂, ω, χ̂τ(ω)) of (50) satisfies for
P-a.e ω ∈ Ω, ∀ t ≥ T̂

‖χ̂(r, τ − t, ω, χ̂τ−t(ω))‖2
E ≤ ‖χ̂τ−t‖2e−2σt +

∫ r

τ
r̂(ω)dr ≤ M̂(ω). (54)

Proof. Taking inner product of (50) with χ̂ in E, we have(
χ̂′, χ̂

)
+ (H(χ̂), χ̂) =

(
F̂(t, x, χ̂).χ̂

)
. (55)

Using Hölder, Young and Poincarè inequalities, we get

(H(χ̂), χ̂) = ε‖∆ŷ‖2 + ε2(ŷ, y̌)− ε‖y̌‖2 − m0ε2

2
‖∇ŷ‖2 +

δ

4
‖∇η̂‖2

µ. (56)

Now, we estimate the terms on the right hand side of (55) one by one:((
1 + k(0)‖∇ŷ‖2

)
4ŷ, y̌

)
=

((
1 + k(0)‖∇ŷ‖2

)
∇ŷ,∇(dŷ

dt
+ εŷ)

)
≤
(

1 + k(0)‖∇ŷ‖2
)(1

2
d
dt
‖∇ŷ‖2 +

ε

2
‖∇ŷ‖2

)
, (57)

and from (2), it is easy to show that

(a(x)g(ŷt), y̌) = (α0g(ϑ) (y̌− εŷ, y̌)) ≤ α0α1‖y̌‖2 − α0α2ε (ŷ, y̌) , (58)
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where ϑ is between 0 and y̌− εŷ.

(q̂(x, t), v) = ‖q̂(x, t)‖‖y̌‖ ≤ ‖q̂(x, t)‖2

(α0α1 − ε)
+

α0α1 − ε

4
‖y̌‖2, (59)

by second term for right hand side of (55) and (59), we can get

ε(ε− α2α0)(ŷ, y̌) ≥ −α0α2ε

λ
‖∇ŷ‖‖y̌‖ ≥ α0α1 − ε

4
‖y̌‖2 −

α2
0α2

2ε2

(α0α1 − ε)λ2 ‖∇ŷ‖2, (60)

Further, from (45)(A2),(A4)
, we infer

( f1(ŷ), y̌) = ( f1(ŷ),
dŷ
dt

+ εŷ) ≥ d
dt

F1(ŷ) +
ε

k1
(F1(ŷ)− cµ|Γ|)), (61)

Thus, applying together in (55) we conclude that

1
2

d
dr

(
‖y̌‖2 +

(
1 + k(0)‖∇ŷ‖2

)
‖∇ŷ‖2 + ‖∇ŷ(r)‖2 + ‖∇η̂‖2

µ + F̃1(ŷ)
)

+
ε

2

(
‖y̌‖2 +

(
1 + k(0)‖∇ŷ‖2

)
‖∇ŷ‖2

)
+ ε

(
1
λ
− mε

2
−

εα2
0α2

2
(α0α1 − ε)λ2

)
‖∇ŷ(r)‖2

+
α0α1 − ε

2
‖y̌‖2 +

δ

4
‖η̂(r)‖2

µ,1 +
ε

k1
F̂1(y(r))

≤ ‖q(x, t)‖2

(α0α1 − ε)
+

ε

k1
cµ|Γ|, (62)

Since the inequalities above has nonnegative terms, we obtain ε

(
1
λ −

mε
2 −

εα2
0α2

2
(α0α1−ε)λ2

)
> 0, α0α1−ε

2 > 0.

