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Abstract: For any non-square integer multiplier k, there is an infinity of triangular numbers multiple of
other triangular numbers. We analyze the congruence properties of indices ξ of triangular numbers multiple
of triangular numbers. Remainders in congruence relations ξ modulo k come always in pairs whose sum
always equal (k− 1), always include 0 and (k− 1), and only 0 and (k− 1) if k is prime, or an odd power of
a prime, or an even square plus one or an odd square minus one or minus two. If the multiplier k is twice
the triangular number of n, the set of remainders includes also n and (n2 − 1) and if k has integer factors, the
set of remainders include multiples of a factor following certain rules. Algebraic expressions are found for
remainders in function of k and its factors, with several exceptions. This approach eliminates those ξ values
not providing solutions.
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1. Introduction

T riangular numbers Tt =
t(t+1)

2 are one of the figurate numbers enjoying many properties; see, e.g., [1,2]
for relations and formulas. Triangular numbers Tξ that are multiples of other triangular number Tt

Tξ = kTt (1)

are investigated. Only solutions for k > 1 are considered as the cases k = 0 and k = 1 yield respectively
ξ = 0 and ξ = t, ∀t. Accounts of previous attempts to characterize these triangular numbers multiple of other
triangular numbers can be found in [3–9]. Recently, Pletser [9] showed that, for non-square integer values of k,
there are infinitely many solutions that can be represented simply by recurrent relations of the four variables
t, ξ, Tt and Tξ , involving a rank r and parameters κ and γ, which are respectively the sum and the product
of the (r− 1)th and the rth values of t. The rank r is being defined as the number of successive values of t
solutions of (1) such that their successive ratios are slowly decreasing without jumps.

In this paper, we present a method based on the congruent properties of ξ (mod k), searching for
expressions of the remainders in function of k or its factors. This approach accelerates the numerical search of
the values of tn and ξn that solve (1), as it eliminates values of ξ that are known not to provide solutions to
(1). The gain is typically in the order of k/υ where υ is the number of remainders, which is usually such that
υ� k.

2. Rank and Recurrent Equations

Sequences of solutions of (1) are known for k = 2, 3, 5, 6, 7, 8, 10 and are listed in the Online Encyclopedia
of Integer Sequences (OEIS) [10], with references given in Table 1.

Among all solutions, t = 0 is always a first solution of (1) for all non-square integer value of k, yielding
ξ = 0.

Let’s consider the two cases of k = 2 and k = 7 yielding the successive solution pairs as shown in Table
2. We indicate also the ratios tn/tn−1 for both cases and tn/tn−2 for k = 7. It is seen that for k = 2, the
ratio tn/tn−1 varies between close values, from 7 down to 5.829, while for k = 7, the ratio tn/tn−1 alternates
between values 2.5 ... 2.216 and 7.8 ... 7.23, while the ratio tn/tn−2 decreases regularly from 19.5 to 16.023
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Table 1. OEIS [10] references of sequences of integer solutions of (1) for k = 2, 3, 5, 6, 7, 8, 10

k 2 3 5 6 7 8 10
t A053141 A061278 A077259 A077288 A077398 A336623 A341893
ξ A001652 A001571 A077262 A077291 A077401 A336625 A341895
Tt A075528 A076139 A077260 A077289 A077399 A336624 A068085
Tξ A029549 A076140 A077261 A077290 A077400 A336626 –

Table 2. Solutions of (1) for k = 2, 7

n k = 2 k = 7
tn ξn

tn
tn−1

tn ξn
tn

tn−1

tn
tn−2

0 0 0 0 0
1 2 3 – 2 6 – –
2 14 20 7 5 14 2.5 –
3 84 119 6 39 104 7.8 19.5
4 492 696 5.857 87 231 2.231 17.4
5 2870 4059 5.833 629 1665 7.230 16.128
6 16730 23660 5.829 1394 3689 2.216 16.023

(corresponding approximately to the product of the alternating values of the ratio tn/tn−1). We call rank r the
integer value such that tn/tn−r is approximately constant or, better, decreases regularly without jumps (a more
precise definition is given further). So, here, the case k = 2 has rank r = 1 and the case k = 7 has rank r = 2.

