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Abstract: This paper considers the extension of the Adomian decomposition method (ADM) for solving
nonlinear ordinary differential equations of constant coefficients to those equations with variable coefficients.
The total derivatives of the nonlinear functions involved in the problem considered were derived in
order to obtain the Adomian polynomials for the problems. Numerical experiments show that Adomian
decomposition method can be extended as alternative way for finding numerical solutions to ordinary
differential equations of variable coefficients. Furthermore, the method is easy with no assumption and it
produces accurate results when compared with other methods in literature.
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1. Introduction

D ifferential equation can represent nearly all systems or phenomena undergoing change. They
are quotidian in science, engineering and biology as well as in economics, social science, health

and business [1]. Depending on the nature of the system at hand, differential equations may be linear,
pseudo-linear or nonlinear. Often, systems described by differential equations are so complex, or the systems
they represent are so large that a purely analytical treatment may not be tractable.

Many mathematicians have studied differential equations. A simple example is Newton’s second law of
motion–the relationship between the displacement x and the time t of an object under the force F is given by
the differential equation

m
d2x(t)

dt2 = F(x(t)),

which constrains the motion of a particle of constant mass m. In general, F is a function of the position x(t) of
the particle at time t.

Adomian decomposition method is a semi–analytical method for solving ordinary and partial nonlinear
differential equations [2]. The method developed by George Adomian is also applied to solve both linear
and nonlinear boundary value problems (BVPs) and integral equations. The numerical result is obtained
with minimum amount of computation [3]. Adomian technique is based on a decomposition of a solution of
nonlinear functional equation in a series of functions. Each term of the series is obtained from polynomial
generated by a power series expansion of an analytic function [4]. Some of the advantages of the Adomian
decomposition are; it can be applied directly for all types of functional equations both linear and nonlinear and
it has ability of greatly reducing the size of computational work while still maintaining high accuracy of the
numerical solution [4]. Adomian decomposition method (ADM) provides an analytical approximate solution
for nonlinear functional equations in terms of a rapidly converging series without linearization, perturbation
or discretization [5].

1.1. Methods of generating Adomian polynomials

Consider a functional equation
u = f + L(u) + N(u), (1)
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where L and N are linear and nonlinear operators respectively and f is a known function. By Adomian
decomposition method, the solution u(x, t) of (1) is decomposed in the form of an infinite series

u(x, t) =
∞

∑
n=0

un(x, t). (2)

Furthermore, the nonlinear function N(u) assumes the following representation:

N(u) =
∞

∑
n=0

An(u0, u1, ..., un), (3)

where A′ns are nth order Adomian polynomials. In the linear case, N(u) = u, An simply reduces to un.
Cherruault and Adomian [6] gave a method for determining these polynomials by parameterizing u(x, t)

as

uα(x, t) =
∞

∑
n=0

un(x, t)αn, (4)

and assuming N(uα) to be analytic in α, which decomposes as

N(uα) =
∞

∑
n=0

An(u0, u1, ..., un)α
n. (5)

Hence, the Adomian polynomials An are given by

An(u0, u1, ..., un) =
1
n!

∂nN(uα)

∂αn |α=0∀n ∈ N0, (6)

where Nm = [n ∈ Nu0 : n ≥ m] and N denotes the set of positive integers.
Rach and Baghdasarian [7] suggested the following formulae for determining Adomian polynomials:

A0(u0) = N(u0), (7)

An(u0, u1, ..., un) =
n

∑
k=1

c(k, n)Nk(un)∀n ∈ N. (8)

Wazwaz [8] suggested a new algorithm in which after separating A0 = N(u0) from other terms of the
Taylor series expansion of the nonlinear function N(u), we collect all terms of the expansion obtained such
that the sum of the subscripts of the components of u(x, t) in each term is the same.

Ibijola and Adegboyegun [9] considered the generalized first order nonlinear differential equation of the
form

y′ = f (t, y), y ∈ Rd, f : RXR1 −→ R1 (9)

with initial condition y(0) = y0 ∈ Rd. In reviewing the basic methodology, an abstract system of differential
equation (9) assuming that f (t, y) is nonlinear and analytic near y = y0, t = 0 was considered. It is equivalent
to solving the initial value problem (9) and the solution is obtained as

f (t, y) =
∞

∑
n=0

An(t, y0, y1, ..., yn). (10)

The dependence of An on t and y0 may be non-polynomial. Formally, An is obtained by

An =
1
n!

