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1. Introduction

F ractional differential equations have recently been applied in various areas of engineering, mathematics,
physics and bio-engineering, and other applied sciences [1,2]. For some fundamental results in the

theory of fractional calculus and fractional differential equations, we refer the reader to the monographs of
Abbas, Benchohra and N’Guérékata [3], Samko, Kilbas and Marichev [4], Kilbas, Srivastava and Trujillo [5]
and Zhou [6], the papers by Abbas et al., [7–9] and the references therein.

In 2000, a generalization of derivatives of both Riemann–Liouville and Caputo was given by Hilfer in
[1] when he studied fractional time evolution in physical phenomena. He named it as generalized fractional
derivative of order α ∈ (0, 1) and a type β ∈ [0, 1] which can be reduced to the Riemann–Liouville and Caputo
fractional derivatives when β = 0 and β = 1, respectively. Many authors call it the Hilfer fractional derivative.
Such derivative interpolates between the Riemann–Liouville and Caputo derivative in some sense. Some
properties and applications of the Hilfer derivative are given in [1,10] and references cited therein.

Recently, considerable attention has been given to the existence of solutions of initial and boundary
value problems for fractional differential equations with Hilfer fractional derivative; see [1,2,10–14] and the
references therein. In [15–18], the measure of noncompactness was applied to some classes of functional
Riemann-Liouville or Caputo fractional differential equations in Banach spaces.

In this paper, we consider the existence of solutions of the following boundary value problem for a
nonlinear fractional differential equation,

Dα,β
0+ y(t) = f (t, y(t)), t ∈ J := [0, T];

a1 I1−γy(0) + b1 I1−γ+q1 y(η1) = λ1, 0 < q1 ≤ 1;
a2 I1−γy(T) + b2 I1−γ+q2 y(η2) = λ2, 0 < q2 ≤ 1.

(1)

where Dα,β
0+ is the Hilfer fractional derivative, where 1 < α ≤ 2 , 0 ≤ β ≤ 1 , 0 < ηi < T , i=1,2, γ = α + β− αβ.

Let E is a reflexive Banach space with norm ‖.‖, f : J × E × E × E → E is given continuous function and
satisfying some assumptions that will be specified later and ai, bi, λi, i = 1, 2 are real constants.

The organization of this work is as follows; in Section 2, we introduce some notations, definitions, and
lemmas that will be used later. Section 3 treats the existence of solutions in Banach spaces by using the Mönch’s
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fixed point theorem combined with the technique of measures of noncompactness. In Section 4, we illustrate
the obtained results by an example. Finally, the paper concludes with some interesting observations.

2. Preliminaries

In what follows we introduce definitions, notations, and preliminary facts which are used in the sequel.
For more details, we refer to [1,4,5,19–22].

Let C(J, E) be the Banach space of continuous functions y : J → E, with the usual supremum norm

‖y‖∞ = sup{‖y(t)‖, t ∈ J},

and L1(J, E) be the Banach space of measurable functions y : J → E which are Bochner integrable, equipped
with the norm

‖y‖L1 =
∫

J
y(t)dt.

Further, let AC1(J, E) be the space of functions y : J → E, whose first derivative is absolutely continuous.

Definition 1. [23] Let J = [0, T] be a finite interval and 1 ≤ γ < 2. We introduce the weighted space C1−γ(J, E)
of continuous functions f on (0, T] by

C1−γ(J, E) = { f : (0, T]→ E : (t− a)1−γ f (t) ∈ C(J, E)}.

In the space C1−γ(J, E), we define the norm

‖ f ‖C1−γ
= ‖(t− a)1−γ f (t)‖C.

Definition 2. [23] Let 1 < α < 2, 0 ≤ β ≤ 1. The weighted space Cα,β
1−γ(J, E) is defined by

Cα,β
1−γ(J, E) = { f : (0, T]→ R : Dα,β

0+ f ∈ C1−γ(J, E)}, γ = α + β− αβ,

and
C1

1−γ(J, E) = { f : (0, T]→ R : f ′ ∈ C1−γ(J, E)}, γ = α + β− αβ,

with the norm
‖ f ‖C1

1−γ
= ‖ f ‖C + ‖ f ′‖C1−γ

. (2)

Moreover, C1−γ(J, E) is complete metric space of all continuous functions mapping J into E with the
metric d defined by

d(y1, y2) = ‖y1 − y2‖C1−γ(J,E) := max
t∈J
|(t− a)1−γ[y1(t)− y2(t)]|.

For details, see [23].
Now, we give some results and properties of fractional calculus.

Definition 3. [24] Let (0, T] and f : (0, ∞) → R is a real valued continuous function. The Riemann-Liouville
fractional integral of a function f of order α ∈ R+ is denoted as Iα

0+ f and defined by

Iα
0+ f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, t > 0, (3)

where Γ(α) is the Euler’s Gamma function.