In [9], we showed that the rank r is the index of tr and ξr solutions of (1) such that

κ = tr + tr−1 = ξr − ξr−1 − 1, (2)

and that the ratio t2r/tr, corrected by the ratio tr−1/tr, is equal to a constant 2κ + 3

t2r − tr−1

tr
= 2κ + 3. (3)

For example, for k = 7 and r = 2, (2) and (3) yield respectively, κ = 7 and 2κ + 3 = 17.
Four recurrent equations for tn, ξn, Ttn and Tξn are given in [9] for each non-square integer value of k

tn = 2 (κ + 1) tn−r − tn−2r + κ, (4)

ξn = 2 (κ + 1) ξn−r − ξn−2r + κ, (5)

Ttn =
(

4 (κ + 1)2 − 2
)

Ttn−r − Ttn−2r + (Tκ − γ) , (6)

Tξn =
(

4 (κ + 1)2 − 2
)

Tξn−r − Tξn−2r + k (Tκ − γ) , (7)

where coefficients are functions of two constants κ and γ, respectively the sum κ and the product γ = tr−1tr of
the first two sequential values of tr and tr−1. Note that the first three relations (4) to (6) are independent of the
value of k.

3. Congruence of ξ modulo k

We use the following notations: for A, B, C ∈ Z, B < C, C > 1, A ≡ B (mod C) means that ∃D ∈ Z
such that A = DC + B, where B and C are called respectively the remainder and the modulus. To search
numerically for the values of tn and ξn that solve (1), one can use the congruent properties of ξ (mod k) given
in the following propositions. In other words, we search in the following propositions for expressions of the
remainders in function of k or its factors.

Proposition 1. For ∀s, k ∈ Z+, k non-square, ∃ ξ, µ, υ, i, j ∈ Z+, such that if ξi are solutions of (1), then for ξi ≡
µj (mod k) with 1 ≤ j ≤ υ, the number υ of remainders is always even, υ ≡ 0 (mod 2), the remainders come in pairs
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whose sum is always equal to (k− 1), and the sum of all remainders is always equal to the product of (k− 1) and the

number of remainder pairs,
υ

∑
j=1

µj = (k− 1) υ/2.

Proof. Let s, i, j, k, ξ, µ, υ, α, β ∈ Z+, k non-square, and ξi solutions of (1). Rewriting (1) as Tti = Tξi /k, for
Tti to be integer, k must divide exactly Tξi = ξi (ξi + 1) /2, i.e., among all possibilities, k divides either ξi or
(ξi + 1), yielding two possible solutions ξi ≡ 0 (mod k) or ξi ≡ −1 (mod k), i.e., υ = 2 and the set of µj includes
{0, (k− 1)}. This means that ξi are always congruent to either 0 or (k− 1) modulo k for all non-square values
of k.

Furthermore, if some ξi are congruent to α modulo k, then other ξi are also congruent to β

modulo k with β = (k− α− 1). As ξi ≡ α (mod k), then ξi (ξi + 1) /2 ≡ (α (α + 1) /2) (mod k) and
replacing α by α = (k− β− 1) yields (α (α + 1) /2) = ((k− β− 1) (k− β) /2), giving ξi (ξi + 1) /2 ≡
((k− β− 1) (k− β) /2) (mod k) ≡ (β (β + 1) /2) (mod k). In this case, υ = 4 and the set of µj includes, but not
necessarily limits to, {0, α, (k− α− 1) , (k− 1)}.

Note that in some cases, υ > 4, as for k = 66, 70, 78, 105, ..., ν = 8. However, in some other cases, υ = 2
only and the set of µj contains only {0, (k− 1)}, as shown in the next proposition. In this proposition, several
rules (R) are given constraining the congruence characteristics of ξi.

