Article

Congruence properties of indices of triangular numbers multiple of other triangular numbers

Vladimir Pletser
European Space Agency (ret.); pletservladimir@gmail.com
Academic Editor: Tuncer Acar
Received: 5 March 2021; Accepted: 10 June 2021; Published: 14 July 2021.

Abstract

For any non-square integer multiplier k, there is an infinity of triangular numbers multiple of other triangular numbers. We analyze the congruence properties of indices ξ of triangular numbers multiple of triangular numbers. Remainders in congruence relations ξ modulo k come always in pairs whose sum always equal $(k-1)$, always include 0 and $(k-1)$, and only 0 and $(k-1)$ if k is prime, or an odd power of a prime, or an even square plus one or an odd square minus one or minus two. If the multiplier k is twice the triangular number of n, the set of remainders includes also n and $\left(n^{2}-1\right)$ and if k has integer factors, the set of remainders include multiples of a factor following certain rules. Algebraic expressions are found for remainders in function of k and its factors, with several exceptions. This approach eliminates those ξ values not providing solutions.

Keywords: Triangular numbers; Multiple of triangular numbers; Recurrent relations; Congruence properties.

MSC: Primary 11A25; Secondary 11D09.

1. Introduction

Triangular numbers $T_{t}=\frac{t(t+1)}{2}$ are one of the figurate numbers enjoying many properties; see, e.g., $[1,2]$ for relations and formulas. Triangular numbers T_{ξ} that are multiples of other triangular number T_{t}

$$
\begin{equation*}
T_{\xi}=k T_{t} \tag{1}
\end{equation*}
$$

are investigated. Only solutions for $k>1$ are considered as the cases $k=0$ and $k=1$ yield respectively $\xi=0$ and $\xi=t, \forall t$. Accounts of previous attempts to characterize these triangular numbers multiple of other triangular numbers can be found in [3-9]. Recently, Pletser [9] showed that, for non-square integer values of k, there are infinitely many solutions that can be represented simply by recurrent relations of the four variables $t, \xi, T t$ and T_{ξ}, involving a rank r and parameters κ and γ, which are respectively the sum and the product of the $(r-1)^{\text {th }}$ and the $r^{\text {th }}$ values of t. The rank r is being defined as the number of successive values of t solutions of (1) such that their successive ratios are slowly decreasing without jumps.

In this paper, we present a method based on the congruent properties of $\xi(\bmod k)$, searching for expressions of the remainders in function of k or its factors. This approach accelerates the numerical search of the values of t_{n} and ξ_{n} that solve (1), as it eliminates values of ξ that are known not to provide solutions to (1). The gain is typically in the order of k / v where v is the number of remainders, which is usually such that $v \ll k$.

2. Rank and Recurrent Equations

Sequences of solutions of (1) are known for $k=2,3,5,6,7,8,10$ and are listed in the Online Encyclopedia of Integer Sequences (OEIS) [10], with references given in Table 1.

Among all solutions, $t=0$ is always a first solution of (1) for all non-square integer value of k, yielding $\xi=0$.

Let's consider the two cases of $k=2$ and $k=7$ yielding the successive solution pairs as shown in Table 2. We indicate also the ratios t_{n} / t_{n-1} for both cases and t_{n} / t_{n-2} for $k=7$. It is seen that for $k=2$, the ratio t_{n} / t_{n-1} varies between close values, from 7 down to 5.829 , while for $k=7$, the ratio t_{n} / t_{n-1} alternates between values $2.5 \ldots 2.216$ and $7.8 \ldots 7.23$, while the ratio t_{n} / t_{n-2} decreases regularly from 19.5 to 16.023

Table 1. OEIS [10] references of sequences of integer solutions of (1) for $k=2,3,5,6,7,8,10$

k	2	3	5	6	7	8	10
t	A 053141	A 061278	A 077259	A 077288	A 077398	A 336623	A 341893
ξ	A 001652	A 001571	A 077262	A 077291	A 077401	A 336625	A 341895
T_{t}	A 075528	A 076139	A 077260	A 077289	A 077399	A 336624	A 068085
T_{ξ}	A 029549	A 076140	A 077261	A 077290	A 077400	A 336626	-