Definition 4. [5] Let (0, T] and f : (0, ∞) → R is a real valued continuous function. The Riemann-Liouville
fractional derivative of a function f of order α ∈ R+

0 = [0,+∞) is denoted as Dα
0+ f and defined by

Dα
0+ f (t) =

1
Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1 f (s)ds, (4)



Open J. Math. Sci. 2020, 4, 456-465 458

where n = [α] + 1, and [α] means the integral part of α, provided the right hand side is pointwise defined on
(0, ∞).

Definition 5. [5] The Caputo fractional derivative of function f with order α > 0, n − 1 < α < n, n ∈ N is
defined by

CDα
0+ f (t) =

1
Γ(n− α)

∫ t

0
(t− s)n−α−1 f (n)(s)ds, t > 0. (5)

In [1], Hilfer studied applications of a generalized fractional operator having the Riemann-Liouville and
Caputo derivatives as specific cases, (see also [2,10]).

Definition 6. [1] The Hilfer fractional derivative Dα,β
0+ of order α (n− 1 < α < n) and type β (0 ≤ β ≤ 1) is

defined by
Dα,β

0+ = Iβ(n−α)
0+ Dn I(1−β)(n−α)

0+ f (t), (6)

where Iα
0+ and Dα

0+ are Riemann-Liouville fractional integral and derivative defined by (3) and (4), respectively.

Remark 1. ([25]) Hilfer fractional derivative interpolates between the Riemann-Liouville ((4), if β = 0) and
Caputo ((5), if β = 1) fractional derivatives since

Dα,0
0+ =R−L Dα

0+ and Dα,1 =C Dα
0+ .

Lemma 1. Let 1 < α < 2, 0 ≤ β ≤ 1, γ = α + β− αβ, and f ∈ L1(J, E). The operator Dα,β
0+ can be written as

Dα,β
0+ f (t) =

(
Iβ(1−α)
0+

d
dt

I(1−γ)
0+ f

)
(t) = Iβ(1−α)

0+ Dγ f (t), t ∈ J.

Lemma 2. Let 1 < α < 2, 0 ≤ β ≤ 1 and γ = α + β− αβ. If Dβ(1−α)
0+ f exists and is in L1(J, E), then

Dα,β
0+ Iα

0+ f (t) = Iβ(1−α)
0+ Dβ(1−α)

0+ f (t), t ∈ J.

Furthermore, if f ∈ C1−γ(J, E) and I1−β(1−α)
0+ f ∈ C1

1−γ(J, E), then

Dα,β
0+ Iα

0+ f (t) = f (t), t ∈ J.

Lemma 3. Let 1 < α < 2, 0 ≤ β ≤ 1, γ = α + β− αβ, and f ∈ L1(J, E). If Dγ
0+ f exists and is in L1(J, E), then

Iα
0+Dα,β

0+ f (t) = Iγ
0+Dγ

0+ f (t) = f (t)−
I1−γ
0+ f (0+)

Γ(γ)
tγ−1, t ∈ J.

Lemma 4. [5] For t > a, we have Iα
0+(t− a)β−1(t) = Γ(β)

Γ(β−α)
(t− a)β+α−1,

Dα
0+(t− a)β−1(t) = Γ(β)

Γ(β−α)
(t− a)β−α−1.

(7)

Lemma 5. Let α > 0 and 0 ≤ β ≤ 1. Then the homogeneous differential equation with Hilfer fractional order

Dα,β
0+ h(t) = 0 (8)

has a solution
h(t) = c0tγ−1 + c1tγ+2β−2 + c2tγ+2(2β)−3 + ... + cntγ+n(2β)−(n+1).

Notation 1. For a given set V of functions v : J → E, let us denote by

V(t) = {v(t) : v ∈ V}, t ∈ J,

and
V(J) = {v(t) : v ∈ V, t ∈ J}.
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Definition 7. A map f : J × E→ E is said to be Caratheodory if

(i) t 7→ f (t, u) is measurable for each u ∈ E;
(ii) u 7→ F(t, u) is continuous for almost all t ∈ J.

For convenience, we recall the definitions of the Kuratowski measure of noncompactness and summarize
the main properties of this measure.

Definition 8. ([16,19]). Let E be a Banach space and ΩE the bounded subsets of E. The Kuratowski measure
of noncompactness is the map µ : ΩE → [0, ∞] defined by

µ(B) = inf{ε > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE.

This measure of noncompactness satisfies following important properties [16,19]:

(a) µ(B) = 0⇔ B is compact (B is relatively compact).
(b) µ(B) = µ(B).
(c) A ⊂ B⇒ µ(A) ≤ µ(B).
(d) µ(A + B) ≤ µ(A) + µ(B).
(e) µ(cB) = |c|µ(B); c ∈ R.
(f) µ(convB) = µ(B).

