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Abstract: The objective of this paper is to study the stability of the weak solutions of stochastic 2D
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1. Introduction

I n this paper, we will investigate the stability of the weak solutions of stochastic 2D Navier-Stokes
equations with memory and Poisson jumps of the form:

dX =
[
ν4X− 〈X,∇〉X−∇p + f (x) + g(X(t− ρ(t)))

]
dt + σ(t, X(t− δ(t)))dW(t)

+
∫

Z k(t, X(t− γ(t)), z)η̃(dt, dz),

div X = 0 in (0,+∞)× D, X(t, x) = 0 on (0,+∞)× ∂D,

X(0, x) = X0(x), X(t, x) = φ(t, x), for x ∈ D, and t ∈ [−r, 0], with r > 0,

(1)

where X is the velocity field of the fluid, ν > 0 is the kinematic viscosity, p is the associated hydrostatic
pressure, f is a non-delayed external force field, g(X(t − ρ(t))) is another external force field with delay,
σ(t, X(t− δ(t)))dW(t) +

∫
Z k(t, X(t− γ(t)), z)η̃(dt, dz) is a random external force field with delays, where W

is an infinite dimensional Wiener process and η̃ is a compensated time homogeneous Poisson random measure,
ρ, δ, γ : R+ → [0, r] are continuous functions, D is a regular open bounded domain of R2 with boundary ∂D,
X0 is the initial velocity, φ is the initial datum in the interval [−r, 0].

Navier-Stokes equations are the fundamental model of the fluid mechanics and turbulence. These
equations have been the object of numerous works (see, for instance [1,2] and the references therein), even
with unbounded domains (see [2,3]) since the first paper of Leray was published in 1933 [4]. Beside, noise or
stochastic perturbation is unavoidable and omnipresent in nature as well as in man-made systems. Therefore,
it is of great significance to import the stochastic effects into the investigation of Navier-Stokes equations.
To our best knowledge, the theory of stochastic Navier-Stokes equations apparently has its roots in the 1959
edition of the Landau and Lifshitz [5] and the first work on the stochastic Navier-Stokes equations written
from the mathematical point of view is the paper [6]. We mention here the works ([7–10] and the references
cited therein) concerning the two-dimensional (2D in short) stochastic Navier-Stokes equation.

Partial differential equations with memory (e.g. delay) have attracted great interest due to their
applications in describing many sophisticated dynamical systems in physics, chemistry, biology, economics
and social sciences. On this matter, we refer the reader to [11–16] and the references therein. In the past
few years, many papers have studied the Navier-Stokes equations with a forcing term which contains some
hereditary characteristics (see, for instance [17–19] and the references therein). In addition, the long-time
behavior and exponential stability of the Navier-Stokes equations is an interesting and challenging problem,
since it can provide useful information on the future evolution of the system (see, [20,21]). On the exponential
behavior for stochastic 2D Navier-Stokes equations with variable delay, we refer the reader to [22–24], and
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recently, in [25] and [26], the authors investigated the asymptotic behavior of solutions of stochastic evolution
equations for second grade fluids and non-Newtonian fluids, respectively.

On the other hand, the world is more complicated and models which are allowed to have jumps - both
big and small - are desirable. Hence, it is necessary and important to study stochastic systems with Poisson
jumps or Lévy processes (see, for instance [27–31] and the references therein). In recent years, the stochastic
2D(3D) Navier-Stokes equations with Lévy noise has attracted much attention of researchers. To be more
precise, in [32], Motyl considered the existence of solutions, in a probabilistic sense, to the stochastically driven,
viscous, incompressible Navier-Stokes equations driven by the Lévy noise consisting of the compensated
time homogeneous Poisson random measure and the Wiener process in two and three spatial dimensions,
Dong et al., [33] discussed the existence of stationary weak solutions of stochastic 3D Navier-Stokes equations
involving jumps and compared the Galerkin stationary probability measures for the case driven by Lévy noise
and the one driven by Wiener process, and in [34], by using an abstract setting, Brzeźniak et al. studied
the existence and uniqueness of the solution of an abstract nonlinear equation driven by a multiplicative
noise of Lévy type. More specifically, just recently, Taniguchi [35] obtained the existence and exponential
stability of energy solutions to 2D stochastic functional Navier-Stokes equation perturbed by the Lévy process.
However, to prove the exponential stability results in [35], the author have imposed that the delay function
(ρ(t)) appears only in the non-random external force and furthermore this delay function have required a
strong assumption, i.e. ρ(t) is differentiable and satisfies 0 ≤ ρ′(t) < M∗ < 1, where M∗ > 0. Thus, we will
make the first attempt to establish some results for more general forcing terms and relax this restriction. Under
some suitable assumptions, by using the Itô formula for jumps and Burkholder-Davis-Gundy inequalities in
stochastic analysis, we establish the weak solution to (1) converges to the stationary solution of its stationary
versions exponentially stable in the mean square. Further, by establishing a lemma for compensated Poisson
random measures (Lemma 3), we give the result that the weak solution to (1) converges to the stationary
solution of its stationary version almost surely exponentially. Assumptions given in our article do not require
the monotone decreasing behaviour of the delays and satisfying 0 ≤ ρ′(t), δ′(t), γ′(t) < 1. Therefore, the
current paper can be regarded as the extension of the work of Caraballo and Real [20] to the stochastic settings,
simultaneously extend and improve the one of Taniguchi [35] (where the random external force field does
not include delays and the external force field contains delay but the memory function ρ(t) is a differentiable
function) as well as the asymptotic behavior results published in [7] (where the external force fields does not
contain delays and the stochastic Navier-Stokes equation without non-Gaussian Lévy noise perturbation) and
the papers announced by Chen [22], Wan and Zhou [23] (where the random external force field does not
contain discontinuous multiplicative noise).