Table 2. Solutions of (1) for $k=2,7$

n	$k=2$			$k=7$			
	t_{n}	ξ_{n}	$\frac{t_{n}}{t_{n-1}}$	t_{n}	ξ_{n}	$\frac{t_{n}}{t_{n-1}}$	$\frac{t_{n}}{t_{n-2}}$
0	0	0		0	0		
1	2	3	-	2	6	-	-
2	14	20	7	5	14	2.5	-
3	84	119	6	39	104	7.8	19.5
4	492	696	5.857	87	231	2.231	17.4
5	2870	4059	5.833	629	1665	7.230	16.128
6	16730	23660	5.829	1394	3689	2.216	16.023

(corresponding approximately to the product of the alternating values of the ratio t_{n} / t_{n-1}). We call rank r the integer value such that t_{n} / t_{n-r} is approximately constant or, better, decreases regularly without jumps (a more precise definition is given further). So, here, the case $k=2$ has rank $r=1$ and the case $k=7$ has rank $r=2$.

In [9], we showed that the rank r is the index of t_{r} and ξ_{r} solutions of (1) such that

$$
\begin{equation*}
\kappa=t_{r}+t_{r-1}=\xi_{r}-\xi_{r-1}-1, \tag{2}
\end{equation*}
$$

and that the ratio $t_{2 r} / t_{r}$, corrected by the ratio t_{r-1} / t_{r}, is equal to a constant $2 \kappa+3$

$$
\begin{equation*}
\frac{t_{2 r}-t_{r-1}}{t_{r}}=2 \kappa+3 \tag{3}
\end{equation*}
$$

For example, for $k=7$ and $r=2$, (2) and (3) yield respectively, $\kappa=7$ and $2 \kappa+3=17$.
Four recurrent equations for $t_{n}, \xi_{n}, T_{t_{n}}$ and $T_{\xi_{n}}$ are given in [9] for each non-square integer value of k

$$
\begin{align*}
t_{n} & =2(\kappa+1) t_{n-r}-t_{n-2 r}+\kappa \tag{4}\\
\xi_{n} & =2(\kappa+1) \xi_{n-r}-\xi_{n-2 r}+\kappa \tag{5}\\
T_{t_{n}} & =\left(4(\kappa+1)^{2}-2\right) T_{t_{n-r}}-T_{t_{n-2 r}}+\left(T_{\kappa}-\gamma\right) \tag{6}\\
T_{\xi_{n}} & =\left(4(\kappa+1)^{2}-2\right) T_{\xi_{n-r}}-T_{\xi_{n-2 r}}+k\left(T_{\kappa}-\gamma\right) \tag{7}
\end{align*}
$$

where coefficients are functions of two constants κ and γ, respectively the sum κ and the product $\gamma=t_{r-1} t_{r}$ of the first two sequential values of t_{r} and t_{r-1}. Note that the first three relations (4) to (6) are independent of the value of k.

3. Congruence of ξ modulo k

We use the following notations: for $A, B, C \in \mathbb{Z}, B<C, C>1, A \equiv B(\bmod C)$ means that $\exists D \in \mathbb{Z}$ such that $A=D C+B$, where B and C are called respectively the remainder and the modulus. To search numerically for the values of t_{n} and ξ_{n} that solve (1), one can use the congruent properties of $\xi(\bmod k)$ given in the following propositions. In other words, we search in the following propositions for expressions of the remainders in function of k or its factors.

Proposition 1. For $\forall s, k \in \mathbb{Z}^{+}, k$ non-square, $\exists \xi, \mu, v, i, j \in \mathbb{Z}^{+}$, such that if ξ_{i} are solutions of (1), then for $\xi_{i} \equiv$ $\mu_{j}(\bmod k)$ with $1 \leq j \leq v$, the number v of remainders is always even, $v \equiv 0(\bmod 2)$, the remainders come in pairs
whose sum is always equal to $(k-1)$, and the sum of all remainders is always equal to the product of $(k-1)$ and the number of remainder pairs, $\sum_{j=1}^{v} \mu_{j}=(k-1) v / 2$.

Proof. Let $s, i, j, k, \xi, \mu, v, \alpha, \beta \in \mathbb{Z}^{+}, k$ non-square, and ξ_{i} solutions of (1). Rewriting (1) as $T_{t_{i}}=T_{\xi_{i}} / k$, for $T_{t_{i}}$ to be integer, k must divide exactly $T_{\xi_{i}}=\xi_{i}\left(\xi_{i}+1\right) / 2$, i.e., among all possibilities, k divides either ξ_{i} or $\left(\xi_{i}+1\right)$, yielding two possible solutions $\xi_{i} \equiv 0(\bmod k)$ or $\xi_{i} \equiv-1(\bmod k)$, i.e., $v=2$ and the set of μ_{j} includes $\{0,(k-1)\}$. This means that ξ_{i} are always congruent to either 0 or $(k-1)$ modulo k for all non-square values of k.