dn

dρn f (t, ∑ ρny1)|t=0 n = 0, 1, 2, ..., (11)

where ρ is a formal parameter. Functions An are polynomials in y1, y2, ..., yn, which are referred to as the
Adomian polynomials. The first few Adomian polynomials for d = 1 are listed by Zhu et al., [10] as:{

A0 = f (t, y0), A1 = y1 f ′(t, y0),

A2 = y2 f ′(t, y0) +
1
2 y1

2 f ′′(t, y0), A3 = y3 f ′(t, y0) + y1y2 f ′′(t, y0) +
1
6 y1

3 f ′′′(t, y0),
(12)
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where primes denote the partial derivatives with respect to y. It was shown by Himoun et al., [11] that the
Adomian polynomials An are defined by the explicit formula:

An =
n

∑
k=1

1
k!

f k(t, y0)( ∑
p1+...+pk=p

yp1 ...ypk ), n ≥ 1. (13)

Abbaoui and Cherruant [12] proved a bound for Adomian polynomials and obtained

|An| ≤
(n + 1)n

(n + 1)!
Mn+1, (14)

where supt∈s | f k(t, y0)| ≤ M for a given time interval j ⊂ R.
Basically, there are two methods of generating Adomian’s polynomials using the orthogonality of

functions (elnx, n ∈ Z). The first method determines these polynomials explicitly whereas the second method
generates them recursively. Different forms of nonlinearity are discussed in literature [13]. Cherruault and
Adomian [14] suggested the following:

1. The series solution

u =
∞

∑
k=0

uk (15)

is absolutely convergent.
2. The nonlinear function N(u) admits the representation

N(u) =
∞

∑
k=0

N(k)(0)
uk

k!
, |u| < ∞. (16)

The assumption (16) is almost always satisfied in concrete physical problems. By (15) and (16), we have
the form of Adomian series as a generalization of Taylor series:

N(u) =
∞

∑
k=0

Ak(u0, u1, ..., uk) =
∞

∑
k=0

N(k)(u0)
(u− u0)

k

k!
, (17)

uρ(x, t) =
∞

∑
k=0

uk(x, t) f (k)(ρ), (18)

and

ūρ(x, t) =
∞

∑
k=0

ūk(x, t) f (k)(ρ), (19)

where ρ is a real parameter and f is any real or complex valued function with | f | < 1. So, series (19) is also
absolutely convergent.

Now, take

N(uρ) =
∞

∑
k=0

Nk(u0)

k!
(

∞

∑
j=1

uj(x, t) f j(ρ))k. (20)

Since ∑∞
j=1 uj(x, t) f j(ρ) is absolutely convergent. By re-arrangement of terms in the right hand side of

(20), we can write N(uρ) as:

N(uρ) =
∞

∑
k=0

Ak f k(ρ), (21)

where A′ks are Adomian polynomials. Hence

N(uρ) = N(u0) + N(1)(u0)[u1 f (ρ) + u2 f 2(ρ) + ...] +
N(2)(u0)

2!
[u1 f (ρ) + u2 f 2(ρ) + ...]2

+
N(3)(u0)

3!
[u1 f (ρ) + u2 f 2(ρ) + ...]3 + ...

= N(u0) + N(1)(u0)u1 f (ρ) + [N(1)(u0)u2 + N(2)(u0)
u1

2

2!
] f 2(ρ)
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+ [N(1)(u0)u3 + N(2)(u0)u1u2 + N(3)(u0)
u1

3

3!
] f 3(ρ) + ...

=
∞

∑
k=0

Ak(u0, u1, ...uk) f k(ρ). (22)

Note that A′ks are polynomials in u0, u1,...,uk only.

2. Adomian polynomial solutions of ordinary differential equations

The generalized first order nonlinear equation considered is given by

y′ = f (x, y), (23)

with initial value
y(xa) = ya. (24)

Many authors have used different forms of methods to solve (23) and (24) of constant coefficients. A
few of these solution techniques are decomposition methods [15], differential transform method [16], double
decomposition method [17], Taylor series method with numerical derivatives [18], homotopy perturbation
method [19], projected differential transform method [20], generalized differential transform method [21],
Picard iteration method [9] and Adomian decomposition method [7,22].

The main goal of this article is to extend the Adomian decomposition method by modification in order
to obtain a polynomial solution of (23) and (24). Adomian decomposition method (ADM) solves nonlinear
operator equations for any analytic nonlinearity providing an easily computable, readily verifiable and rapidly
convergent sequence of analytic approximate solutions. Since it was first presented in the 1980’s, Adomian
decomposition method has led to several modifications on the method made by various researchers in an
attempt to improve the accuracy or expand the application of the original method [23]. The choice of
decomposition is non-unique and provides a valuable advantage to the analyst, permitting the freedom to
design modified recursion schemes for ease of computation in realistic systems [23].