We will choose σ =

(
ε
2 , α0α1−ε

2 , 2ε

(
1
λ −

mε
2 −

εα2
0α2

2
(α0α1−ε)λ2

))
and σ̂ = min{σ, ε

k1
, δ

4}, which obviously implies

that
d
dt
‖χ̂(r)‖2

E + σ̂‖χ̂(r)‖2
E ≤

‖q̂(x, t)‖2

(α0α1 − ε)
+

ε

k1
cµ|Γ|. (63)

Note that χ̂(r, τ − t, ω, χ̂τ−t(ω)) = χ(r, τ − t, ω, χτ−t(ω)) − (0, z(θtω), 0) ∈ B0(τ, ω). By definition of
B0(τ, ω), it follows that ‖χ̂(r, τ − t, ω, χ̂τ−t(ω))‖2

E ≤ r̂(ω) + |z(θr−τω)| = M̂(ω). Now, by the Gronwall
inequality to [τ − t, r], we arrive to (54); ‖χ̂(r, τ − t, ω, χ̂τ−t(ω))‖2

E ≤ M̂(ω). Hence, for every ŷ ∈ H1
0 ,by

H1
0 ⊂ L

2n
n−2 and (62), we have

0 ≤ |
∫

Ω
f1(u)|dx ≤ µ1

(
‖ŷ|2 + ‖ŷ‖

2n
n−2

L
2n

n−2

)
≤ r̂(ω) ‖∇ŷ|2 .∀ u ∈ R, n ≥ 3.

The proof is completed.

Lemma 4. Suppose (2)-(4) hold. Let B1(ω) ⊆ B0(ω), B̂ = {B̂(ω)}ω∈Ω ∈ D(E) and χ̌τ(ω) ∈ B̂(ω), then there
exists Ť = Ť(B̂, ω, ) > 0 and a random radius M̌(ω), such that the solution χ̌(t, τ, ω, χ̌τ(ω)) of (53) satisfies for P-a.e
ω ∈ Ω, ∀ t ≥ Ť

‖Aνχ̌ (r, τ − t, θ−tω, χ̌τ−t(θ−tω))‖2
E ≤ ‖Aνχ̌τ−t(θ−tω)‖2e−2σ(τ−t) + ř(ω) ≤ M̌(ω), t ≥ τ. (64)

We denote

ν ∈
(

0, min{1
4

,
n + 2− (n− 2)γ

4
}
)

, ∀ 1 ≤ γ ≤ n + 2
n− 2

. (65)

Proof. By (64), (23) and χ̌ = χ− χ̂, there exists a random variable r(ω) > 0 such that

max{‖χ(0, ω, χ(0, ω))‖E, ‖χ̌((0, ω, χ̌(0, ω)))‖E} ≤ r(ω).
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By the embedding relations, we have Vν1 ⊂ Vν2 , if ν1 ≥ ν2 and Vν ⊂ Lq, where 1
q = 1

2 −
ν
n , 1

q̀ = 1
2 −

1
q and

Hν
0 = D(A

ν
2 ) = Vν ⊂ Lq ⊂ Lq̀ ⊂ V−ν = D(A

−ν
2 ). Multiplying (53) with Aνχ̌(r) and integrating over Γ, we

can get

(H(χ̌(r)), Aνχ̌(r)) =

 εu− v
−εv + ε2u + Au +

∫ ∞
0 µ(s)A

1
2 η(s)ds

εu− v + ηs


 Aνu

Aνv
Aνη


= ε‖A

ν+1
2 ŵ‖2 + ε2(ŵ, Aνw̌)− ε‖A

ν
2 w̌‖2 − m0ε2

2
‖A

1+2ν
4 ŵ‖2 +

δ

4
‖A

1+2ν
4 η̌‖2

µ. (66)

Now using Cauchy-Schwartz inequality and Young inequality one by one as

(F(t, x, χ), Aνχ) = kh(x)z(θtω)

(1 + k(0)‖A
1
4 ŵ‖2)A

1
2 ŵ− a(x)g(ŵt) + f1(ŷ)− f (u) + q̌(x, t) + κh(x)z(θtω)

kh(x)z(θtω)


 Aνŵ

Aνw̌
Aνη̌

 . (67)