The remainder of this paper is organized as follows: In Section 2, we briefly present some basic notations,
preliminaries. The main results in Section 3 are devoted to studying the asymptotic behavior for the weak
solutions of the system (1) with their proofs.

2. Preliminaries

In this section, we introduce notations and preliminary results need to establish our results. For more
details on this section, we refer the reader to [2,8,36–38].

We first introduce the following function spaces, which are usual in the study of Navier-Stokes equations:

V := {u ∈ C∞
0 (D,R2) : div u = 0}.

H := the closure of V in L2(D,R2) with the norm |u| = (u, u)
1
2 , where for u, v ∈ L2(D,R2),

(u, v) =
2

∑
j=1

∫
D

uj(x)vj(x)dx.

V := the closure of V in H1
0(D,R2) with the norm ‖u‖ = ((u, u))

1
2 , where for u, v ∈ H1

0(D,R2),

((u, v)) =
2

∑
i,j=1

∫
D

∂ui
∂xj

∂vi
∂xj

dx.
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It follows that H and V are separable Hilbert spaces with associated inner products (·, ·) and ((·, ·)) and
the following is satisfied

V ⊂ H ≡ H∗ ⊂ V∗,

where injections are dense, continuous, and compact; H∗ and V∗ stand for the topological dual of H and V,
respectively.

Now, let PH be an orthogonal projector from L2(D,R2) onto H. We define the operator A : L2(D,R2)→ H
by Au = −PH4u and B : V×V→ V∗ by 〈B(u, v), w〉 = b(u, v, w), ∀u, v, w ∈ V, where 〈·, ·〉 denotes the duality
〈V∗,V〉 and b is the trilinear form defined by

b(u, v, w) =
2

∑
i,j=1

∫
D

uj(x)
∂vj

∂xi
wj(x)dx.

We also set B(u) = B(u, u), ∀u ∈ V.
Furthermore, we shall need some properties of the trilinear form b, and we list below the ones that we

will used later on (see, [38]),

|b(u, v, w)| ≤ C1|u|
1
2 ‖u‖

1
2 ‖v‖|w|

1
2 ‖w‖

1
2 , ∀u, v, w ∈ V,

b(u, v, v) = 0, ∀u, v ∈ V,

b(u, u, v− u)− b(v, v, v− u) = −b(v− u, u, v− u), ∀u, v ∈ V,

where C1 > 0 is an appropriate constant which depends on the regular open domain D (see [39]).
Let (Ω,F , P) be a complete probability space equipped with some filtration (Ft)t>0 satisfying the usual

conditions (i.e., it is right continuous and F0 contains all P-null sets).
With the symbol {W(t)}t≥0, we denote a K-valued (Ft)t>0-Wiener process defined on the probability

space (Ω,F , P) with covariance operator Q, i.e.

E〈W(t), a〉K〈W(s), b〉K = min{t, s}〈Qa, b〉K, ∀a, b ∈ K,

where Q is a positive, self-adjoint, trace class operator on K. In particular, we call such {W(t)}t≥0 a K-valued
Q-Wiener process relative to (Ft)t>0. We assume that there exist a complete orthonormal system {en}n∈N in
K, a bounded sequence of nonnegative real number {λn}n∈N such that Qen = λnen, n = 1, 2, 3, ..., and a
sequence {βn}n≥1 of independent standard Brownian motions such that

〈W(t), e〉K =
〈 ∞

∑
n=1

√
λnenβn, e

〉
K

, t ≥ 0, e ∈ K,

and let Ft = σ{W(s) : 0 ≤ s ≤ t} be the σ-algebra generated by W.
In order to define stochastic integrals with respect to the Q-Wiener process W(t), we introduce the

subspace K0 = Q
1
2 K of K, which endowed with the inner product,

〈a, b〉K0 = 〈Q−
1
2 a, Q−

1
2 b〉K, ∀a, b ∈ K0

is a Hilbert space. Let L0
2 = L2(K0;H) denote the space of all Hilbert-Schmidt operators from K0 into H. It

turns out to be a separable Hilbert space, equipped with the norm

‖ψ‖2
L0

2
= tr((ψQ

1
2 )(ψQ

1
2 )∗),

for any ψ ∈ L0
2. Obviously, for any bounded operators ψ ∈ L(K;H) - the set of all linear bounded operators

from K into H, this norm reduces to

‖ψ‖2
L0

2
= tr(ψQψ∗) =

∞

∑
n=1
|
√

λnψen|2.
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Let Φ : (0, ∞)→ L0
2 be a predictable, Ft-adapted process such that

∫ t

0
E‖Φ(s)‖2

L0
2
ds < ∞, t > 0.