In order to obtain the Adomian polynomial solution of (23) and (24), we write the nonlinear variable
coefficient equation (23) in its operator form as:

Ly + Ry + Ny = F, (25)

where F is a known function and y is the unknown function to be determined, L is the linear operator to
be inverted, R is the linear remainder operator and N is the nonlinear operator which is assumed to be
analytic. We stressed that the choice for L and its pair L−1 (inverse of L) are determined by the equation
being considered, hence the choice is non-unique. Here, we choose our L to be L = d

dx (.) and thus its inverse
L−1 follows as the one-fold definite integration operator from x0 to x. Thus, we have L−1Ly = y− ψ, which
assumes the initial value ψ = ya.

For nth-order differential equation, the choice of L is L = dn

dxn (.) and its inverse L−1 is the n-fold definite

integration operator from x0 to x. Thus, ψ absorbs the initial value ψ = ∑n−1
k=0 αk

(x−x0)
k

k! . Applying the inverse
linear operator L−1 to both sides of Equation (25), we obtain

y = β(x)− L−1[Ry + Ny], (26)

where β(x) = ψ + L−1F.
The unknown function y is expressed in a series of the form:

y =
∞

∑
k=0

yk, (27)

and the nonlinear term Ny is decomposed into a series:

Ny =
∞

∑
k=0

Ak, (28)
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where the A′ks, which depend on y0,y1,...,yk are called the Adomian polynomials and are obtained for the
nonlinearity Ny = f (y) by

Ak =
1
k!

∂k

∂λk [ f (∑ ynλn)]λ=0, k = 0, 1, 2, ..., (29)

where λ is a formal parameter.
The first few Adomian polynomials for the one variable simple analytic nonlinearity Ny = f (y(x)) have

been listed by Zhu et al., [10] from A0 through A3, inclusively.
However, in this work, for equations with variable coefficients, we modified the above expressions for A0

through A4, inclusively, as

A0 = f (t0, y0),

A1 = y1 f ′(t0, y0),

A2 = y2 f ′(t0, y0) +
1
2 y1

2 f ′′(t0, y0),

A3 = y3 f ′(t0, y0) + y1y2 f ′′(t0, y0) +
1
6 y1

3 f ′′′(t0, y0),

A4 = y4 f ′(t0, y0) +
1
2 y2

2 f ′′(t0, y0) +
1
6 y1y3 f ′′′(t0, y0) +

1
24 y1

4 f (4)(t0, y0),

(30)

where primes denote total derivatives of f (t, y) at (t0, y0).
Using the A′ks in (26) - (28), we have the recursive formula

yn+1 =
∫ x

0
An[t, y0(t), y1(t), ..., yn(t)]dt, n = 0, 1, 2, .... (31)

The yk’s (k = 0, 1, 2, ..., n) are then substituted into (27) to obtain the approximate solution.

2.1. Evaluation of the error

In this paper, error is defined as

Error = max
a≤x≤b

|Exact Value−Approximate Value| .

In case the exact solution is not available, the approximate solution is compared with those in literature.

2.2. Illustrative examples

The Adomian decomposition method (ADM) as extended and modified is demonstrated on some
examples for first order nonlinear ordinary differential equations of variable coefficients. The results obtained
are tabulated for comparison.

Example 1. Consider the first order nonlinear differential equation [24]:

y′ = xy2 + 1, (32)

with the initial condition y(0) = 1.

Table 1. Numerical results for Example 1

x Solution by TSM Solution by ADM
0.0 - 1.00000
0.1 - 1.10593
0.2 1.22600 1.22832
0.3 - 1.37617
0.4 1.54210 1.56171
0.5 - 1.80078
0.6 - 2.11336
0.7 - 2.52396
0.8 - 3.06208
0.9 - 3.76270
1.0 - 4.66667



Open J. Math. Sci. 2020, 4, 476-484 481

Table 1 shows that the solution by Taylor series method (TSM) and Adomian Decomposition method
(ADM) are very close to each other at the points x = 0.2 and x = 0.4. Hyphens indicate that the function
values are not available in literature.

Figure 1. The behaviour of the Taylor series method compared with the solutions using Adomian decomposition
method (Example 1).

Figure 1 shows the behaviour of the Taylor series method compared with the solutions using Adomian
decomposition method. Gap begins to exist between the two curves starting from the point x = 0.6.