From (3)(A2),(A4)
, one has that

−
(

1 + k(0)‖A
1
4 ŵ‖2)A

1
2 ŵ, Aνw̌

)
=

((
1 + k(0)‖A

1
4 ŵ‖2

)
A

ν
2 ŵ, A

ν
2 (

dŵ
dt

+ εŵ− ah(x)z(θtω)

)
≤ −

(
1 + k(0)‖A

1
4 ŵ‖2

)(1
2

d
dt
‖A

ν
2 ŵ‖2 +

ε

2
‖A

ν
2 ŵ‖2

)
+

κ2

2ε
‖A

ν
2 h(x))‖2|z(θtω)|2. (68)

Therefore from (2) and (4), it is straightforward to show that

(a(x)g(ŵt), Aνw̌) = −
(

α0g(ϑ)A
ν
2 (w̌− εŵ + κh(x)z(θtω)− g(0)) , A

ν
2 w̌
)

≤ −α0α1‖A
ν
2 w̌‖2 + α0α2ε

(
A

ν
2 ŵ, A

ν
2 w̌
)
− α0g′(ϑ)κ

(
h(x)z(θtω, A

ν
2 w̌
)

, (69)

where ϑ is between 0 and w̌− εŵ + κh(x)z(θtω).

(q̌(x, t), Aνw̌) = ‖A
ν
2 q̌(x, t)‖‖A

ν
2 w̌‖ ≤ ‖A

ν
2 q̌(x, t)‖2

2(α0α1 − ε)
+

α0α1 − ε

2
‖A

ν
2 w̌‖2, (70)

((kεh(x)z(θtω), Aνŵ)) ≤ ε

4

∥∥∥A
2ν+1

2 ŵ
∥∥∥2

+ εk2
∥∥∥A

2ν+1
2 h(x)

∥∥∥2
|z(θtω)|2 , (71)

(kεh(x)z(θtω), Aνη̌)µ ≤
2m0k2

δ

∥∥∥A
2ν+1

4 h(x)
∥∥∥2
|z(θtω)|2 + δ

8
‖A

1+2ν
4 η̌‖2

µ, (72)

− (α0g′(ϑ)− 2ε)κh(x)z(θtω), Aνw̌) ≤ 2(α0α2κ)2

α0α1 − ε
‖A

ν
2 h(x)‖2 |z(θtω)|2 + α0α1 − ε

4

∥∥∥A
ν
2 w̌
∥∥∥2

. (73)

Through 2d term for right hand side of (26) and (29), we will get

ε(ε− α2α0)(ŵ, Aνw̌) ≥ −α0α2ε‖A
ν
2 ŵ‖‖A

ν
2 w̌‖ ≥ α0α1 − ε

4
‖A

ν
2 w̌‖2 − (α0α2ε)2

(α0α1 − ε)λ2 ‖A
1+2ν

4 ŵ‖2. (74)

For the nonlinearity, with the aid of (4), Hölder inequality and the Sobolev embedding theorem, we
estimate that

( f (u)− f1(ŷ), Aνw̌) = ( f (u)− f1(ŷ), Aν(ŵt + εŵ− κh(x)z(θtω)))

≤ d
dt

∫
Γ
( f (u)− f1(ŷ))Aνŵdx + ε

∫
Γ
( f (u)− f1(ŵ))Aνŵdx

−
∫

Γ
( f ′(u)ut − f ′1(ŵ)ŵt)Aνŵdx− κ

∫
Γ
( f (u)− f1(ŵ)) |Aνh(x)||z(θtω)| dx.