Proposition 2. For ∀ s, k, α, n ∈ Z+, k non-square, α > 1, ∃ ξ, µ, υ, i ∈ Z+, such that if ξi are solutions of (1), then
ξi are always only congruent to 0 and (k− 1) modulo k, and υ = 2 if either

(R1) k is prime, or
(R2) k = αn with α prime and n odd, or
(R3) k = s2 + 1 with s even, or
(R4) k = s′2 − 1 or (R5) k = s′2 − 2 with s′ odd.

Proof. Let s, s′, k, α > 1, n, i, ξ, µ, υ ∈ Z+, k non-square, and ξi are solutions of (1).
(R1)+(R2): If k is prime or if k = αn (with α prime and n odd as k is non-square), then, in both cases, k can only
divide either ξi or (ξi + 1), yielding the two congruences ξi ≡ 0 (mod k) and ξi ≡ −1 (mod k).
(R3): If k = s2 + 1 with s even, the rank r is always r = 2 [11], and the only two sets of solutions are

(t1, ξ1) =
(

s (s− 1) ,
(

s2 + 1
)
(s− 1)

)
(8)

(t2, ξ2) =
(

s (s + 1) ,
(

s2 + 1
)
(s + 1)− 1

)
(9)

as can be easily shown. For t1, forming

kTt1 =
1
2

(
s2 + 1

)
(s (s− 1)) (s (s− 1) + 1)

=
1
2

[(
s2 + 1

)
(s− 1)

] [(
s2 + 1

)
(s− 1) + 1

]
= Tξ1

which is the triangular number of ξ1. One obtains similarly ξ2 from t2. These two relations (8) and (9) show
respectively that ξ1 is congruent to 0 modulo k and ξ2 is congruent to (k− 1) modulo k.
(R4): For k = s′2 − 1 with s′ odd, the rank r = 2 [11], and the only two sets of solutions are

(t1, ξ1) =
((

s′ − 1
)

s′ − 1,
(

s′2 − 1
) (

s′ − 1
)
− 1
)

(10)

(t2, ξ2) =
((

s′ − 1
) (

s′ + 2
)
+ 1,

(
s′2 − 1

) (
s′ + 1

))
(11)

as can be easily demonstrated as above. These two relations (10) and (11) show that ξ1 and ξ2 are congruent
respectively to (k− 1) and 0 modulo k.
(R5): For k = s′2 − 2 with s′ odd, the rank r = 2 [11], and the only two sets of solutions are

(t1, ξ1) =

(
1
2
(
s′ − 2

) (
s′ + 1

)
,

1
2

(
s′2 − 2

) (
s′ − 1

)
− 1
)

(12)

(t2, ξ2) =

(
s′

2
(
s′ + 1

)
− 1,

1
2

(
s′2 − 2

) (
s′ + 1

))
(13)



Open J. Math. Sci. 2021, 5, 262-269 265

Table 3. Combination of parameters m and ν for 2 ≤ n ≤ 12

m ν
↘ 1 2 3 4 5 6 7 8 9 10 11

n

2 1_
3 1_ 1
4 1_ / 1
5 1_ 2 2_ 1
6 1_ / / / 1
7 1_ 3 2 2_ 3_ 1
8 1_ / 3_ / 3 / 1
9 1_ 4 / 2 2_ / 4_ 1

10 1_ / 3 / 5_ / 3_ / 1
11 1_ 5 4_ 3_ 2 2_ 3 4 5_ 1
12 1_ / / / 3 / 4_ / / / 1

as can easily be shown as above. These two relations (12) and (13) show that ξ1 and ξ2 are congruent
respectively to (k− 1) and 0 modulo k.

There are other cases of interest as shown in the next two Propositions:

Proposition 3. For ∀ n ∈ Z+, ∃ k, ξ, µ < k, i, j ∈ Z+, k non-square, such that if ξi are solutions of (1) with
ξi ≡ µj (mod k), and (R6) if k is twice a triangular number k = n (n + 1) = 2Tn, then the set of µj includes{

0, n,
(
n2 − 1

)
, (k− 1)

}
, with 1 ≤ j ≤ υ.