Then, we can define the H-valued stochastic integral
∫ t

0 Φ(s)dW(s) (which is a continuous
square-integrable martingale) of Φ with respect to the Ft-valued Q-Wiener process W(t) by

〈 ∫ t

0
Φ(s)dW(s), e

〉
:=

∞

∑
n=1

∫ t

0

〈
Φ(s)

√
λnen, e

〉
dβn(s)

for any e ∈ H using the Itô integral with respect to βn(s). For the construction, we can refer to Da Prato and
Zabczyk [8].

Let L = (Lt)t≥0 is a K-valued Lévy processes such that L has stationary and independent increments, is
stochastically continuous and satisfies L0 = 0 almost surely. Let p(t), t ≥ 0 be the law of Lt, then (p(t))t≥0 is a
weakly continuous convolution semigroup of probability measures on K. We have the Lévy-Khinchin formula
[36] which yields for all t ≥ 0, x ∈ K,

E
(

ei〈x,Lt〉K
)
= etζ(x),

where

ζ(x) := exp
{

i〈a, x〉K −
1
2
〈Qx, x〉K +

∫
K−{0}

[
ei〈x,y〉K − 1− χ{|y|K<1}(y)i〈x, y〉K

]
λ(dy)

}
,

where a ∈ K and λ is a Lévy measure or a jump intensity measure of L on K − {0}, i.e.,∫
K−{0}min(|y|2K, 1)λ(dy) < ∞; χZ denotes the characteristic function on set Z ⊂ K; the triple (a, Q, λ) is

the characteristics of L and the mapping ζ is the characteristic exponent of L. We can also define the Lévy
measure on the whole of K via the assignment λ({0}) = 0.

Now, we shall write 4Lt := Lt − Lt−, ∀t ≥ 0, where Lt− := lims↑t Ls. Then, almost surely for any
Z ∈ B(K−{0}), which denotes the Borel σ-field of (K−{0}) and with 0 /∈ the closure of Z, we get a counting
Poisson random measure η on (K− {0}):

η(t, Z) = #{0 ≤ s ≤ t,4Ls ∈ Z} < ∞, t ≥ 0.

Let
η̃(t, dy) := η(t, dy)− λ(dy)t

be the compensated Poisson measure that is independent of W(t).
Let λZ denotes the restriction of the measure λ to Z, still denoted by λ, such that λ is finite on Z. Denote

by P2([0, T]× Z;H) the space of all predictable mappings k : [0, T]× Z → H for which

∫ T

0

∫
Z

E|k(t, y)|2Hλ(dy)dt < ∞.

We may then define the H-valued stochastic integral

∫ T

0

∫
Z

k(t, y)η(dt, dy) := ∑
0≤t≤T

k(t,4Yt)χZ(4Yt),

where
Yt :=

∫
Z

yη(t, dy) = ∑
0≤t≤t

4LsχZ(4Lt)

as a random finite sum which enables us to define∫ T

0

∫
Z

k(t, y)η̃(dt, dy) :=
∫ T

0

∫
Z

k(t, y)η(dt, dy)−
∫ T

0

∫
Z

k(t, y))λ(dy)dt.

Furthermore, we can see that
∫ t

0

∫
Z k(s, y)η̃(ds, dy) is an H-valued centered square-integrable martingale

such that
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E
(∣∣∣ ∫ T

0

∫
Z

k(t, y)η̃(dt, dy)
∣∣∣2
H

)
=
∫ T

0

∫
Z

E|k(t, y)|2Hλ(dy)dt.

We can refer to Protter [37] for a systematic theory about stochastic integrals of this kind.
Thus, the stochastic 2D Navier-Stokes equations with with memory and Poisson jumps (1) can be

rewritten as follows in the abstract mathematical setting:
dX(t) =

[
− νAX(t)− B(X(t)) + f (x) + g(X(t− ρ(t)))

]
dt + σ(t, X(t− δ(t)))dW(t)

+
∫

Z k(t, X(t− γ(t)), z)η̃(dt, dz) t ≥ 0,

X(θ) = φ(θ) ∈ L2(Ω, C([−r, 0],H)), θ ∈ [−r, 0], r > 0,

(2)

where f ∈ V∗, g : V → V∗, σ : [0,+∞) × V → L0
2(K,H), and k : [0,+∞) × H × (K − {0}) →

H are progressively measurable; L2(Ω, C([−r, 0],H)) denotes the family of all almost surely bounded
(Ft)t>0-measurable and C([−r, 0],H)-valued stochastic process, here C([−r, 0],H) denote the family of all
right-continuous functions with left-hand limits φ from [−r, 0] to H which is equipped with the norm
‖φ‖C := sup−r≤θ≤0 |φ(θ)|.

Now, we give the definition of the weak solution of system (2).