Infer to A4, (45)-(46), use Cauchy-Schwartz, Young’s inequality and embedding theorem V1+ν ⊂ L
2n

n−2(1−ν) ,

V1−ν ⊂ L
2n

n+2(1−ν) and V1 ↪→ L
2n

n−2 , we gain
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∫
Γ
(( f (u)− f1(ŵ))Aν(κ|h(x)||z(θtω)|)dx ≤

∫
Γ
(( f1(u) + f2(u)− f1(ŵ)) Aνκ(|h(x)||z(θtω)|)dx

≤ µ1κ

(∫
Γ

(
1 + |ŷ|

4
n−2 + |ŵ|

4
n−2

) 2n
4 dx

) 4
2n
(∫

Γ
|ŵ|

2n
n−2(1+ν) dx

) n−2(1+ν)
2n
‖Aνh(x)‖|z(θtω)|

+ µ2κ

(∫
Γ
(1 + |û|γ)

2n
n+2(1−ν) dx

) n+2(1−ν)
2n
‖Aνh(x)‖|z(θtω)|

≤ µ3

(
1 + ‖u‖

4
n−2

L
2n

n−2
+ ‖u‖

4
n−2

L
2n

n−2

)
‖ŵ‖

L
2n

n−2(1+ν)
‖A

ν
2 h(x)‖

L
2n

1+2ν
|z(θtω)|

+ µ4

(
1 + ‖u‖γ

L 2n
n+2(1−ν)

)
‖A

ν
2 h(x)‖

L
2n

1+2ν
|z(θtω)|

≤ µ5

(
r2

1(ω) +
∥∥∥A

1+ν
2 ŵ

∥∥∥2
)
+ µ6

∥∥∥Aνh(x)‖2|z(θtω)
∣∣∣2 . (75)

and therefore∫
Γ
( f ′(u)ut − f ′1(ŵ)ŵt)Aνŵdx =

∫
Γ
(( f ′1(u)− f ′1(ŵ))ut + f ′1(ŵ)ŵt + f ′2(u)ut)Aνŵdx.

Estimate the above inequality, we get∫
Γ
( f ′1(u)− f ′1(ŷ))ut Aνw̌dx ≤ µ7

∫
Γ

(
1 + |ŷ|

6−n
n−2 + |ŵ|

6−n
n−2

)
|ŵ||Aνŵ||ut|dx

≤ µ8

(∫
Γ

(
1 + |ŷ|

6−n
n−2 + |ŵ|

6−n
n−2

) 2n
6−n dx

) 6−n
2n
(∫

Γ
|ut|2dx

) 1
2
(∫

Γ
|ŵ|

2n
n−2(1+ν) dx

) n−2(1+ν)
2n

(∫
Γ
|Aνŵ|

2n
n−2(1−ν) dx

) n−2(1−ν)
2n

≤ µ9

(
1 + ‖ŷ‖

6−n
n−2

L
2n

n−2
+ ‖ŵ‖

6−n
n−2

L
2n

n−2

)
‖ut‖L2‖ŵ‖

L
2n

n−2(1+ν)
‖Aνŵ‖

L
2n

n−2(1−ν)

≤ µ10

(
‖ŵ‖

L
2n

n−2(1+ν)
‖Aνŵ‖

L
2n

n−2(1−ν)

)
+ µ11

(
‖ŷ‖

6−n
n−2

L
2n

n−2
+ ‖ŵ‖

6−n
n−2

L
2n

n−2

)
‖ŵ‖

L
2n

n−2(1+ν)
‖Aνŵ‖

L
2n

n−2(1−ν)

≤ µ12r2 (ω)
(
‖A

ν
2 ŵ‖2 + ‖A

1+ν
2 ŵ‖2

)
. (76)

Similarly, by (45)A2 and (65), we get

∫
Γ

f ′1(ŷ)ŵt Aνŵdx ≤ µ13

(∫
Γ

(
1 + |ŷ|

4
n−2

) 2n
4 dx

) 4
2n

×
(∫

Γ
|ŵt|

2n
n−2(1+ν) dx

) n−2(1+ν)
2n

×
(∫

Γ
|Aνŵ|

2n
n−2(1−ν) dx

) n−2(1−ν)
2n

≤ µ14(1 + ‖ŷ‖
4

n−2

L
2n

n−2
)‖ŵt‖

L
2n

n−2(1+ν)
‖Aνŵ‖L 2n

n−2(1−ν)