Proof. Let n, k, ξ, µ < k, i, j ∈ Z+, k non-square, and ξi solutions of (1). Let ξi ≡ µj (mod k) with 1 ≤ j ≤ υ.
As the ratio ξi (ξi + 1) /k must be integer, ξi (ξi + 1) ≡ 0 (mod k) or µj

(
µj + 1

)
≡ 0 (mod n (n + 1)) which is

obviously satisfied if µj = n or µj =
(
n2 − 1

)
.

Finally, this last proposition gives a general expression of the congruence ξi (mod k) for most cases to find
the remainders µj other than 0 and (k− 1).

Proposition 4. For ∀n > 1 ∈ Z+, ∃k, f , ξ, ν < n < k, µ < k, m < n, i, j ∈ Z+, k non-square, let ξi be solutions of
(1) with ξi ≡ µj (mod k), let f be a factor of k such that f = k/n with f ≡ ν (mod n) and k ≡ νn

(
mod n2), then the

set of µj includes either {0, m f , ((n−m) f − 1) , (k− 1)} or {0, (m f − 1) , (n−m) f , (k− 1)}, where m is an integer
multiplier of f in the congruence relation and such that m < n/2 or m < (n + 1) /2 for n being even or odd respectively,
and 1 ≤ j ≤ υ.

Proof. Let n > 1, k, f , ξ, µ < k, m < n, i, j < n < k ∈ Z+, k non-square, and ξi a solution of (1). Let ξi ≡
µj (mod k) with 1 ≤ j ≤ υ. As the ratio ξi (ξi + 1) /k must be integer, ξi (ξi + 1) ≡ 0 (mod k) or µj (µk + 1) ≡
0 (mod f n). For a proper choice of the factor f of k, let µj be a multiple of f , µj = m f , then m (m f + 1) ≡
0 (mod n). As f ≡ ν (mod n), one has

m (mν + 1) ≡ 0 (mod n) . (14)

Let now
(
µj + 1

)
be a multiple of f , µj + 1 = m f , then m (m f − 1) ≡ 0 (mod n) or

m (mν− 1) ≡ 0 (mod n) . (15)

An appropriate combination of integer parameters m and ν guarantees that (14) and (15) are satisfied.
Proposition 1 yields the other remainder value as m f + (n−m) f − 1 = k − 1 and (m f − 1) + (n−m) f =

k− 1.

The appropriate combinations of integer parameters m and ν are given in Table 3 for 2 ≤ n ≤ 12. The sign
− in subscript corresponds to the remainder (m f − 1); the sign / indicates an absence of combination.

One deduces from Table 3 the following simple rules:

1) ∀n ∈ Z+, only those values of ν that are co-prime with n must be kept, all other combinations (indicated
by / in Table 3) must be discarded as they correspond to combinations with smaller values of n and ν;
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for n even, this means that all even values of ν must be discarded. For example, ν = 2 and n = 4 are not
co-prime and their combination corresponds to ν = 1 and n = 2.

2) For ν = 1 and ν = n− 1, all values of m are m = 1 with respectively the remainders (m f − 1) and m f .
3) For ∀n, i ∈ Z+, n odd, 2 ≤ i ≤ (n− 1) /2, and for ν = (n− (2i− 3)) /2 and ν = (n + (2i− 3)) /2, all the

values of m are m = i.
4) For ∀n ∈ Z+, n odd, and for ν = 2 and ν = n− 2, the remainders are respectively m f and (m f − 1).
5) For ∀n, i ∈ Z+, n even, 2 ≤ i ≤ n/2, and for ν = (n− (2i− 3)) /2 and ν = (n + (2i− 3)) /2, all the

values of m are m = i.