Let us now recall Mönch’s fixed point theorem and an important lemma.

Theorem 1. ([15,22]). Let D be a bounded, closed and convex subset of a Banach space such that 0 ∈ D, and let N be a
continuous mapping of D into itself. If the implication

V = convN(V) or V = N(V) ∪ {0} ⇒ µ(V) = 0 (9)

holds for every subset V of D, then N has a fixed point.

Lemma 6. ([22]). Let D be a bounded, closed and convex subset of the Banach space C(J, E), ”G” a continuous function
on J × J and ” f ” a function from J × E −→ E which satisfies the Caratheodory conditions, and suppose there exists
p ∈ L1(J,R+) such that, for each t ∈ J. Then for each bounded set B ⊂ E, we have

limh→0+ µ( f (Jt,h × B)) ≤ p(t)µ(B); here Jt,h = [t− h, t] ∩ J.

If V is an equicontinuous subset of D, then

µ

({∫
J

G(s, t) f (s, y(s))ds : y ∈ V
})
≤
∫

J
‖G(t, s)‖p(s)µ(V(s))ds.

3. Main results

Let us start by defining what we meant by a solution of Problem (1).

Definition 9. A function y ∈ C1−γ(J, E) is said to be a solution of the Problem (1) if y satisfies the

equation Dα,β
0+ y(t) = f (t, y(t)) on J, and the conditions a1 I1−γy(0) + b1 I1−γ+q1 y(η1) = λ1 and a2 I1−γy(T) +

b2 I1−γ+q2 y(η2) = λ2 .

Lemma 7. Let f : J × E × E × E → E be a function such that f ∈ C1−γ(J, E) for any y ∈ C1−γ(J, E). Then the
unique solution of the linear Hilfer fractional boundary value problem

Dα,β
0+ y(t) = f (t, y(t)), t ∈ J := [0, T], (10)

with boundary conditions {
a1 I1−γy(0) + b1 I1−γ+q1 y(η1) = λ1,

a2 I1−γy(T) + b2 I1−γ+q2 y(η2) = λ2, γ = α + β− αβ.
(11)
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is given by

y(t) = Iα f (t, y(t)) +
tγ−1

w

[
(w4λ1 − w2λ2)− w4b1 Iα−γ+q1+1 f (η1, y(η1))

+w2

(
a2 Iα−γ+1 f (T, y(T)) + b2 Iα−γ+q2+1 f (η2, y(η2))

)]
+

tγ+2β−2

w

[
(w1λ2 − w3λ1) + w3b1 Iα−γ+q1+1 f (η1, y(η1))

−w1

(
a2 Iα−γ+1 f (T, y(T)) + b2 Iα−γ+q2+1 f (η2, y(η2))

)]
= Iα f (t, y(t)) +

(w3tγ+2β−2 − w4tγ−1)

w
b1 Iα−γ+q1+1 f (η1, y(η1)) +

tγ−1

w
(w4λ1 − w2λ2)

+
(w2tγ−1 − w1tγ+2β−2)

w

(
a2 Iα−γ+1 f (T, y(T)) + b2 Iα−γ+q2+1 f (η2, y(η2))

)
+

tγ+2β−2

w
(w1λ2 − w3λ1), (12)

where 

w1 = Γ(γ)
(

a1 + b1
η

q1
1

Γ(q1+1)

)
,

w2 = Γ(γ+2β−1)
Γ(2β+q1)

η
2β+q1−1
1 ,

w3 = Γ(γ)
(

a2 + b2
η

q2
2

Γ(q2+1)

)
,

w4 = Γ(γ+2β−1)
Γ(2β)

(
b2η

2β+q2−1
2 + a2T2β−1

)
,

w = w1w4 − w2w3, with w 6= 0.

(13)

Proof. Assume y satisfies (12), then Lemma 5 implies that

y(t) = c1tγ−1 + c2tγ+2β−2 +
1

Γ(α)

∫ t

0
(t− s)α−1 f (s, y(s))ds, (14)

for some constants c1, c2 ∈ R. Applying the boundary conditions (11) in (14), we obtain

I1−γy(t) = Iα−γ+1 f (t, y(t)) + c1Γ(γ) + c2
Γ(γ + 2β− 1)

Γ(2β)
t2β−1,

I1−γy(0) = c1Γ(γ),

I1−γy(T) = Iα−γ+1 f (T, y(T)) + c1
Γ(γ)

Γ(qi + 1)
+ c2

Γ(γ + 2β− 1)
Γ(2β)

T2β−1,

I1−γ+qi y(ηi) = Iα−γ+qi+1 f (ηi, y(ηi)) + c1Γ(γ) + c2
Γ(γ + 2β− 1)

Γ(2β + qi)
η

2β+qi−1
i , i = 1, 2.