Definition 1. An Ft-adapted process X(t) is called the weak solution to (2) if the following conditions are
satisfied:

(i) X(t) ∈ C(−r, T;H) ∩ L2(−r, T;V), a.s., ∀T > 0;
(ii) the following integral equation holds as an identity in V∗ a.s., ∀t ∈ [0, T],

X(t) =X(0) +
∫ t

0

[
− νAX(s)− B(X(s)) + f (s) + g(X(s− ρ(s)))

]
ds

+
∫ t

0
σ(s, X(s− δ(s)))dW(s) +

∫ t

0

∫
Z

k(s, X(s− γ(s)), z)η̃(ds, dz). (3)

For our purpose, we recall the Itô formula, which will play a key role in what follows. Let C2(H;R+)

denote the space of all real-valued nonnegative functions Υ on H with the following properties:

(a) Υ(x) is twice (Fréchet) differentiable in x;
(b) Both Υx(x) and Υxx(x) are continuous in H and L(H).

Lemma 1. [40] Suppose Υ ∈ C2(H;R+) and X(t), t ≥ 0, is a weak solution to (2). Then

Υ(X(t)) =Υ(X(0)) +
∫ t

0
LΥ(X(s))ds +

∫ t

0
〈Υx(X(s)), σ(s, X(s− δ(s)))dW(s)〉

+
∫ t

0

∫
Z
[Υ(X(s) + k(s, X(s− γ(s)), z))− Υ(X(s))]η̃(ds, dz),

where L is the associated diffusion operator defined, for any x ∈ V, by

LΥ(x(t)) =〈−νAx(t)− B(x(t)) + f (t) + g(x(t− ρ(t))), Υx(x(t))〉

+
1
2

trace
(

Υxx(x(t))σ(t, x(t− δ(t)))Qσ(t, x(t− δ(t)))∗
)

+
∫

Z
[Υ(x(t) + k(s, x(s− γ(s)), z))− Υ(x(t))− 〈Υx(x(t)), k(s, x(s− γ(s)), z)〉]λ(dz).

Definition 2. We say that a weak solution X(t) of system (2) converges to u∞ ∈ H exponentially in the mean
square if there exist c > 0 and M0 > 0 such that for all t ≥ 0

E|X(t)− u∞|2 ≤ M0e−ct.

In particular, if u∞ is a solution to (2), then it is said that u∞ is exponentially stable in the mean square provided
that every weak solution to (2) converges to u∞ exponentially in the mean square with the same exponential
order c > 0.
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Definition 3. We say that a weak solution X(t) of system (2) converges to u∞ ∈ H almost surely exponentially
if there exist γ > 0 such that

lim
t→∞

log |X(t)− u∞|
t

≤ −γ, a.s..

In particular, if u∞ is a solution to (2), then it is said that u∞ is almost surely exponentially stable provided that
every weak solution to (2) converges to u∞ almost surely exponentially with the same constant γ.

3. Main results

In this section, we will discuss the asymptotic behavior for the weak solutions of stochastic 2D
Navier-Stokes equations with finite memory and Poisson jumps.

Let λ1 > 0 be the first eigenvalue of A, then

‖v‖2 ≥ λ1|v|2, ∀v ∈ V.

To investigate the asymptotic behavior for the weak solutions of (2), we assume the following hypotheses:

(H1) g(0) = 0 and there exists a positive number Cg such that

‖g(u)− g(v)‖V∗ ≤ Cg|u− v|, ∀u, v ∈ H.

(H2) There exist integrable functions α1, γ1 : [0, ∞)→ R+ such that, for certain constant β1 ≥ 0 and u ∈ H,

‖σ(t, u)‖2
L0

2
≤ α1(t) + (β1 + γ1(t))|u− u∞|2.

(H3) There exist integrable functions α2, γ2 : [0, ∞)→ R+ such that, for certain constant β2 ≥ 0 and u ∈ H,∫
Z
|k(t, u, z)|2λ(dz) ≤ α2(t) + (β2 + γ2(t))|u− u∞|2.

(H4) There exists θ > 0 such that, for t ≥ 0,∫ ∞

0
eθsαi(t)dt < ∞,

∫ ∞

0
eθsγi(t)dt < ∞, i = 1, 2.

We first consider the existence of the stationary solution to the equation

νAX + BX = f (x) + g(X) (in V∗). (4)

We have the following lemma:

Lemma 2. [20] Suppose that g satisfies the condition (H1) and ν > λ−1
1 Cg. Then we have the following:

(i) For all f ∈ V∗, there exists a stationary solution u∞ to (4).
(ii) There exists a constant C(D) > 0 such that, if (ν− λ−1

1 Cg)2 > C(D)‖ f ‖V∗ , then the stationary solution to (4)
is unique.

Now, using above lemma, we will discuss the asymptotic behavior for the weak solutions of (2). Hence,
throughout this paper we assume that there exists a unique stationary solution u∞ ∈ V to (4).

Set y(t) := X(t)− u∞ and Υ(y(t)) = y2(t). Then the function y(t) satisfies the following equation:

d(X(t)− u∞) = [−νA(X(t)− u∞))− (B(X(t)− B(u∞)) + (g(X(t− ρ(t)))− g(u∞))]dt

+ σ(t, X(t− δ(t)))dW(t) +
∫

Z
k(t, X(t− γ(t)), v)η̃(dt, dv).