Expressions of µi are given in Table 4 for 2 ≤ n ≤ 12 (with codes Enν). For example, for k ≡ 12ν
(
mod 122)

and ν = 5 (code E125), i.e. k = 60, 204, 348, ..., ξi ≡ µj (mod k) with the set of remainders µj including
{0, m f , ((n−m) f − 1) , (k− 1)} with m = 3 (see Table 3) and f = k/12 = 5, 17, 29...respectively.

Table 4. Expressions of µj for 2 ≤ n ≤ 12

n ν m k ≡ f µj Code
2 1 1 2 (mod 4) k/2 0, (k/2)− 1, k/2, k− 1 E21
3 1 1 3 (mod 9) k/3 0, (k/3)− 1, 2k/3, k− 1 E31

2 1 6 (mod 9) 0, k/3, (2k/3)− 1, k− 1 E32
4 1 1 4 (mod 16) k/4 0, (k/4)− 1, 3k/4, k− 1 E41

3 1 12 (mod 16) 0, k/4, (3k/4)− 1, k− 1 E43
5 1 1 5 (mod 25) k/5 0, (k/5)− 1, 4k/5, k− 1 E51

2 2 10 (mod 25) 0, 2k/5, (3k/5)− 1, k− 1 E52
3 2 15 (mod 25) 0, (2k/5)− 1, 3k/5, k− 1 E53
4 1 20 (mod 25) 0, k/5, (4k/5)− 1, k− 1 E54

6 1 1 6 (mod 36) k/6 0, (k/6)− 1, 5k/6, k− 1 E61
5 1 30 (mod 36) 0, k/6, (5k/6)− 1, k− 1 E65

7 1 1 7 (mod 49) k/7 0, (k/7)− 1, 6k/7, k− 1 E71
2 2 14 (mod 49) 0, 3k/7, (4k/7)− 1, k− 1 E72
3 3 21 (mod 49) 0, 2k/7, (5k/7)− 1, k− 1 E73
4 3 28 (mod 49) 0, (2k/7)− 1, 5k/7, k− 1 E74
5 2 35 (mod 49) 0, (3k/7)− 1, 4k/7, k− 1 E75
6 1 42 (mod 49) 0, k/7, (6k/7)− 1, k− 1 E76

8 1 1 8 (mod 64) k/8 0, (k/8)− 1, 7k/8, k− 1 E81
3 3 24 (mod 64) 0, (3k/8)− 1, 5k/8, k− 1 E83
5 3 40 (mod 64) 0, 3k/8, (5k/8)− 1, k− 1 E85
7 1 56 (mod 64) 0, k/8, (7k/8)− 1, k− 1 E87

9 1 1 9 (mod 81) k/9 0, (k/9)− 1, 8k/9, k− 1 E91
2 4 18 (mod 81) 0, 4k/9, (5k/9)− 1, k− 1 E92
4 2 36 (mod 81) 0, 2k/9, (7k/9)− 1, k− 1 E94
5 2 45 (mod 81) 0, (2k/9)− 1, 7k/9, k− 1 E95
7 4 63 (mod 81) 0, (4k/9)− 1, 5k/9, k− 1 E97
8 1 72 (mod 81) 0, k/9, (8k/9)− 1, k− 1 E98

10 1 1 10 (mod 100) k/10 0, (k/10)− 1, 9k/10, k− 1 E101
3 3 30 (mod 100) 0, 3k/10, (7k/10)− 1, k− 1 E103
7 3 70 (mod 100) 0, (3k/10)− 1, 7k/10, k− 1 E107
9 1 90 (mod 100) 0, k/10, (9k/10)− 1, k− 1 E109