After collecting the similar terms in one part and by using (13), we have the following equations{
c1w1 + c2w2 = λ1 − b1 Iα−γ+q1+1 f (η1, y(η1)),

c1w3 + c2w4 = λ2 − a2 Iα−γ+1 f (T, y(T))− b2 Iα−γ+q2+1 f (η2, y(η2)).
(15)

Solving (15), we find that

c1 =
1
w

[
(w4λ1 − w2λ2)− w4b1 Iα−γ+q1+1 f (η1, y(η1)) + w2

(
a2 Iα−γ+1 f (T, y(T)) + b2 Iα−γ+q2+1 f (η2, y(η2))

)]
,

and

c2 =
1
w

[
(w1λ2 − w3λ1) + w3b1 Iα−γ+q1+1 f (η1, y(η1))− w1

(
a2 Iα−γ+1 f (T, y(T)) + b2 Iα−γ+q2+1 f (η2, y(η2))

)]
.

Substituting the value of c1, c2 in (14), we get (12).

In order to present and prove our main results, we consider the following theorem:
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Theorem 2. Assume that the following conditions hold:

(H1) f : J × E→ E satisfies the Caratheodory conditions;
(H2) There exists p ∈ L1(J,R+), such that, ‖ f (t, y)‖ ≤ p(t)‖y‖, for t ∈ J and each y ∈ E;
(H3) For each t ∈ J and each bounded set B ⊂ E, we have limh→0+ µ( f (Jt,h × B)) ≤ t1−γ p(t)µ(B); here Jt,h =

[t− h, t] ∩ J;
(H4) There exists a constant R > 0 such that

R ≥ K
(1− p∗L)

, (16)

where L = Tα−γ+1

Γ(α+1) +
|b1|(|w3|T2β−1+|w4|)

wΓ(α−γ+q1+2) η
α−γ+q1+1
1 + |a2|(|w2|+|w1|T2β−1)

|w|Γ(α−γ+2) Tα−γ+1 + |b2|(|w2|+|w1|T2β−1)
|w|Γ(α−γ+q2+2) η

α−γ+q2+1
2 .

and K = T2β−1(|w1λ2|+|w3λ1|)+(|w4λ1|+|w2λ2|)
|w| .

Now, we shall prove the following theorem concerning the existence of solutions of (1). Let p∗ =

supt∈J p(t).

Theorem 3. Assume that the hypotheses (H1)-(H3) hold. If

p∗L < 1, (17)

then (1) has at least one solution defined on J.

Proof. Transform the Problem (1) into a fixed point problem. Consider the operator ℵ : C1−γ(J, E) →
C1−γ(J, E) defined by

ℵ(y)(t) = Iα f (t, y(t)) +
(w3tγ+2β−2 − w4tγ−1)

w
b1 Iα−γ+q1+1 f (η1, y(η1)) +

tγ−1

w
(w4λ1 − w2λ2)

+
(w2tγ−1 − w1tγ+2β−2)

w

(
a2 Iα−γ+1 f (T, y(T)) + b2 Iα−γ+q2+1 f (η2, y(η2))

)
+

tγ+2β−2

w
(w1λ2 − w3λ1). (18)

Clearly, the fixed points of the operator ℵ are solutions of the Problem (1).
Take

D =
{

y ∈ C1−γ(J, E) : ‖y‖ ≤ R
}

,

where R satisfies inequality (16). Notice that the subset D is closed, convex, and equicontinuous. We shall
show that the operator ℵ satisfies all the assumptions of Mönch’s fixed point theorem. The proof will be given
in three steps.
Step 1. ℵ is continuous.

Let yn be a sequence such that yn → y in C1−γ(J, E). Then for each t ∈ J ,

‖t1−γ(ℵ(yn)(t)− ℵ(y)(t))‖ ≤
t1−γ

Γ(α)

∫ t

0
(t− s)α−1‖ f (s, yn(s))− f (s, y(s))‖ds

+
|b1|(|w3|t2β−1 + |w4|)
|w|Γ(α− γ + q1 + 1)

∫ η1

0
(η1 − s)α−γ+q1‖ f (s, yn(s))− f (s, y(s))‖ds

+
|a2|(|w2|+ |w1|t2β−1)

|w|Γ(α− γ + 1)

∫ T

0
(T − s)α−γ‖ f (s, yn(s))− f (s, y(s))‖ds

+
|b2|(|w2|+ |w1|t2β−1)

|w|Γ(α− γ + q2 + 1)

∫ η2

0
(η2 − s)α−γ+q2‖ f (s, yn(s))− f (s, y(s))‖ds

≤
{

Tα−γ+1

Γ(α + 1)
+
|b1|(|w3|T2β−1 + |w4|)
|w|Γ(α− γ + q1 + 2)

η
α−γ+q1+1
1 +

|a2|(|w2|+ |w1|T2β−1)

|w|Γ(α− γ + 2)
Tα−γ+1

+
|b2|(|w2|+ |w1|T2β−1)

|w|Γ(α− γ + q2 + 2)
η

α−γ+q2+1
2

}
‖ f (s, yn(s))− f (s, y(s))‖.