≤ µ15r3 (ω) (‖A
ν
2 ŵ‖+ |ε|)‖A

1+ν
2 ŵ‖L 2n

n−2(1−ν)

≤ µ16r3 (ω) (‖A
ν
2 ŵ‖2 + |ε|2) + ε

16
‖A

1+ν
2 ŵ‖2

L 6
1+2ν

. (77)

Furthermore, by (45)A3 and (65), note that ν ≤ n+2−(n−2)γ
4∫

Γ
f ′2(u)ut Aνŵdx ≤ µ17

∫
Γ
((1 + |u|γ) |ut||Aνŵ|) dx

≤ µ18

(∫
Γ
(1 + ‖u‖γ)

2n
n+2(1−ν) dx

) n+2(1−ν)
2n

(∫
Γ
|ut|2dx

) 1
2
(∫

Γ
|Aνŵ|

2n
n−2(1−ν) dx

) n−2(1−ν)
2n

≤ µ19

(
1 + ‖u‖γ

L 2n
n+2(1−ν)

)
‖ut‖L2‖A

ν
2 ŵ‖L 2n

n−2(1−ν)

≤ µ20r2
4 (ω) +

ε

8
‖A

1+ν
2 ŵ‖2. (78)
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Including above inequalities together (66)-(78), we achieve

1
2

d
dt

[
‖A

ν
2 χ̌‖2

E + 2( f (u)− f1(ŵ))
]
+

ε

4
‖A

ν
2 χ̌‖2

E +
ε

2
( f (u)− f1(ŵ))

≤ |κ||z(θtω)|‖A
ν
2 χ̌‖2

E + µ̌C[1 + r2
1(ω) + r2

2(ω) + r2
3(ω) + r2

4(ω)

+ |z(θtω)|2 + ‖Aνh(x)‖2 |z(θtω)|2 + ‖A
ν
2 q̌(x)‖2]. (79)

By Gronwall’s inequality in (79) on [0, r] and changing ω to θ−tω, we deduce that

‖A
ν
2 ϕ̄(t, θ−tω; ϕ0)‖2

E ≤
(
‖A

ν
2 ϕ(r, θ−tω; ϕ0)‖2

E + 2( f (u(r, θ−tω; χ0)) − f1(ŵ(r, θ−tω; χ0)))

≤
(
‖A

ν
2 χ̌‖2

E + ( f (u)− f1(ŵ))
)

exp2
∫ 0

r (σ−|κ||z(θsω)|)(s,ω)ds +
∫ r

0
$1(θsω)exp2

∫ s
r (σ−|κ||z(θςω)|)(ς,ω)dςds. (80)

We can choose $1(θtω) and µ̌C depends to [ε, δ, κ, α0, α1, α2, m0, µi] are positive constants, such that

$1(θtω) = µ̌C[1 + r2
1(ω) + r2

2(ω) + r2
3(ω) + r2

4(ω)

+
∥∥∥A

ν
2 h(x)

∥∥∥2
|z(θtω)|2 +

∥∥∥A
ν
2 h(x)

∥∥∥2
|z(θtω)|2 + ‖A

ν
2 q̌(x)‖2]. (81)

Note that ∫
Γ
(( f (u)− f1(ŵ))A

ν
2 ŵdx ≤

∫
Γ
(( f1(u) + f2(u)− f1(ŵ)) A

ν
2 ŵdx

≤ µ21

(∫
Γ

(
1 + |ŷ|

4
n−2 + |ŵ|

4
n−2

)
|ŵ|
∣∣∣A ν

2 ŵ
∣∣∣ dx

)
+ µ22

(∫
Γ
(1 + |û|γ)

∣∣∣A ν
2 ŵ
∣∣∣ dx

)
.