Similar to the articles of Caraballo et al., [7], Liu [41] and Wan [42], in which, they studied Gaussian white
noise by Itô formula, utilizing Itô formula for Lévy noise in Lemma 1 to the function Υ(y(t)) = y2(t) and
taking expectation, we easily obtain the following result.
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Theorem 1. Suppose that the conditions (H1)− (H4) hold. Then there exists a unique weak solution X(t)− u∞ ∈
C(−r, T;H) ∩ L2(−r, T;V) a.s.. Furthermore, the following identity holds:

d
dt

E|X(t)− u∞|2 = −2E〈νA(X(t)− u∞), X(t)− u∞〉 − 2E〈B(X(t)− B(u∞), X(t)− u∞〉

+ 2E〈g(X(t− ρ(t)))− g(u∞), X(t)− u∞〉+ E‖σ(t, X(t− δ(t)))‖2
L0

2

+ E
∫

Z
|k(t, X(t− γ(t)), z)|2λ(dz).

The first main result of this section is the following theorem.

Theorem 2. Suppose that the conditions (H1) − (H4) hold. Then the weak solution X(t) to (2) converges to the
stationary solution u∞ to (4) exponentially stable in the mean square provided that the following inequality

C(D)
√

λ1‖u∞‖+ Cg +
β1 + β2

2
< νλ1, (5)

holds.

Proof. From (5), there exists a positive constant υ such that

C(D)
√

λ1‖u∞‖+ Cg +
β1 + β2

2
< C(D)

√
λ1‖u∞‖+

β1 + β2

2
+

1
2υ

+
υC2

g

2
< νλ1.

Furthermore, there exists a constant c ∈ (0, θ) sufficiently small such that

c + 2C(D)
√

λ1‖u∞‖+ β1 + β2 +
1

2υ
+ υC2

gecr − 2νλ1 < 0. (6)

For convenience, we shall denote

α(t) = α1(t) + α2(t), η(t) = (γ1(t) + γ2(t))ecr.

Since αi, γi, i = 1, 2, is integrable, together with the assumption (H4), we deduce that

Λ1 =
∫ ∞

0
η(t)dt < ∞, Λ2 =

∫ ∞

0
α(t)dt ≤ Λ3 =

∫ ∞

0
α(t)eθtdt < ∞. (7)

Define the function

F(t) :=

{
E|X(t)− u∞|2ect exp

(
−
∫ t

0 [η(s) + α(s)ecs]ds
)
, t ≥ 0,

E|X(t)− u∞|2ect, t ∈ [−r, 0).

Clearly, F(t) is right-continuous functions with left-hand limits on [−r,+∞) and

dF(t)
dt

= ect exp
(
−
∫ t

0
[η(s) + α(s)ecs]ds

){[
c− η(t)− α(t)ect]E|X(t)− u∞|2 +

d
dt

E|X(t)− u∞|2
}

. (8)

Now, from definition on the operator B, we get

〈B(X(s))− B(u∞), X(s)− u∞〉 = b(X(s)− u∞, u∞, X(s)− u∞), (9)

and from the properties on trilinear form b, we obtain

|b(X(s)− u∞, u∞, X(s)− u∞)| ≤ C1|X(s)− u∞|
1
2 ‖X(s)− u∞‖

1
2 ‖u∞‖|X(s)− u∞|

1
2 ‖X(s)− u∞‖

1
2

= C1|X(s)− u∞|‖X(s)− u∞‖‖u∞‖

≤ C1λ
− 1

2
1 ‖u∞‖‖X(s)− u∞‖2.

(10)
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Furthermore, by Young’s inequality and the assumption (H1), we have

|〈g(X(s− ρ(s)))− g(u∞), X(s)− u∞〉| ≤ υC2
g|X(s− ρ(s))− u∞|2 +

1
υ
|X(s)− u∞|2. (11)

Hence,

dF(t)
dt
≤ ect exp

(
−
∫ t

0
[η(s) + α(s)ecs]ds

){[
c− η(t)− α(t)ect − 2νλ1

+ 2C(D)
√

λ1‖u∞‖+
1
υ

]
E|X(t)− u∞|2 + υC2

gE|X(t− ρ(t))− u∞|2

+ E‖σ(t, X(t− δ(t)))‖2
L0

2
+ E

∫
Z
|k(t, X(t− γ(t)), z)|2λ(dz)

}

≤
(

c + 2C(D)
√

λ1‖u∞‖+
1
υ
− η(t)− 2νλ1

)
F(t) + α(t)ect − α(t)ectF(t)

+ ect exp
(
−
∫ t

0
[η(s) + α(s)ecs]ds

)
υC2

gE|X(t− ρ(t))− u∞|2

+ ect exp
(
−
∫ t

0
[η(s) + α(s)ecs]ds

)[
β1 + γ1(t)

]
E|X(t− δ(t))− u∞|2

+ ect exp
(
−
∫ t

0
[η(s) + α(s)ecs]ds

)[
β2 + γ2(t)

]
E|X(t− γ(t))− u∞|2.