Since f is of Caratheodory type, then by the Lebesgue dominated convergence theorem, we have

‖ℵ(yn)− ℵ(y)‖∞ → 0 as n→ ∞.

Step 2. We show that ℵmaps D into D.
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Take y ∈ D, t ∈ J and assume that ℵy(t) 6= 0.

‖t1−γ(ℵy)(t)‖ ≤ t1−γ

[
Iα f (s, y(s))(t) +

(|w3|tγ+2β−2 + |w4|tγ−1)

|w| |b1|Iα−γ+q1+1 f (s, y(s))(η1)

+
(|w2|tγ−1 + |w1|tγ+2β−2)

|w|

(
|a2|Iα−γ+1 f (s, y(s))(T) + |b2|Iα−γ+q2+1 f (s, y(s))(η2)

)
+

tγ−1

|w| (|w4λ1|+ |w2λ2|) +
tγ+2β−2

|w| (|w1λ2|+ |w3λ1|)
]

≤
[

t1−γ Iα| f (s, y(s))(t)|+ |b1|(|w3|t2β−1 + |w4|)
|w| Iα−γ+q1+1| f (s, y(s))(η1)|

+
(|w2|+ |w1|t2β−1)

|w|

(
|a2|Iα−γ+1| f (s, y(s))(T)|+ |b2|Iα−γ+q2+1| f (s, y(s))(η2)|

)
+
(|w4λ1|+ |w2λ2|)

|w| +
t2β−1

|w| (|w1λ2|+ |w3λ1|)
]

≤
[

T1−γ Iα‖y‖p(s)(T) +
|b1|(|w3|T2β−1 + |w4|)

|w| Iα−γ+q1+1‖y‖p(s)(η1)

+
(|w2|+ |w1|T2β−1)

|w|

(
|a2|Iα−γ+1 p(s)(T) + |b2|Iα−γ+q2+1‖y‖p(s)(η2)

)]
+

T2β−1(|w1λ2|+ |w3λ1|) + (|w4λ1|+ |w2λ2|)
|w|

≤ p∗R
[

Tα−γ+1

Γ(α + 1)
+
|b1|(|w3|T2β−1 + |w4|)
|w|Γ(α− γ + q1 + 2)

η
α−γ+q1+1
1 +

|a2|(|w2|+ |w1|T2β−1)

|w|Γ(α− γ + 2)
Tα−γ+1

+
|b2|(|w2|+ |w1|T2β−1)

|w|Γ(α− γ + q2 + 2)
η

α−γ+q2+1
2

]
+

T2β−1(|w1λ2 − w3λ1|) + (|w4λ1|+ |w2λ2|)
|w|

= p∗RL +
T2β−1(|w1λ2|+ |w3λ1|) + (|w4λ1|+ |w2λ2|)

|w| ≤ R.

Next, we show that ℵ(D) is equicontinuous. By Step 2, it is obvious that ℵ(D) ⊂ C1−γ(J, E) is bounded.
For the equicontinuity of ℵ(D), let t1, t2 ∈ J , t1 < t2 and y ∈ D, so t1−γ

2 ℵy(t2)− t1−γ
1 ℵy(t1) 6= 0. Hence,

‖t1−γ
2 ℵy(t2)− t1−γ

1 ℵy(t1)‖ ≤ Iα(t1−γ
2 f (s, x(s))(t2)− t1−γ

1 f (s, x(s))(t1)

+
|b1w3|(t

2β−1
2 − t2β−1

1 )

|w| Iα−γ+q1+1 f (s, y(s))(η1) + |w1|
(t2β−1

1 − |t2β−1
2 )

|w|

(
|a2|Iα−γ+1 f (s, y(s))(T)

+|b2|Iα−γ+q2+1 f (s, y(s))(η2)
)
+

t2β−1
2 − t2β−1

1
|w| (|w1λ2 − w3λ1|)

≤ p∗R
Γ(α)

[
t1−γ
2

∫ t1

0
(t2 − s)α−1ds− t1−γ

1

∫ t1

0
(t1 − s)α−1ds +t1−γ

2

∫ t2

t1

(t2 − s)α−1ds
]