Furthermore, if some ξ_{i} are congruent to α modulo k, then other ξ_{i} are also congruent to β modulo k with $\beta=(k-\alpha-1)$. As $\xi_{i} \equiv \alpha(\bmod k)$, then $\xi_{i}\left(\xi_{i}+1\right) / 2 \equiv(\alpha(\alpha+1) / 2)(\bmod k)$ and replacing α by $\alpha=(k-\beta-1)$ yields $(\alpha(\alpha+1) / 2)=((k-\beta-1)(k-\beta) / 2)$, giving $\xi_{i}\left(\xi_{i}+1\right) / 2 \equiv$ $((k-\beta-1)(k-\beta) / 2)(\bmod k) \equiv(\beta(\beta+1) / 2)(\bmod k)$. In this case, $v=4$ and the set of μ_{j} includes, but not necessarily limits to, $\{0, \alpha,(k-\alpha-1),(k-1)\}$.

Note that in some cases, $v>4$, as for $k=66,70,78,105, \ldots, v=8$. However, in some other cases, $v=2$ only and the set of μ_{j} contains only $\{0,(k-1)\}$, as shown in the next proposition. In this proposition, several rules (R) are given constraining the congruence characteristics of ξ_{i}.

Proposition 2. For $\forall s, k, \alpha, n \in \mathbb{Z}^{+}, k$ non-square, $\alpha>1, \exists \xi, \mu, v, i \in \mathbb{Z}^{+}$, such that if ξ_{i} are solutions of (1), then ξ_{i} are always only congruent to 0 and $(k-1)$ modulo k, and $v=2$ if either
(R1) k is prime, or
(R2) $k=\alpha^{n}$ with α prime and n odd, or
(R3) $k=s^{2}+1$ with s even, or
(R4) $k=s^{\prime 2}-1$ or (R5) $k=s^{\prime 2}-2$ with s^{\prime} odd.
Proof. Let $s, s^{\prime}, k, \alpha>1, n, i, \xi, \mu, v \in \mathbb{Z}^{+}, k$ non-square, and ξ_{i} are solutions of (1).
(R1)+(R2): If k is prime or if $k=\alpha^{n}$ (with α prime and n odd as k is non-square), then, in both cases, k can only divide either ξ_{i} or $\left(\xi_{i}+1\right)$, yielding the two congruences $\xi_{i} \equiv 0(\bmod k)$ and $\xi_{i} \equiv-1(\bmod k)$.
(R3): If $k=s^{2}+1$ with s even, the rank r is always $r=2$ [11], and the only two sets of solutions are

$$
\begin{align*}
& \left(t_{1}, \xi_{1}\right)=\left(s(s-1),\left(s^{2}+1\right)(s-1)\right) \tag{8}\\
& \left(t_{2}, \xi_{2}\right)=\left(s(s+1),\left(s^{2}+1\right)(s+1)-1\right) \tag{9}
\end{align*}
$$

as can be easily shown. For t_{1}, forming

$$
\begin{aligned}
k T_{t_{1}} & =\frac{1}{2}\left(s^{2}+1\right)(s(s-1))(s(s-1)+1) \\
& =\frac{1}{2}\left[\left(s^{2}+1\right)(s-1)\right]\left[\left(s^{2}+1\right)(s-1)+1\right]=T_{\xi_{1}}
\end{aligned}
$$

which is the triangular number of ξ_{1}. One obtains similarly ξ_{2} from t_{2}. These two relations (8) and (9) show respectively that ξ_{1} is congruent to 0 modulo k and ξ_{2} is congruent to $(k-1)$ modulo k.
(R4): For $k=s^{\prime 2}-1$ with s^{\prime} odd, the rank $r=2$ [11], and the only two sets of solutions are

$$
\begin{align*}
& \left(t_{1}, \xi_{1}\right)=\left(\left(s^{\prime}-1\right) s^{\prime}-1,\left(s^{\prime 2}-1\right)\left(s^{\prime}-1\right)-1\right) \tag{10}\\
& \left(t_{2}, \xi_{2}\right)=\left(\left(s^{\prime}-1\right)\left(s^{\prime}+2\right)+1,\left(s^{\prime 2}-1\right)\left(s^{\prime}+1\right)\right) \tag{11}
\end{align*}
$$