In what follows, we claim that for any t ≥ 0

F(t) ≤ M̃ := 1 + sup
[−r,0]

E|X(t)− u∞|2. (12)

If the inequality (12) does not hold, then there exists t∗ > 0 such that, for any ε > 0

F(t) < M̃, 0 ≤ t < t∗, F(t∗) = M̃, F(t) > M̃, t∗ ≤ t ≤ t∗ + ε. (13)

This, in addition to (8), it can be shown that

dF(t∗)
dt

≥ 0. (14)

Furthermore,

dF(t∗)
dt

≤
(

c + 2C(D)
√

λ1‖u∞‖+
1
υ
− η(t∗)− 2νλ1

)
F(t∗) + α(t∗)ect∗ − α(t∗)ect∗F(t∗)

+ ect∗ exp
(
−
∫ t∗

0
[η(s) + α(s)ecs]ds

)
υC2

gE|X(t∗ − ρ(t∗))− u∞|2

+ ect∗ exp
(
−
∫ t∗

0
[η(s) + α(s)ecs]ds

)[
β1 + γ1(t∗)

]
E|X(t∗ − δ(t∗))− u∞|2

+ ect∗ exp
(
−
∫ t∗

0
[η(s) + α(s)ecs]ds

)[
β2 + γ2(t∗)

]
E|X(t∗ − γ(t∗))− u∞|2.

Next, we split the following cases to derive the desired assertion.
Case 1: If t∗ − ρ(t∗) ≥ 0, t∗ − δ(t∗) ≥ 0, t∗ − γ(t∗) ≥ 0, we then have from (6) and (13) that

dF(t∗)
dt

≤
(

c + 2C(D)
√

λ1‖u∞‖+
1
υ
− η(t∗)− 2νλ1

)
F(t∗) + α(t∗)ect∗ − α(t∗)ect∗F(t∗)

+ ecρ(t∗) exp
(
−
∫ t∗

t∗−ρ(t∗)
[η(s) + α(s)ecs]ds

)
υC2

gF
(
X(t∗ − ρ(t∗))

)
+ ecδ(t∗) exp

(
−
∫ t∗

t∗−δ(t∗)
[η(s) + α(s)ecs]ds

)[
β1 + γ1(t∗)

]
F
(
X(t∗ − δ(t∗))

)
+ ecγ(t∗) exp

(
−
∫ t∗

t∗−γ(t∗)
[η(s) + α(s)ecs]ds

)[
β2 + γ2(t∗)

]
F
(
X(t∗ − γ(t∗))

)
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≤
(

c + 2C(D)
√

λ1‖u∞‖+ β1 + β2 +
1
υ
+ υC2

gecr − 2νλ1

)
M̃ < 0,

which contradicts with (14). That is, the desired assertion (12) must hold.
Case 2: If t∗ − ρ(t∗) ≤ 0, t∗ − δ(t∗) ≤ 0, t∗ − γ(t∗) ≤ 0, we then have from (6) and (13) that

dF(t∗)
dt

≤
(

c + 2C(D)
√

λ1‖u∞‖+
1
υ
− η(t∗)− 2νλ1

)
F(t∗) + α(t∗)ect∗ − α(t∗)ect∗F(t∗)

+ ecρ(t∗) exp
(
−
∫ t∗

0
[η(s) + α(s)ecs]ds

)
υC2

gF
(
X(t∗ − ρ(t∗))

)
+ ecδ(t∗) exp

(
−
∫ t∗

0
[η(s) + α(s)ecs]ds

)[
β1 + γ1(t∗)

]
F
(
X(t∗ − δ(t∗))

)
+ ecγ(t∗) exp

(
−
∫ t∗

0
[η(s) + α(s)ecs]ds

)[
β2 + γ2(t∗)

]
F
(
X(t∗ − γ(t∗))

)
≤
(

c + 2C(D)
√

λ1‖u∞‖+ β1 + β2 +
1
υ
+ υC2

gecr − 2νλ1

)
M̃ < 0.

This is a contradiction. Hence, (12) holds true for any t ≥ 0. For other cases, for example: t∗ − ρ(t∗) ≥
0, t∗ − δ(t∗) ≤ 0, t∗ − γ(t∗) ≤ 0,..., in the same way as Cases 1 and 2 were done, we can show (12).

Therefore, from (12), we infer that

E|X(t)− u∞|2 ≤ M̃e−ct exp
( ∫ t

0
[η(s) + α(s)ecs]ds

) (3.4)
≤ M̃eΛ1+Λ3 e−ct, ∀t ≥ 0.

This completes the proof of the theorem.

In the following, C will denote a generic constant whose values might change from line to line.
In order to prove the almost surely exponential stability of the weak solution of (2) we shall establish the

following lemma.

Lemma 3. For any t ≥ 0, there exists a constant C > 0 such that

E sup
τ∈[0,t]

∣∣∣ ∫ τ

0

∫
Z

(∣∣k(s, X(s− γ(s)), z
)∣∣2

H + 2
〈

X(s−), k
(
s, X(s− γ(s)), z

)〉
H

)
η̃(ds, dz)

∣∣∣
≤ CE

∫ t

0

∫
Z

∣∣k(τ, X(τ − γ(τ)), z
)∣∣2

Hλ(dz)dτ +
1
4

E sup
τ∈[0,t]

|X(τ)|2H.