Thus, by the Sobolev embedding(∫
Γ

(
1 + |ŷ|

4
n−2 + |ŵ|

4
n−2

))
|ŵ|+

(∫
Γ
(1 + |û|γ) dx

) ∣∣∣A ν
2 ŵ
∣∣∣ dx

≤ µ23

(∫
Γ

(
1 + |ŷ|

4
n−2 + |ŵ|

4
n−2

) 2n
4 dx

) 4
2n
(∫

Γ
|ŵ|

2n
n−2(1+ν) dx

) n−2(1+ν)
2n

(∫
Γ
|Aνŵ|

2n
n−2(1−ν) dx

) n−2(1−ν)
2n

+ µ24

(∫
Γ
(1 + |û|γ)

2n
n+2(1−ν) dx

) n+2(1−ν)
2n

×
(∫

Γ
|Aνŵ|

2n
n−2(1−ν) dx

) n−2(1−ν)
2n

≤ µ25r2
5(ω) + µ25

∥∥∥A
1+ν

2 ŵ
∥∥∥2

, (82)

where the constants µi, i = 1, 2, ....., 25, comes from the embedding D(A
1+ν

2 ) ↪→ L
2n

n−2(1−ν) , D(A
1−ν

2 ) ↪→ L
2n

n−2(1+ν)

and V1 = H1
0 ↪→ L

2n
n−2 .

Note that, |z(θςω)| is tempered, and hence applying the inequalities (81) and (82) in (80), the integrand of
the second term on the righthand side of (80) is convergent to zero exponentially as r ↪→ −∞ . Then, we can
shows that the following result

‖A
ν
2 χ̌(t, θ−tω; χ0)‖2

E ≤ M̌2
2(ω).

The proof is complete.

Now we obtain our main result about the existence of a random attractor for random dynamical system
Φ as following Lemma. It follows from Lemma 2, that Φ has a closed random absorbing set in D, then apply
Lemmas in Section 4, we prove the existence of a random attractor by using tail estimates and the decompose
technique of solutions. which along with the D-pullback asymptotic compactness.
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Lemma 5. (see[2,3,15]) Let X0, X, X1 be three Banach spaces such that X0 ↪→ X ↪→ X1 is projection operator X0 ↪→ X
is compact. setting Y = χ(t, B̂(τ, ω)) ⊂ L2

µ(R+, X) is a random bounded absorbing set from Lemma 4, ψ(t) is the
solution operators of (53) and by Lemma 4, there is a positive random radius Mν(ω) dependent on t, such that

1). Y is bounded in L2
µ(R+, X0)

⋂
H1

µ(R+, X1),

2). sup
η∈Y,s∈R+

‖∇η(s)‖2
X ≤ Mν(ω).

 (83)

Then Y is relatively compact in L2
µ(R+, X). Further, for every τ ∈ R, ω ∈ Ω, t ≥ 0, so that

η̌(t, τ, θ−tω, χ0(θ−tω), s) =

{
ŵ(t, τ, θ−tω, χ0(θ−tω))− ŵ(t− s, τ, θ−t+sω, χ0(θ−t+sω)), s ≤ t,

ŵ(t, τ, θ−tω, χ0(θ−tω)), t ≤ s;
(84)

η̌s(t, τ, θ−tω, χ0(θ−tω)) =

{
ŵt(t− s, τ, θ−t+sω, χ0(θ−t+sω)), 0 ≤ s ≤ t,

0, t ≤ s.
(85)

Denote by B̌ the closed ball of L2
µ(R+, X0)

⋂
H1

µ(R+, X1) of random variable radius M0(ω), since we apply
on a finite domain. B̌ is compact subset of X0 × X1. Let a set B̌(τ, ω)

B̌(τ, ω) =
⋃

χ̂τ−t(θ−τω)∈B̌(θ−tω)

⋃
t≥0

η̌(τ, τ − t, θ−τω, χτ−t(θ−τω), s) s ∈ R+ τ ∈ R , ω ∈ Ω, (86)

where ν is as in (65). Thus, employing (3), Lemma 2, Lemma 4 and (84), we get that

sup
η∈B̌,s∈R+

‖∇η(s)‖2
µ = sup

t≥0
sup

χτ−t(θ−τω)∈B(θ−tω),s∈R+

‖∇η̌(τ, τ − t, (θ−τω), χτ−t(θ−τω), s)‖2 ≤ M0(ω), (87)

implying that

‖∇η(s)‖2
µ =

∫ +∞

τ
µ(s)‖∇η(s)‖2ds ≤ M0(ω)

∫ +∞

τ
eσsds ≤ M0(ω)

σ
. (88)

We obtain our main result about the existence of a random attractor for random dynamical system Φ as
following Theorem.