as can be easily demonstrated as above. These two relations (10) and (11) show that ξ_{1} and ξ_{2} are congruent respectively to $(k-1)$ and 0 modulo k.
(R5): For $k=s^{\prime 2}-2$ with s^{\prime} odd, the rank $r=2$ [11], and the only two sets of solutions are

$$
\begin{align*}
& \left(t_{1}, \xi_{1}\right)=\left(\frac{1}{2}\left(s^{\prime}-2\right)\left(s^{\prime}+1\right), \frac{1}{2}\left(s^{\prime 2}-2\right)\left(s^{\prime}-1\right)-1\right) \tag{12}\\
& \left(t_{2}, \xi_{2}\right)=\left(\frac{s^{\prime}}{2}\left(s^{\prime}+1\right)-1, \frac{1}{2}\left(s^{\prime 2}-2\right)\left(s^{\prime}+1\right)\right) \tag{13}
\end{align*}
$$

Table 3. Combination of parameters m and v for $2 \leq n \leq 12$

m		v										
\rangle		1	2	3	4	5	6	7	8	9	10	11
n	2	1 -										
	3	1	1									
	4	1	$/$	1								
	5	1 -	2	2	1							
	6	1 -	/	/	/	1						
	7	1	3	2	2	3	1					
	8	1 -	/	3-	/	3	/	1				
	9	$1-$	4	/	2	2	1	4-	1			
	10	1 -	/	3	/	5_	1	3-	/	1		
	11	1	5	4_	3-	2	2	3	4	5_	1	
	12	1	/	/	/	3	/	4-	/	/	/	1

as can easily be shown as above. These two relations (12) and (13) show that ξ_{1} and ξ_{2} are congruent respectively to $(k-1)$ and 0 modulo k.

There are other cases of interest as shown in the next two Propositions:
Proposition 3. For $\forall n \in \mathbb{Z}^{+}, \exists k, \xi, \mu<k, i, j \in \mathbb{Z}^{+}, k$ non-square, such that if ξ_{i} are solutions of (1) with $\xi_{i} \equiv \mu_{j}(\bmod k)$, and (R6) if k is twice a triangular number $k=n(n+1)=2 T_{n}$, then the set of μ_{j} includes $\left\{0, n,\left(n^{2}-1\right),(k-1)\right\}$, with $1 \leq j \leq v$.

Proof. Let $n, k, \xi, \mu<k, i, j \in \mathbb{Z}^{+}, k$ non-square, and ξ_{i} solutions of (1). Let $\xi_{i} \equiv \mu_{j}(\bmod k)$ with $1 \leq j \leq v$. As the ratio $\xi_{i}\left(\xi_{i}+1\right) / k$ must be integer, $\xi_{i}\left(\xi_{i}+1\right) \equiv 0(\bmod k)$ or $\mu_{j}\left(\mu_{j}+1\right) \equiv 0(\bmod n(n+1))$ which is obviously satisfied if $\mu_{j}=n$ or $\mu_{j}=\left(n^{2}-1\right)$.

Finally, this last proposition gives a general expression of the congruence $\xi_{i}(\bmod k)$ for most cases to find the remainders μ_{j} other than 0 and $(k-1)$.

Proposition 4. For $\forall n>1 \in \mathbb{Z}^{+}, \exists k, f, \xi, v<n<k, \mu<k, m<n, i, j \in \mathbb{Z}^{+}, k$ non-square, let ξ_{i} be solutions of (1) with $\xi_{i} \equiv \mu_{j}(\bmod k)$, let f be a factor of k such that $f=k / n$ with $f \equiv v(\bmod n)$ and $k \equiv v n\left(\bmod n^{2}\right)$, then the set of μ_{j} includes either $\{0, m f,((n-m) f-1),(k-1)\}$ or $\{0,(m f-1),(n-m) f,(k-1)\}$, where m is an integer multiplier of f in the congruence relation and such that $m<n / 2$ or $m<(n+1) / 2$ for n being even or odd respectively, and $1 \leq j \leq v$.