+ p∗R

[
|w3b1|(t

2β−1
2 − t2β−1

1 )

|w| Iα−γ+q1+1(1)(η1)

+
|w1|(t

2β−1
1 − t2β−1

2 )

|w|

(
|a2|Iα−γ+1(1)(T) + |b2|Iα−γ+q2+1(1)(η2)

)]
+

t2β−1
2 − t2β−1

1
|w| (|w1λ2 − w3λ1|)

≤ p∗R

[
(tα−γ+1

2 − tα−γ+1
1 )

Γ(α + 1)
+
|b1w3|(t

2β−1
2 − t2β−1

1 )

|w|Γ(α− γ + q1 + 2)
η

α−γ+q1+1
1

+
|w1|(t

2β−1
1 − t2β−1

2 )

|w|

(
|a2|Tα−γ+1

Γ(α− γ + 2)
+
|b2|η

α−γ+q2+1
2

Γ(α− γ + q2 + 2)

)]
+

t2β−1
2 − t2β−1

1
|w| (|w1λ2 − w3λ1|).

As t1 → t2, the right hand side of the above inequality tends to zero. Hence ℵ(D) ⊂ D.
Step 3. The implication (9) holds.

Now let V be a bounded and equicontinuous subset of D. Hence t 7→ v(t) = µ(V(t)) is continuous on J
such that V ⊂ conv(0 ∪ ℵ(V)). Clearly, V(t) ⊂ conv({0} ∪ ℵ(V)) for all t ∈ J . Hence ℵV(t) ⊂ ℵD(t), t ∈ J is
bounded in E . By assumption (H3), and the properties of measure µ , we have, for each t ∈ J,
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t1−γv(t) ≤ µ(t1−γN(V)(t) ∪ {0})) ≤ µ(t1−γ(NV)(t))

≤ µ

{
t1−γ

[
Iα f (t, V(t)) +

(w3tγ+2β−2 − w4tγ−1)

w
b1 Iα−γ+q1+1 f (s, V(s))(η1) +

tγ−1

w
(w4λ1 − w2λ2)

+
a2(w2tγ−1 − w1tγ+2β−2)

w
Iα−γ+1 f (s, V(s))(T) +

b2(w2tγ−1 − w1tγ+2β−2)

w
Iα−γ+q2+1 f (s, V(s))(η2)

+
tγ+2β−2

w
(w1λ2 − w3λ1)

]}
≤ t1−γ Iαµ ( f (s, V(s))) (t) +

|b1|(|w3|t2β−1 + |w4|)
|w| Iα−γ+q1+1µ ( f (s, V(s))) (η1)

+
|a2|(|w2|+ |w1|t2β−1)

|w| Iα−γ+1µ ( f (s, V(s))) (T) +
|b2|(|w2|+ |w1|t2β−1)

|w| Iα−γ+q2+1µ ( f (s, V(s))) (η2)

≤ t1−γ Iα (p(s)v(s)) (t) +
|b1|(|w3|T2β−1 + |w4|)

|w| Iα−γ+q1+1 (p(s)v(s)) (η1)

+
|a2|(|w2|+ |w1|T2β−1)

|w| Iα−γ+1 (p(s)v(s)) (T) +
|b2|(|w2|+ |w1|T2β−1)

|w| Iα−γ+q2+1 (p(s)v(s)) (η2)

≤ p∗‖v‖∞

[
T1−γ Iα (1) (T) +

|b1|(|w3|T2β−1 + |w4|)
|w| Iα−γ+q1+1 (1) (η1)

+
|a2|(|w2|+ |w1|T2β−1)

|w| Iα−γ+1 (1) (T) +
|b2|(|w2|+ |w1|T2β−1)

|w| Iα−γ+q2+1 (1) (η2)

]
≤ p∗‖v‖∞

[
Tα−γ+1

Γ(α + 1)
+
|b1|(|w3|T2β−1 + |w4|)
|w|Γ(α− γ + q1 + 2)

η
α−γ+q1+1
1 +

|a2|(|w2|+ |w1|T2β−1)

|w|Γ(α− γ + 2)
Tα−γ+1

+
|b2|(|w2|+ |w1|T2β−1)

|w|Γ(α− γ + q2 + 2)
η

α−γ+q2+1
2

]
= p∗‖v‖∞L.

which gives ‖v‖∞(1− p∗L) ≤ 0. From (17), we get ‖v‖ = 0, that is, v(t) = µ(V(t)) = 0, for each t ∈ J. Then V
is relatively compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact in D. Applying now
Theorem 1, we conclude that ℵ has a fixed point which is a solution of (1).