Theorem 3. Suppose (2)-(4) hold. Then the continuous cocycle Φ associated with Problem (16), has a uniqueD-pullback
random attractor A(τ, ω) ∈ D in Γ.

Proof. For any (τ , ω) ∈ (R × Ω). Let χ̂τ−t(θ−τω) ∈ B̂(τ, θ−tω), B̌ ⊂ B̂(θ−tω) is compact in D(E). It
follows that B̌ be the closed ball of V2ν+1 ×V2ν ↪→ E is compact of radius M̂(ω) ∈ D(E), where ν satisfy (65).
Therefore, Λ(τ, ω) is compact in E for any bounded non-random set B of E. By Lemma 3 and χτ−t(θ−τω) ∈
B̌(τ, θ−tω), we have χτ−t = χ̌τ−t − χ̂τ−t ∈ Λ(τ, ω), where χτ−t is given by (50). Then, there exists a random
set M̂(ω) ∈ B̌ ⊆ B(τ, ω) ∈ D(E), as follows

dH (Φ(t, τ, θ−tω, B(τ, θ−tω)), Λ(τ, ω)) ≤ M̂(ω)e−σt → 0, as t→ +∞. (89)

From Lemma 3, there exists T̂ = T̂(τ, ω, B) ≥ 0, then we dedicate the following attraction property

χ̂(τ, τ − t, θ−τω, B(τ, θ−tω)) ⊆ B0(τ, ω), ∀t ≥ T̂.

Let t ≥ T̂ and Ť = t− T̂ ≥ T(τ, ω, B0) ≥ 0 using cocycle property (iii) of Φ, we show that

χ̂(τ, τ − t, θ−τω, B(τ − t, θ−τω))

= χ̂(t, τ − Ť − T̂, θ−tω, B(τ − Ť − T̂, θ−τω))

= χ̂(τ, τ − Ť, (θ−τω), χ(τ − Ť, τ − T̂ − Ť, θ−τω, B(τ − Ť − T̂, θ−τω))

⊆ χ̂(τ, τ − Ť, θ−τω, B0(θ−Ťω)) ⊆ B̂(τ, θ−τω). (90)
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Take any χ̂(τ, τ − t, (θ−τω), χτ−t(θ−τω)) ∈ χ̂(τ, τ − t, θ−τω, B(τ − t, θ−tω)), for t ≥ T̂ + T(τ, ω, B0),
where χ̂τ−t(θ−τω) ∈ B(τ − t, θ−tω). It follow to Lemmas 2, 3 and (90), such that

inf
η∈Λ(τ,ω)

‖χ(τ, τ − t, θ−τω, χτ−t(θ−τω))− η(τ, τ − t, θ−τω, χτ−t(θ−τω))‖2
E

≤ ‖y(τ, τ − t, θ−τω, yτ−t(θ−τω))‖2
E ≤ M̂2(ω)e−σ3t , ∀t > T̂ + T(τ, ω, B0). (91)

Thus from the relation (19) between Φ̂, Φ̌, one could easily obtain that for any nonrandom bounded

dH(Φ̄(t, τ, θ−tω, B(τ, θ−tω)), Λ(τ, ω)) ≤ M̂(ω)e−σ3t → 0 as t→ +∞ . (92)

Follows from Lemma 1, Lemma 2, Lemma 3 and Lemma 4, Φ related to (16) possesses a D pull-back
random attractor A(τ, ω) ⊆ Λ(τ, ω)

⋂
B0(ω). The proof is completed.
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