Proof. Set

Jt :=
∫ τ

0

∫
Z

(
‖γ
(
s, X(s− ρ(s)), z

)
‖2
H + 2

〈
X(s−), γ

(
s, X(s− ρ(s)), z

)〉
H

)
η̃(ds, dz).

Then,

[J, J]
1
2
t =

{
∑

s∈Dp ,s≤t

(
|γ
(
s, X(s− ρ(s)), p(s)

)
|2H + 2

〈
X(s−), γ

(
s, X(s− ρ(s)), p(s)

)〉
H

)2} 1
2

≤ C
(

∑
s∈Dp ,s≤t

∣∣γ(s, X(s− ρ(s)), p(s)
)∣∣4

H

) 1
2
+ C

(
∑

s∈Dp ,s≤t

∣∣X(s−)
∣∣2
H
∣∣γ(s, X(s− ρ(s)), p(s)

)∣∣2
H

) 1
2

≤ C ∑
s∈Dp ,s≤t

∣∣γ(s, X(s− ρ(s)), p(s)
)∣∣2

H + C sup
0≤s≤t

(|X(s−)|H)
(

∑
s∈Dp ,s≤t

∣∣γ(s, X(s− ρ(s)), p(s)
)∣∣2

H

) 1
2

≤ C ∑
s∈Dp ,s≤t

∣∣γ(s, X(s− ρ(s)), p(s)
)∣∣2

H +
1
4

sup
0≤s≤t

(|X(s−)|2H).

By Burkholder-Davis-Gundy inequality [43], we obtain that
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E[ sup
τ∈[0,t]

|Jτ |] ≤ CE([J, J]
1
2
t )

≤ CE
(

∑
s∈Dp ,s≤t

∣∣γ(s, X(s− ρ(s)), p(s)
)∣∣2

H

)
+

1
4

E
(

sup
0≤s≤t

(|X(s−)|2H)
)

= CE
∫ t

0

∫
Z

∣∣k(τ, X(τ − γ(τ)), z
)∣∣2

Hλ(dz)dτ +
1
4

E sup
τ∈[0,t]

|X(τ)|2H.

The proof is therefore complete.

We have the following theorem:

Theorem 3. Assume that all the assumptions of Theorem 2 are satisfied. Then, any weak solution X(t) to (2) converges
to the stationary solution u∞ of (4) almost surely exponentially.

Proof. Let n1, n2 and n3 be positive integers such that

n1 − ρ(n1) ≥ n1 − r ≥ 1, n2 − δ(n2) ≥ n2 − r ≥ 1, n3 − γ(n3) ≥ n3 − r ≥ 1.

Set n = max{n1, n2, n3}. By the Itô formula, it follows for any t ≥ n,

|X(t)− u∞|2 = |X(n)− u∞|2 − 2
∫ t

n
〈νA(X(s)− u∞), X(s)− u∞〉ds− 2

∫ t

n
〈B(X(s))− B(u∞), X(s)− u∞〉ds

+ 2
∫ t

n
〈g(X(s− ρ(s)))− g(u∞), X(s)− u∞〉ds +

∫ t

n
‖σ(s, X(s− δ(s)))‖2

L0
2
ds

+ 2
∫ t

n
〈X(s)− u∞, σ(s, X(s− δ(s)))dW(s)〉+

∫ t

n

∫
Z
|k(s, X(s− γ(s)), z)|2λ(dz)ds

+
∫ t

n

∫
Z

[
|k(s, X(s− γ(s)), z)|2 + 2

∫ t

n
〈X(s)− u∞, k(s, X(s− γ(s)), z)〉

]
η̃(ds, dz).

In view of Burkholder-Davis-Gundy inequality and the Young inequality, we have

2E
[

sup
t∈[n,n+1]

∫ t

n
〈X(s)− u∞, σ(s, X(s− ρ(s)))dW(s)〉

]
≤ 8E

[ ∫ n+1

n
|X(s)− u∞|2‖σ(s, X(s− ρ(s)))‖2

L0
2
ds
] 1

2

≤ 1
2

E
(

sup
t∈[n,n+1]

|X(t)− u∞|2
)
+ 32

∫ n+1

n
E‖σ(s, X(s− ρ(s)))‖2

L0
2
ds.

(15)

Applying Lemma 2, for any t ≥ 0 we can get

E sup
t∈[n,n+1]

∫ t

n

∫
Z

(∣∣k(s, X(s− γ(s)), z
)∣∣2 + 2

〈
X(s− u∞), k

(
s, X(s− γ(s)), z

)〉)
η̃(ds, dz)

≤ CE
∫ n+1

n

∫
Z

∣∣k(s, X(s− γ(s)), z
)∣∣2λ(dz)ds +

1
4

E
(

sup
t∈[n,n+1]

|X(t)− u∞|2
)

.