Proof. Let $n>1, k, f, \xi, \mu<k, m<n, i, j<n<k \in \mathbb{Z}^{+}, k$ non-square, and ξ_{i} a solution of (1). Let $\xi_{i} \equiv$ $\mu_{j}(\bmod k)$ with $1 \leq j \leq v$. As the ratio $\xi_{i}\left(\xi_{i}+1\right) / k$ must be integer, $\xi_{i}\left(\xi_{i}+1\right) \equiv 0(\bmod k)$ or $\mu_{j}\left(\mu_{k}+1\right) \equiv$ $0(\bmod f n)$. For a proper choice of the factor f of k, let μ_{j} be a multiple of $f, \mu_{j}=m f$, then $m(m f+1) \equiv$ $0(\bmod n)$. As $f \equiv v(\bmod n)$, one has

$$
\begin{equation*}
m(m v+1) \equiv 0(\bmod n) \tag{14}
\end{equation*}
$$

Let now $\left(\mu_{j}+1\right)$ be a multiple of $f, \mu_{j}+1=m f$, then $m(m f-1) \equiv 0(\bmod n)$ or

$$
\begin{equation*}
m(m v-1) \equiv 0(\bmod n) \tag{15}
\end{equation*}
$$

An appropriate combination of integer parameters m and v guarantees that (14) and (15) are satisfied. Proposition 1 yields the other remainder value as $m f+(n-m) f-1=k-1$ and $(m f-1)+(n-m) f=$ $k-1$.

The appropriate combinations of integer parameters m and v are given in Table 3 for $2 \leq n \leq 12$. The sign - in subscript corresponds to the remainder $(m f-1)$; the sign / indicates an absence of combination.

One deduces from Table 3 the following simple rules:

1) $\forall n \in \mathbb{Z}^{+}$, only those values of v that are co-prime with n must be kept, all other combinations (indicated by / in Table 3) must be discarded as they correspond to combinations with smaller values of n and v;
for n even, this means that all even values of v must be discarded. For example, $v=2$ and $n=4$ are not co-prime and their combination corresponds to $v=1$ and $n=2$.
2) For $v=1$ and $v=n-1$, all values of m are $m=1$ with respectively the remainders $(m f-1)$ and $m f$.
3) For $\forall n, i \in \mathbb{Z}^{+}, n$ odd, $2 \leq i \leq(n-1) / 2$, and for $v=(n-(2 i-3)) / 2$ and $v=(n+(2 i-3)) / 2$, all the values of m are $m=i$.
4) For $\forall n \in \mathbb{Z}^{+}, n$ odd, and for $v=2$ and $v=n-2$, the remainders are respectively $m f$ and $(m f-1)$.
5) For $\forall n, i \in \mathbb{Z}^{+}, n$ even, $2 \leq i \leq n / 2$, and for $v=(n-(2 i-3)) / 2$ and $v=(n+(2 i-3)) / 2$, all the values of m are $m=i$.

Expressions of μ_{i} are given in Table 4 for $2 \leq n \leq 12$ (with codes Env). For example, for $k \equiv 12 v\left(\bmod 12^{2}\right)$ and $v=5$ (code E125), i.e. $k=60,204,348, \ldots, \xi_{i} \equiv \mu_{j}(\bmod k)$ with the set of remainders μ_{j} including $\{0, m f,((n-m) f-1),(k-1)\}$ with $m=3$ (see Table 3) and $f=k / 12=5,17,29 \ldots$..respectively.