Example 2. Consider the first order nonlinear differential equation [24]:

y′ = xy2, (33)

with the initial condition y(0.1) = 1. The exact solution is y(x) = 2
2.01−x2 and the solution by the Adomian

Decomposition method is y(x) = 0.98973 + 0.169367x− 1.64583x2 + 13.4375x3 − 41.6667x4 + 52.0833x5.

Table 2. Numerical results for Example 2

x Exact solution Solution by ADM Error
0.10 1.00000 1.00000 0.0000E-5
0.11 1.00105 1.00106 1.0000E-5
0.12 1.00220 1.00223 3.0000E-5
0.13 1.00346 1.00348 2.0000E-5
0.14 1.00482 1.00485 3.0000E-5
0.15 1.00629 1.00631 2.0000E-5
0.16 1.00786 1.00789 3.0000E-5
0.17 1.00954 1.00956 2.0000E-5
0.18 1.01133 1.01136 3.0000E-5
0.19 1.01322 1.01324 2.0000E-5
0.20 1.01523 1.01527 4.0000E-5

Figure 2. The behaviour of the exact solution and the approximate solution using Adomian decomposition
method (Example 2).
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Table 2 shows that the results by Adomian decomposition method (ADM) are very close to the exact
values in terms of the absolute errors produced. Figure 2 shows the behaviour of the exact solution and
the approximate solution using Adomian decomposition method. The curve by the Adomian decomposition
method moves very close to the curve by the exact solution to the extent that gap between the two curves is
not noticeable to the naked eyes.

Example 3. Consider the first order nonlinear ordinary differential equation [25]:

y′ = x2 + y2, (34)

with the initial condition y(0) = 1. The solution by the Adomian decomposition method is y(x) = 1 + x +

x2 + 4
3 x3 + 5

3 x4 + 16
15 x5.

Table 3. Numerical results for Example 3

x Solution by TSMO(4) Solution by ADM
0.0 - 1.00000
0.1 - 1.11151
0.2 1.25253 1.25367
0.3 - 1.44209
0.4 1.69318 1.69892
0.5 - 2.05417
0.6 - 2.54694
0.7 - 3.22677
0.8 - 4.15486
0.9 - 5.40536
1.0 - 7.06667

Table 3 shows that the solution by Taylor series method of order four (TSO(4)) produces results that are
very close to the results produced by Adomian decomposition method (ADM) at the points x = 0.2 and
x = 0.4. Hyphens indicate that the function values are not available in literature.

Figure 3. The behaviour of the Taylor series method of order four compared with the solutions using Adomian
decomposition method (Example 3).

Figure 3 shows the behaviour of the Taylor series method of order four compared with the solutions using
Adomian decomposition method. Only the two points available for the Taylor series method of order four are
plotted (blue line). The two curves almost coincide with each other in the interval (0.2, 0.4).

Example 4. Consider the first order differential equation [24]:

y′ =
y
x
− 5

2
x2y3, (35)

with the initial condition y(1) = 1√
2

. The solution by the Adomian Decomposition method is y(x) =

−1.34642 + 7.33484x− 11.4929x2 + 10.6446x3 − 5.4401x4 + 1.30000x5.
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Table 4. Numerical results for Example 4

x Solution by MEM Solution by ADM
1.0 1.00000 1.00000
1.1 - 1.11227
1.2 1.25478 1.25371
1.3 - 1.44140
1.4 1.69912 1.69808
1.5 - 2.05371
1.6 2.57034 2.54703
1.7 - 3.22713
1.8 4.27532 4.15499
1.9 - 5.40508
2.0 7.20134 7.06686

Table 4 shows that the modified Euler’s method (MEM) and Adomian decomposition method (ADM)
produce results that are very close to one-another at the points x = 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0. Hyphens
indicate that the function values are not available in literature.

Figure 4. The behaviour of the modified Euler’s method compared with the solutions using Adomian
decomposition method (Example 4).

Figure 4 shows the behaviour of the modified Euler’s method compared with the solutions using
Adomian decomposition method. The two curves by the Adomian decomposition method and modified
Euler’s method are very close to each other between the points x = 0 and x = 0.4. However, a noticeable
gap starts to exist between them as from the point x = 0.4.

3. Discussion of results

The Adomian decomposition method (ADM) has been extended and discussed for the numerical solution
of nonlinear ordinary differential equations of variable coefficients. The results obtained were compared with
the exact solutions (where available) and some existing results in literature. The absolute errors obtained for
Example 2, as presented in Table 2 show that the results by the Adomian decomposition method (ADM) as
extended are in excellent agreement with the exact solutions. Similarly, the results obtained compared well
with those in literature as shown in Tables 1, 3 and 4.
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