11 1 1 11 (mod 121) k/11 0, (k/11)− 1, 10k/11, k− 1 E111
2 5 22 (mod 121) 0, 5k/11, (6k/11)− 1, k− 1 E112
3 4 33 (mod 121) 0, (4k/11)− 1, 7k/11, k− 1 E113
4 3 44 (mod 121) 0, (3k/11)− 1, 8k/11, k− 1 E114
5 2 55 (mod 121) 0, 2k/11, (9k/11)− 1, k− 1 E115
6 2 66 (mod 121) 0, (2k/11)− 1, 9k/11, k− 1 E116
7 3 77 (mod 121) 0, 3k/11, (8k/11)− 1, k− 1 E117
8 4 88 (mod 121) 0, 4k/11, (7k/11)− 1, k− 1 E118
9 5 99 (mod 121) 0, (5k/11)− 1, 6k/11, k− 1 E119

10 1 110 (mod 121) 0, k/11, (10k/11)− 1, k− 1 E1110
12 1 1 12 (mod 144) k/12 0, (k/12)− 1, 11k/12, k− 1 E121

5 3 60 (mod 144) 0, 3k/12, (9k/12)− 1, k− 1 E125
7 4 84 (mod 144) 0, (4k/12)− 1, 8k/12, k− 1 E127

11 1 132 (mod 144) 0, k/12, (11k/12)− 1, k− 1 E1211
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Table 5. Values of µj for 2 ≤ k ≤ 120

k µj References k µj References
2 0,1 R1,R6,E21 63 0,27,35,62 E72,E97
3 0,2 R1,E31 65 0,64 R3
5 0,4 R1,R3,E51 66 0,11,21,32,33,44,54,65 E21+E31+E65+E116
6 0,2,3,5 R6,E21,E32,E61 67 0,66 R1
7 0,6 R1,R5,E71 68 0,16,51,67 E41
8 0,7 R2,R4,E81 69 0,23,45,68 E32
10 0,4,5,9 E21,E52,E101 70 0,14,20,34,35,49,55,69 E21+E54+E73+E107
11 0,10 R1,E111 71 0,70 R1
12 0,3,8,11 R6,E31,E43,E121 72 0,8,63,71 R6,E81,E98
13 0,12 R1 73 0,72 R1
14 0,6,7,13 E21,E72 74 0,73 ?
15 0,5,9,14 E32,E53 75 0,24,50,74 E31
17 0,16 R1,R3 76 0,19,56,75 E43
18 0,8,9,17 E21,E92 77 0,21,55,76 E74,E117
19 0,18 R1 78 0,12,26,38,39,51,65,77 E21+E32+E61
20 0,4,15,19 R6,E41,E54 79 0,78 R1,R5
21 0,6,14,20 E31,E73 80 0,79 R4
22 0,10,11,21 E21,E112 82 0,40,41,81 E21
23 0,22 R1,R5 83 0,82 R1
24 0,23 R4 84 0,27,56,83 E31,E127
26 0,12,13,25 E21 85 0,34,50,84 E52
27 0,26 R2 86 0,42,43,85 E21
28 0,7,20,27 E43,E74 87 0,29,57,86 E32
29 0,28 R1 88 0,32,55,87 E83,E118
30 0,5,24,29 R6,E51,E65 89 0,88 R1
31 0,30 R1 90 0,9,80,89 R6,E91,E109
32 0,31 R2 91 0,13,77,90 E75
33 0,11,21,32 E32,E113 92 0,23,68,91 E43
34 0,16,17,33 E21 93 0,30,62,92 E31
35 0,14,20,34 E52,E75 94 0,46,47,93 E21
37 0,36 R1,R3 95 0,19,75,94 E54
38 0,18,19,37 E21 96 0,32,63,95 E32
39 0,12,26,38 E31 97 0,96 R1
40 0,15,24,39 E53,E85 98 0,48,49,97 E21
41 0,40 R1 99 0,44,54,98 E92,E119
42 0,6,35,41 R6,E61,E76 101 0,100 R1,R3
43 0,42 R1 102 0,50,51,102 E21
44 0,11,32,43 E43,E114 103 0,102 R1
45 0,9,35,44 E54,E95 104 0,103 ?
46 0,22,23,245 E21 105 0,14,20,35,69,84,90,104 E32+E51+E71
47 0,46 R1,R5 106 0,52,53,105 E21
48 0,47 R4 107 0,106 R1
50 0,24,25,49 E21 108 0,27,80,107 E43
51 0,17,33,50 E32 109 0,108 R1
52 0,12,39,51 E41 110 0,10,99,109 R6,E101,E1110
53 0,52 R1 111 0,36,74,110 E31
54 0,26,27,53 E21 112 0,48,63,111 E72
55 0,10,44,54 E51,E115 113 0,112 R1
56 0,7,48,55 R6,E71,E87 114 0,56,57,113 E21
57 0,18,38,56 E31 115 0,45,69,114 E53
58 0,28,29,57 E21 116 0,28,87,115 E41
59 0,58 R1 117 0,26,90,116 E94
60 0,15,44,59 E43,E125 118 0,58,59,117 E21
61 0,60 R1 119 0,118 R1,R5
62 0,30,31,61 E21 120 0,15,104,119 E87
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Values of the remainders µj are given in Table 5 for 2 ≤ k ≤ 120, with rule (R) and expression (E) codes
as references. R and E codes separated by commas imply that all references apply simultaneously to the case;
E codes separated by + mean that all expressions apply to the case; some expression references are sometimes
missing. One observes that in two cases (for k = 74 and 104), expressions could not be found (indicated by
question marks).