Table 4. Expressions of μ_{j} for $2 \leq n \leq 12$

n	v	m	$k \equiv$	f	μ_{j}	Code
2	1	1	$2(\bmod 4)$	k/2	0, (k/2)-1,k/2,k-1	E21
3	1	1	$3(\bmod 9)$	k/3	$0,(k / 3)-1,2 k / 3, k-1$	E31
	2	1	$6(\bmod 9)$		$0, k / 3,(2 k / 3)-1, k-1$	E32
4	1	1	$4(\bmod 16)$	k/4	$0,(k / 4)-1,3 k / 4, k-1$	E41
	3	1	$12(\bmod 16)$		$0, k / 4,(3 k / 4)-1, k-1$	E43
5	1	1	$5(\bmod 25)$	k/5	$0,(k / 5)-1,4 k / 5, k-1$	E51
	2	2	$10(\bmod 25)$		0,2k/5, (3k/5)-1,k-1	E52
	3	2	$15(\bmod 25)$		$0,(2 k / 5)-1,3 k / 5, k-1$	E53
	4	1	$20(\bmod 25)$		0,k/5, (4k/5)-1,k-1	E54
6	1	1	$6(\bmod 36)$	k/6	$0,(k / 6)-1,5 k / 6, k-1$	E61
	5	1	$30(\bmod 36)$		$0, k / 6,(5 k / 6)-1, k-1$	E65
7	1	1	$7(\bmod 49)$	k/7	$0,(k / 7)-1,6 k / 7, k-1$	E71
	2	2	$14(\bmod 49)$		0,3k/7, (4k/7) - 1,k-1	E72
	3	3	$21(\bmod 49)$		0,2k/7, (5k/7) - 1,k-1	E73
	4	3	$28(\bmod 49)$		$0,(2 k / 7)-1,5 k / 7, k-1$	E74
	5	2	$35(\bmod 49)$		$0,(3 k / 7)-1,4 k / 7, k-1$	E75
	6	1	$42(\bmod 49)$		0,k/7, (6k/7) - 1, k-1	E76
8	1	1	$8(\bmod 64)$	k/8	0, (k/8)-1,7k/8,k-1	E81
	3	3	$24(\bmod 64)$		$0,(3 k / 8)-1,5 k / 8, k-1$	E83
	5	3	$40(\bmod 64)$		0,3k/8, $(5 k / 8)-1, k-1$	E85
	7	1	$56(\bmod 64)$		$0, k / 8,(7 k / 8)-1, k-1$	E87
9	1	1	$9(\bmod 81)$	k/9	$0,(k / 9)-1,8 k / 9, k-1$	E91
	2	4	$18(\bmod 81)$		0,4k/9, (5k/9)-1,k-1	E92
	4	2	$36(\bmod 81)$		0,2k/9, $(7 k / 9)-1, k-1$	E94
	5	2	$45(\bmod 81)$		$0,(2 k / 9)-1,7 k / 9, k-1$	E95
	7	4	$63(\bmod 81)$		$0,(4 k / 9)-1,5 k / 9, k-1$	E97
	8	1	$72(\bmod 81)$		$0, k / 9,(8 k / 9)-1, k-1$	E98
10	1	1	$10(\bmod 100)$	k/10	$0,(k / 10)-1,9 k / 10, k-1$	E101
	3	3	$30(\bmod 100)$		0,3k/10, $(7 k / 10)-1, k-1$	E103
	7	3	$70(\bmod 100)$		0, (3k/10)-1,7k/10,k-1	E107
	9	1	$90(\bmod 100)$		0,k/10, (9k/10)-1,k-1	E109
11	1	1	$11(\bmod 121)$	k/11	0, (k/11)-1,10k/11,k-1	E111
	2	5	$22(\bmod 121)$		0,5k/11, (6k/11)-1,k-1	E112
	3	4	$33(\bmod 121)$		0, $(4 k / 11)-1,7 k / 11, k-1$	E113
	4	3	$44(\bmod 121)$		$0,(3 k / 11)-1,8 k / 11, k-1$	E114
	5	2	$55(\bmod 121)$		0,2k/11, (9k/11)-1,k-1	E115
	6	2	$66(\bmod 121)$		$0,(2 k / 11)-1,9 k / 11, k-1$	E116
	7	3	$77(\bmod 121)$		0,3k/11, (8k/11)-1,k-1	E117
	8	4	$88(\bmod 121)$		0,4k/11, $(7 k / 11)-1, k-1$	E118
	9	5	$99(\bmod 121)$		0, $(5 k / 11)-1,6 k / 11, k-1$	E119
	10	1	$110(\bmod 121)$		$0, k / 11,(10 k / 11)-1, k-1$	E1110
12	1	1	$12(\bmod 144)$	k/12	0, (k/12) - 1,11k/12, $k-1$	E121
	5	3	$60(\bmod 144)$		0,3k/12, (9k/12)-1,k-1	E125
	7	4	$84(\bmod 144)$		0, (4k/12) - 1, 8k/12,k-1	E127
	11	1	$132(\bmod 144)$		$0, k / 12,(11 k / 12)-1, k-1$	E1211