Hence,

E
(

sup
t∈[n,n+1]

|X(t)− u∞|2
)
≤ E|X(n)− u∞|2 +

(
2C(D)

√
λ1‖u∞‖+

1
υ
− 2νλ1

) ∫ n+1

n
E|X(s)− u∞|2ds

+ υC2
g

∫ n+1

n
E|X(s− ρ(s))− u∞|2ds + 33

∫ n+1

n
E‖σ(s, X(s− δ(s)))‖2

L0
2
ds

+ (C + 1)E
∫ n+1

n

∫
Z

∣∣k(s, X(s− γ(s)), z
)∣∣2λ(dz)ds +

3
4

E
(

sup
t∈[n,n+1]

|X(t)− u∞|2
)

.
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This implies that

E
(

sup
t∈[n,n+1]

|X(t)− u∞|2
)
≤ 4E|X(n)− u∞|2 + 4

(
2C(D)

√
λ1‖u∞‖+

1
υ
− 2νλ1

) ∫ n+1

n
E|X(s)− u∞|2ds

+ 4υC2
g

∫ n+1

n
E|X(s− ρ(s))− u∞|2ds

+ 132
∫ n+1

n

[
α1(s) + (β1 + γ1(s))E|X(s− δ(s))− u∞|2

]
ds

+ 4(C + 1)
∫ n+1

n

[
α2(s) + (β2 + γ2(s))E|X(s− γ(s))− u∞|2

]
ds

On the other hand, from Theorem 2, it is easy to show that

E
(

sup
t∈[n,n+1]

|X(t)− u∞|2
)
≤ 4M0e−cn + 4

∫ n+1

n
M0e−cs[γ∗(s) + α∗(s)ecs]ds,

where

α∗(t) := 33α1(t) + 4(C + 1)α2(t),

γ∗(t) := 2C(D)
√

λ1‖u∞‖+
1
υ
− 2νλ1 +

[
υC2

g + 33(β1 + γ1(t)) + (C + 1)(β2 + γ2(t))
]
ecr.

In view of assumption (H4), there exists a positive constant Λ such that we obtain that

E
(

sup
t∈[n,n+1]

|X(t)− u∞|2
)
≤ 4M0e−cn

(
1 +

Λ
c

)
.

Let εn > 0 be any fixed positive real number. Then by Chebychev’s inequality, we deduce that

P
{

sup
t∈[n,n+1]

|X(t)− u∞| > εn

}
≤

4M0e−cn
(

1 + Λ
c

)
ε2

n
.

Therefore, since εn is any fixed real number, let εn = e−
(c−ε)n

4 , where ε ∈ (0, c). Then by the Borel–Cantelli
lemma [44], we can yield that

limt→∞
log |X(t)− u∞|

t
≤ − c− ε

4
, a.s..

Letting ε→ 0+, this completes the proof of the theorem.

Remark 1. We consider a special case of the system (1) with variable delays when ρ ≡ δ and γ ≡ 0. That is,
our system (1) reduces to the following system

dX =
[
ν4X− 〈X,∇〉X−∇p + f (t) + g(X(t− ρ(t)))

]
dt + σ(X(t− ρ(t)))dW(t)

div X = 0 in (0,+∞)× D, X(t, x) = 0 on (0,+∞)× ∂D,

X(0, x) = X0(x), X(t, x) = φ(t, x), (t, x) ∈ (−r, 0)× D.

(16)

The system (16) has been recently studied by Chen [22]. Furthermore, Wan and Zhou [23] discussed the
following system

dX(t) =
[
− νAX(t)− B(X(t)) + f (X(t)) + g(X(ρ(t)))

]
dt + σ(t, X(t))dW(t),

div X = 0 in (0,+∞)× D, X(t, x) = 0 on (0,+∞)× ∂D,

X(t, x) = φ(t, x), for x ∈ D, and t ∈ [−r, 0], with r > 0,
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and Caraballo et al., [7] also studied the stability of the stationary solutions of the following stochastic 2D
Navier-Stokes without memory:

dX(t) =
[
− νAX(t)− B(X(t)) + g(X(t))

]
dt + σ(t, X(t))dW(t),

div X = 0 in (0,+∞)× D, X(t, x) = 0 on (0,+∞)× ∂D,

X(0, x) = X0(x), x ∈ D.

By using method in our paper, the conclusions of some theorems in the works [7,22,23] also easily
obtained. Obviously, our work have extended the asymptotic behavior results of above works to cover a class
of much more general stochastic 2D Navier-Stokes equations with memory and discontinuous multiplicative
noise.

Remark 2. If σ ≡ 0 in the system (16), then by utilizing the direct method, in [20], Caraballo and Real have
considered the asymptotic behavior for the weak solutions and Taniguchi [35] have investigated exponential
stability of energy solutions to 2D stochastic functional Navier-Stokes equation perturbed by the Lévy process.
However, unlike the works [20,35], we need not require the function ρ(t) to be differentiable and satisfies
0 ≤ ρ′(t) < 1. Therefore, our results extend and improve the one of Caraballo and Real [20] and Taniguchi
[35].

Conflicts of Interest: “The author declares no conflict of interest.”
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