Table 5 gives correctly the values of the remainder pairs in most of the cases. There are although some
exceptions and some values missing.

Among the exceptions to the values given in Table 5, for n = 2, remainders values for k =

30, 42, 74, 90, 110, . . . are different from the theoretical ones in Table 4. Furthermore, for k = 66, 70, 78, 105, ...,
additional remainders exist. Expressions are missing for k = 74 (E21) and 104 (E85). Finally, one observes also
that for 16 cases, some Rules or Expressions supersede some other Expressions (indicated by Ra > Exy or Exy
> Ezt), as reported in Table 6. For example, Rule 6 supersedes Expression 21 (R6 > E21) for k = 30, 42, 90, 110,
i.e., k = 2T5, 2T6, 2T9, 2T10, ... and more generally for all k = 2Ti for i ≡ 1, 2 (mod4).

Table 6. Rules and Expressions superseding other Rules and Expressions

k
24 R4 > E32; R4 > E83
30 R6 > E21; R6 > E31; R6 > E103; E51 > E103; E65 > E103
42 R6 > E21; R6 > E32
48 R4 > E31
56 R6 > E43
60 E43 > E32; E43 > E52
65 R3 > E53
72 R6 > E43
80 R4 > E51
84 E31 > E41; E31 > E75
90 R6 > E21; R6 > E53

102 E21 > E31; E21 > E65
110 R6 > E21; R6 > E52
114 E21 > E32; E21 > E61
119 R1 > E73; R5 > E73
120 E87 > R4; E87 > E31; E87 > E54

Note that 11 of these 16 values of k are multiples of 6, the others are 2 mod 6 and 5 mod 6 for, respectively
three and two cases. One notices as well, that generally, Ra and Exy supersede Ezt with x < z and t < y, except
for k = 60 and 120.

4. Conclusions

We have shown that, for indices ξ of triangular numbers multiples of other triangular numbers, the
remainders in the congruence relations of ξ modulo k always come in pairs whose sum always equal (k− 1),
always include 0 and (k− 1), and only 0 and (k− 1) if k is prime, or an odd power of a prime, or an even
square plus one or an odd square minus one or minus two. If the multiplier k is twice a triangular number of
n, the set of remainders includes also n and

(
n2 − 1

)
and if k has integer factors, the set of remainders include

multiple of a factor following certain rules. Finally, algebraic expressions are found for remainders in function
of k and its factors. Several exceptions are noticed as well as reported above and it appears that there are
superseding rules between the various rules and expressions.

This approach allows eliminating in numerical searches those (k− υ) values of ξi that are known not to
provide solutions of (1), where υ is the even number of remainders. The gain is typically in the order of k/υ,
with υ� k for large values of k.
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