Table 5. Values of μ_{j} for $2 \leq k \leq 120$

k	μ_{j}	References	k	μ_{j}	References
2	0,1	R1,R6,E21	63	0,27,35,62	E72,E97
3	0,2	R1,E31	65	0,64	R3
5	0,4	R1,R3,E51	66	0,11,21,32,33,44,54,65	E21+E31+E65+E116
6	0,2,3,5	R6,E21,E32,E61	67	0,66	R1
7	0,6	R1,R5,E71	68	0,16,51,67	E41
8	0,7	R2,R4,E81	69	0,23,45,68	E32
10	0,4,5,9	E21,E52,E101	70	0,14,20,34,35,49,55,69	$\mathrm{E} 21+\mathrm{E} 54+\mathrm{E} 73+\mathrm{E} 107$
11	0,10	R1,E111	71	0,70	R1
12	0,3,8,11	R6,E31,E43,E121	72	0,8,63,71	R6,E81,E98
13	0,12	R1	73	0,72	R1
14	0,6,7,13	E21,E72	74	0,73	?
15	0,5,9,14	E32,E53	75	0,24,50,74	E31
17	0,16	R1,R3	76	0,19,56,75	E43
18	0,8,9,17	E21,E92	77	0,21,55,76	E74,E117
19	0,18	R1	78	0,12,26,38,39,51,65,77	E21+E32+E61
20	0,4,15,19	R6,E41,E54	79	0,78	R1,R5
21	0,6,14,20	E31,E73	80	0,79	R4
22	0,10,11,21	E21,E112	82	0,40,41,81	E21
23	0,22	R1,R5	83	0,82	R1
24	0,23	R4	84	0,27,56,83	E31,E127
26	0,12,13,25	E21	85	0,34,50,84	E52
27	0,26	R2	86	0,42,43,85	E21
28	0,7,20,27	E43,E74	87	0,29,57,86	E32
29	0,28	R1	88	0,32,55,87	E83,E118
30	0,5,24,29	R6,E51,E65	89	0,88	R1
31	0,30	R1	90	0,9,80,89	R6,E91,E109
32	0,31	R2	91	0,13,77,90	E75
33	0,11,21,32	E32,E113	92	0,23,68,91	E43
34	0,16,17,33	E21	93	0,30,62,92	E31
35	0,14,20,34	E52,E75	94	0,46,47,93	E21
37	0,36	R1,R3	95	0,19,75,94	E54
38	0,18,19,37	E21	96	0,32,63,95	E32
39	0,12,26,38	E31	97	0,96	R1
40	0,15,24,39	E53,E85	98	0,48,49,97	E21
41	0,40	R1	99	0,44,54,98	E92,E119
42	0,6,35,41	R6,E61,E76	101	0,100	R1,R3
43	0,42	R1	102	0,50,51,102	E21
44	0,11,32,43	E43,E114	103	0,102	R1
45	0,9,35,44	E54,E95	104	0,103	?
46	0,22,23,245	E21	105	0,14,20,35,69,84,90,104	E32+E51+E71
47	0,46	R1,R5	106	0,52,53,105	E21
48	0,47	R4	107	0,106	R1
50	0,24,25,49	E21	108	0,27,80,107	E43
51	0,17,33,50	E32	109	0,108	R1
52	0,12,39,51	E41	110	0,10,99,109	R6,E101,E1110
53	0,52	R1	111	0,36,74,110	E31
54	0,26,27,53	E21	112	0,48,63,111	E72
55	0,10,44,54	E51,E115	113	0,112	R1
56	0,7,48,55	R6,E71,E87	114	0,56,57,113	E21
57	0,18,38,56	E31	115	0,45,69,114	E53
58	0,28,29,57	E21	116	0,28,87,115	E41
59	0,58	R1	117	0,26,90,116	E94
60	0,15,44,59	E43,E125	118	0,58,59,117	E21
61	0,60	R1	119	0,118	R1,R5
62	0,30,31,61	E21	120	0,15,104,119	E87

Values of the remainders μ_{j} are given in Table 5 for $2 \leq k \leq 120$, with rule (R) and expression (E) codes as references. R and E codes separated by commas imply that all references apply simultaneously to the case; E codes separated by + mean that all expressions apply to the case; some expression references are sometimes missing. One observes that in two cases (for $k=74$ and 104), expressions could not be found (indicated by question marks).

Table 5 gives correctly the values of the remainder pairs in most of the cases. There are although some exceptions and some values missing.

Among the exceptions to the values given in Table 5, for $n=2$, remainders values for $k=$ $30,42,74,90,110, \ldots$ are different from the theoretical ones in Table 4. Furthermore, for $k=66,70,78,105, \ldots$, additional remainders exist. Expressions are missing for $k=74$ (E21) and 104 (E85). Finally, one observes also that for 16 cases, some Rules or Expressions supersede some other Expressions (indicated by Ra > Exy or Exy $>$ Ezt), as reported in Table 6. For example, Rule 6 supersedes Expression 21 (R6 > E21) for $k=30,42,90,110$, i.e., $k=2 T_{5}, 2 T_{6}, 2 T_{9}, 2 T_{10}, \ldots$ and more generally for all $k=2 T_{i}$ for $i \equiv 1,2(\bmod 4)$.