4. Example

Example 1. Let us consider the following Hilfer fractional boundary value problem;
D

3
2 , 2

3
0+ y(t) = f (t, y(t)), t ∈ J := [0, 1];

D
1
6 y(0) + I

1
3 y( 1

3 ) = 1, 0 < q1 ≤ 1;
D

1
6 y(1) + I

1
6 y( 2

3 ) = 2, 0 < q2 ≤ 1,

(19)

where α = 3
2 , β = 2

3 , γ = 7
6 , T = 1, a1 = a2 = 1, b1 = b1 = 1, λ1 = 1, λ2 = 2, q2 = 1

6 , q1 = 1
2 , η1 = 1

3 ,
η2 = 2

3 .
Let E = l1 = {x = (x1, x2, ..., xn, ...) : ∑∞

n=1 |xn| < ∞} with the norm ‖yn‖E = ∑∞
n=1 |xn|. Set y =

(y1, y2, ..., yn, ...), f = ( f1, f2, ..., fn, ...), with f (t, yt)) = 1
et+2 |yn(t)|, t ∈ J. Clearly, the function f is continuous.

For each yn ∈ R and t ∈ J, we have ‖ f (t, y(t))‖ ≤ 1
et+2 ‖yn‖. Hence conditions (H1), (H2) and (H3) hold with

p(t) = 1
et+2 , t ∈ J and (H3) is satisfied with p∗ = e−2. Now, we can find that p∗L ' 693

2500 ≤ 1, hence (H4) is
satisfied and we have p∗RL + K ≤ R. Thus R > K

1−Lp∗ , so R > 10053
2000 . Consequently, Theorem 3 implies that

Problem (19) has a solution defined on J.

5. Conclusions

In this paper, we consider the existence of solutions of the boundary value problem for a nonlinear
fractional differential equation. Several existence and uniqueness results have been derived by using a method
involving a measure of noncompactness and a fixed point theorem of Mönch type. Our results are quite general
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and give rise to many new cases by assigning different values to the parameters involved in the problem. For
explanation, we enlist some special cases.

In case we choose a1 = a2 = T = β = 1, b1 = b2 = −1 and λ1 = λ2 = 0 the Problem (1) reduces to the
case considered in [26] in the scalar case using the standard tools of fixed point theory and Leray-Schauder
nonlinear alternative. Here we extend the results of [26] to cover the abstract case. We remark the cases when
considered in conclusion in [26] also exist here.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

[1] Hilfer, R. (2000). Applications of fractional calculus in physics. Singapore, World scientific.
[2] Kamocki, R., & Obczynski, C. (2016). On fractional Cauchy-type problems containing Hilfer’s derivative. Electronic

Journal of Qualitative Theory of Differential Equations, 2016(50), 1-12.
[3] Abbas, S., Benchohra, M., & N’Guerekata, G. M. (2014). Advanced fractional differential and integral equations. Nova

Science Publishers.
[4] Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives (Vol. 1). Yverdon-les-Bains,

Switzerland: Gordon and Breach Science Publishers, Yverdon.
[5] Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol.

204). elsevier.
[6] Yong, Z. (2014). Basic Theory Of Fractional Differential Equations (Vol. 6). World Scientific.
[7] Abbas, S., Benchohra, M., Henderson, J., & Lazreg, J. E. (2017). Measure of noncompactness and impulsive Hadamard

fractional implicit differential equations in Banach spaces. Mathematics in Engineering, Science & Aerospace (MESA),
8(3), 1-19.

[8] Abbas, S., Benchohra, M., Lazreg, J. E., & Zhou, Y. (2017). A survey on Hadamard and Hilfer fractional differential
equations: analysis and stability. Chaos, Solitons & Fractals, 102, 47-71.

[9] Abbas, S., Benchohra, M., Lazreg, J. E., & Nieto, J. J. (2018). On a coupled system of Hilfer and Hilfer # Hadamard
fractional defferential equation in Banach spaces. Journal of Nonlinear Functional Analysis, Article ID 12.

[10] Hilfer, R., Luchko, Y., & Tomovski, Z. (2009). Operational method for the solution of fractional differential equations
with generalized Riemann-Liouville fractional derivatives. Fractional Calculus and Applied Analysis, 12(3), 299-318.

[11] Bhairat, S. P. (2019). Existence and continuation of solutions of Hilfer fractional differential equations. Journal of
Mathematical Modeling, 7(1), 1-20.

[12] Vivek, D., Kanagarajan, K., & Elsayed, E. M. (2018). Nonlocal initial value problems for implicit differential equations
with Hilfer-Hadamard fractional derivative. Nonlinear Analysis: Modelling and Control, 23(3), 341-360.

[13] Wang, J., & Zhang, Y. (2015). Nonlocal initial value problems for differential equations with Hilfer fractional
derivative. Applied Mathematics and Computation, 266, 850-859.