Table 6. Rules and Expressions superseding other Rules and Expressions

 24 R4 $>$ E32; R4 $>$ E83 30 R6 > E21; R6 $>$ E31; R6 $>$ E103; E51 $>$ E103; E65 $>$ E103	
42	R6 $>$ E21; R6 $>$ E32
48	R4 $>$ E31
56	R6 $>$ E43
60	E43 $>$ E32; E43 $>$ E52
65	R3 $>$ E53
72	R6 $>$ E43
80	R4 $>$ E51
84	E31 $>$ E41; E31 $>$ E75
90	R6 $>$ E21; R6 $>$ E53
102	E21 $>$ E31; E21 $>$ E65
110	R6 $>$ E21; R6 $>$ E52
114	E21 $>$ E32; E21 $>$ E61
119	R1 $>$ E73; R5 $>$ E73
120	E87 $>$ R4; E87 $>$ E31; E87 $>$ E54

Note that 11 of these 16 values of k are multiples of 6 , the others are $2 \bmod 6$ and $5 \bmod 6$ for, respectively three and two cases. One notices as well, that generally, Ra and Exy supersede Ezt with $x<z$ and $t<y$, except for $k=60$ and 120 .

4. Conclusions

We have shown that, for indices ξ of triangular numbers multiples of other triangular numbers, the remainders in the congruence relations of ξ modulo k always come in pairs whose sum always equal $(k-1)$, always include 0 and $(k-1)$, and only 0 and $(k-1)$ if k is prime, or an odd power of a prime, or an even square plus one or an odd square minus one or minus two. If the multiplier k is twice a triangular number of n, the set of remainders includes also n and $\left(n^{2}-1\right)$ and if k has integer factors, the set of remainders include multiple of a factor following certain rules. Finally, algebraic expressions are found for remainders in function of k and its factors. Several exceptions are noticed as well as reported above and it appears that there are superseding rules between the various rules and expressions.

This approach allows eliminating in numerical searches those $(k-v)$ values of ξ_{i} that are known not to provide solutions of (1), where v is the even number of remainders. The gain is typically in the order of k / v, with $v \ll k$ for large values of k.
Conflicts of Interest: The author declares no conflict of interest.
Data Availability: Data required for this research is included within this paper.
Funding Information: The author received no financial support for the research authorship and / or publication of this article.

References

[1] Andrews, G. E. (1971). Number Theory. Dover Publications, New York.
[2] Weisstein, E. W. (2021). Triangular Number, in MathWorld-A Wolfram Web Resource. Last accessed 14 February 2021. http://mathworld.wolfram.com/TriangularNumber.html.
[3] Cunningham, A. (1901). Mathematical Questions and Solutions in Continuation of the Mathematical Columns of "the Educational Times", Volume 75, F. Hodgson, 87-88.
[4] de Joncourt, E. (1762). The Nature and Notable Use of the Most Simple Trigonal Numbers. The Hague: Husson.
[5] Roegel, D. (2013). A reconstruction of Joncourt's table of triangular numbers (1762). LOCOMAT project. Last accessed 14 February 2021. https:/ /locomat.loria.fr/joncourt1762/joncourt1762doc.pdf.
[6] Dickson, L. E. (2005). History of the Theory of Numbers, Vol. II: Diophantine Analysis. Dover Publications, New York, p. 587.
[7] Chahal, J. S., \& D'Souza, H. (1993). Some remarks on Triangular Numbers, in Number Theory with an Emphasis on the Markoff Spectrum, A. D. Pollington and W. Mran, eds., Marcel Dekker Inc., New York.
[8] Breiteig, T. (2015). Quotients of triangular numbers. The Mathematical Gazette, 99(545), 243-255.
[9] Pletser, V. (2021). Recurrent relations for multiple of triangular numbers being triangular numbers. ArXiv 2101.00998. Last accessed 14 February 2021. http:/ /arxiv.org/abs/2101.00998.
[10] Sloane, N. J. A., (2018). The On-Line Encyclopedia of Integer Sequences. Last accessed 14 February 2021. Published electronically at https:/ / oeis.org.
[11] Pletser V. (2021). Searching for multiple of triangular numbers being triangular numbers. Research Gate, DOI: 10.13140/RG.2.2.35428.91527. https://www.researchgate.net/publication/349788977 .
© 2021 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