[14] Yang, M., & Wang, Q. R. (2017). Approximate controllability of Hilfer fractional differential inclusions with nonlocal
conditions. Mathematical Methods in the Applied Sciences, 40(4), 1126-1138.

[15] Agarwal, R. P., Meehan, M., & O’regan, D. (2001). Fixed point theory and applications (Vol. 141). Cambridge university
press.

[16] Bana, J., & Goebel, K. (1980). Measures of noncompactness in Banach spaces. Lecture Notes in Pure and Applied
Mathematics, 60, 97 pages.

[17] Banas, J., Jleli, M., Mursaleen, M., Samet, B., & Vetro, C. (Eds.). (2017). Advances in nonlinear analysis via the concept of
measure of noncompactness. Springer Singapore.

[18] Benchohra, M., Henderson, J., & Seba, D. (2008). Measure of noncompactness and fractional differential equations in
Banach spaces. Communications in Applied Analysis, 12(4), 419-428.

[19] Akhmerov, R. R., Kamenskii, M. I., Potapov, A. S., Rodkina, A. E., & Sadovskii, B. N. (1992). Measures of noncompactness
and condensing operators (Vol. 55). Basel, Birkhäuser.

[20] Alvárez, J. C. (1985). Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally
convex spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales (Espana), 79(1-2), 53-66.

[21] Mönch, H. (1980). Boundary value problems for nonlinear ordinary differential equations of second order in Banach
spaces. Nonlinear Analysis: Theory, Methods & Applications, 4(5), 985-999.

[22] Szufla, S. (1986). On the application of measure of noncompactness to existence theorems. Rendiconti del Seminario
Matematico della Universita di Padova, 75, 1-14.

[23] Furati, K. M., Kassim, M. D., & Tatar, N. E. (2013). Non-existence of global solutions for a differential equation
involving Hilfer fractional derivative. Electronic Journal of Differential Equations, 2013(235), 1-10.



Open J. Math. Sci. 2020, 4, 456-465 465

[24] Kou, C., Liu, J., & Ye, Y. (2010). Existence and uniqueness of solutions for the Cauchy-type problems of fractional
differential equations. Discrete Dynamics in Nature and Society, 2010, Article ID 142175.

[25] Furati, K. M., & Kassim, M. D. (2012). Existence and uniqueness for a problem involving Hilfer fractional derivative.
Computers & Mathematics with Applications, 64(6), 1616-1626.

[26] Ahmad, B., Ntouyas, S. K., & Assolami, A. (2013). Caputo type fractional differential equations with nonlocal
Riemann-Liouville integral boundary conditions. Journal of Applied Mathematics and computing, 41(1-2), 339-350.

[27] Ahmad, B., Ntouyas, S. K., Tariboon, J., & Alsaedi, A. (2017). Caputo type fractional differential equations with
nonlocal Riemann-Liouville and Erdélyi-Kober type integral boundary conditions. Filomat, 31(14), 4515-4529.

[28] Banas, J., & Nalepa, R. (2016). On a measure of noncompactness in the space of functions with tempered increments.
Journal of Mathematical Analysis and Applications, 435(2), 1634-1651.

[29] Banas, J., & Olszowy, L. (2001). Measures of noncompactness related to monotonicity. Annales Societatis Mathematicae
Polonae. Seria 1: Commentationes Mathematicae, 41, 13-23.

[30] Banas, J., & Sadarangani, K. (2008). On some measures of noncompactness in the space of continuous functions.
Nonlinear Analysis: Theory, Methods & Applications, 68(2), 377-383.

[31] Hamani, S., & Benhamida, W. (2018). Measure of Noncompactness and Caputo-Hadamard Fractional Differential
Equations in Banach Spaces. Eurasian Bulletin of Mathematics, 1(3), 98-106.

[32] Vivek, D., Kanagarajan, K., & Sivasundaram, S. (2018). On the behavior of solutions of Hilfer# Hadamard type
fractional neutral pantograph equations with boundary conditions. Communications in Applied Analysis, 22(3), 211-232.

[33] Dajun, G., Lakshmikantham, V., & Xinzhi, L. (1996). Nonlinear integral equations in abstract spaces. The Netherlands:
Kluwer Acadmic Publishers.

[34] Gu, H., & Trujillo, J. J. (2015). Existence of mild solution for evolution equation with Hilfer fractional derivative.
Applied Mathematics and Computation, 257, 344-354.

[35] Haddouchi, F. (2018). Existence results for a class of Caputo type fractional differential equations with
Riemann-Liouville fractional integrals and Caputo fractional derivatives in boundary conditions. arXiv preprint
arXiv:1805.06015.

c© 2020 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Preliminaries
	Main results
	Example
	Conclusions

