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Abstract: There are many possible definitions of derivatives, here we present some and present one that
we have called generalized that allows us to put some of the others as a particular case of this but, what
interests us is to determine that there is an infinite number of possible definitions of fractional derivatives,
all are correct as differential operators each of them must be properly defined its algebra. We introduce a
generalized version of fractional derivative that extends the existing ones in the literature. To those extensions
it is associated a differentiable operator and a differential ring and applications that shows the advantages of
the generalization. We also review the different definitions of fractional derivatives and it is shown how the
generalized version contains the previous ones as a particular cases.
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1. Introduction and Preliminaries

F ractional derivative was defined for responding to a question ’what does it mean dα f
dtα if α = 1

2 ’ in 1695.
Following that, finding the right definition of fractional derivative has attracted significant attention of

researcher and in the last few years it has seen significantly progress in mathematical and non-mathematical
journals (see [1–10]). In fact, there are articles which in few months have gained hundreds of citations. In
particular in past three years several definitions of fractional derivative have been proposed (see [3,4,10–23]).
Since some of previous definitions do not satisfy the classical formulas of the usual derivative, it has been
proposed an ad hoc algebra associated to each definition. To unify that diversity, we propose a version of
fractional derivative that has the advantages that generalized the already existing in the literature and where
the different algebras are unified under the notion of fractional differential ring.

The present paper is organized as follows: In the Section 2 we give the previous definitions of fractional
derivative and our generalized fractional derivative (GFD) definition, in the Section 3 we introduce a fractional
differential ring, in the Section 4 we give some result of GFD, in the Section 5 we give a definition of partial
fractional differential derivative, in the Section 6 we give a definition of GFD when α ∈ (n, n + 1].

2. Fractional derivative

Let α ∈ (0, 1] be a fractional number, we want to give a definition of generalized fractional derivative
of order α for a differentiable function f . We denote α−th derivative of f by Dα( f ) and we denote the first
derivative of f by D( f ).

We begin the present section listing previous definition of fractional derivative; later we present our
proposal of generalized one showing how it contains the once already described. We finish the section
providing some examples.

1. The Caputo fractional derivative was defined by Michele Caputo in [24]:

Dα( f ) =
1

Γ(1− α)

∫ t

a

f ′(x)
(t− x)α

dx. (1)
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2. The conformable fractional derivative was defined by Khalil, Al Horani, Yousef and Sababheh in [11]:

Dα f (t) = lim
ε→0

f (t + t1−αε)− f (t)
ε

. (2)

3. The conformable fractional derivative was defined by Anderson and Ulness in [25]:

Dα f (t) = (1− α) | t |α f (t) + α | t |1−α D f . (3)

4. The fractional derivative was defined by Udita N.Katugampola in [17]:

Dα f (t) = lim
ε→0

f (teεt−α
)− f (t)
ε

. (4)

5. The fractional derivative was defined by Guebbai and Ghiat in [20] for an increasing and positive
function f :

Dα f (t) = lim
ε→0

(
f (t + f (t)

1−α
α ε)− f (t)

ε

)α

. (5)

6. The conformable ratio derivative was defined by Camrud in [14] for a function f (t) ≥ 0 with D f (t) ≥ 0:

Dα f (t) = lim
ε→0

f (t)1−α

(
f (t + ε)− f (t)

ε

)α

. (6)

From all these definitions, we propose a definition that unifies almost all of them.

Definition 1. Given a differentiable function f : [0, ∞) → R, the generalized fractional derivative(GFD) for
α ∈ (0, 1] at point t is defined by:

Dα f (t) = limε→0
f (t+wt,αt1−αε)− f (t)

ε ,

where wt,α is a function that may depend on α and t.

Remark 1. As a consequence of Definition 1 we can see

Dα f (t) = wt,αt1−αD f (t).

Definition 2. A differentiable function f : [0, ∞) → R is said to be α−generalized fractional differentiable
function over [0, ∞) if it exists Dα( f )(t) for all t ∈ [0, ∞) for α ∈ (0, 1].

We denote Cα[0, ∞) the set of α−generalized differentiable functions with real values in the interval [0, ∞)

in variable t. The set (Cα[0, ∞),+, .) is a ring. In the following we want to see the relation between GFD and
the others definitions:

1. The fractional derivative of Khalil, Al Horani, Yousef and Sababheh in [11] is a particular case of GFD
where wt,α = 1.

2. The fractional derivative of Anderson and Ulness in [25] is a particular case of GFD where

wt,α =
(1− α)tα f (t) + αt1−αD f

αt1−α
.

In this fractional derivative wt,α depends on α and t.
3. The fractional derivatives of Guebbai and Ghiat in [20] and Camrud in [14] are particular cases of GFD

where wt,α =
(

tD f
f

)α−1
.

We are particularly interested in discussing GFD where wt,α = g(t, α)τα−1 such that g : [0, ∞)× (0, 1]→ R
is a function and τ is the characteristic of system with the properties

wt,α = 1 if and only if α = 1.
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If the system is periodic with period T, then we have τ = T. In the quantum systems τ is the Bohr radius
and in astronomy τ is the light year. The characteristic of system τ depends on the systems and the derivative.
If t is time, τ is time too. If t is space, τ is space too. In fact the unit of t is τ, i.e., t = cτ where c is a constant.
In the general τ = 1.

Example 1. Let α, β ∈ (0, 1]. Let f , h be two functions in Cα[0, ∞). We suppose wt,α = g(t, α)τα−1 with τ = 1.

1. If g(t, α) is a function with g(0, 0) = 0, then limα→0 Dα( f ) = 0.
2. If g(t, α) = α, we have the chain rule

Dα( f ◦ h) =
tα−1

α
Dα ( f (h)) Dα(h).

Example 2. We want to present the corresponding figure to the generalized fractional derivatives for α = 3
4 for

a trigonometric, using all the fractional derivative definitions that we have already mentioned in this article. It
can be seen from all the figures that in principle these definitions do not find a reason to discard them. That is,
they have a fairly reasonable behavior. We consider f (t) = sin(2t), the graph of f can be seen in Figure 1.

Figure 1. red:Caputo, green:Khalil et al., blue:Anderson et al., orange:Guebbai et al., black:GFD when wt,α = α.

3. Generalized fractional differential ring

In this section we want to stress out that instead of defining a new derivative, we focus on the notion of
differentiable operator and the ring that it carries with.

Definition 3. Let R be a commutative ring with unity. A derivation on R is a map d : R → R that satisfies
d(a + b) = d(a) + d(b) and d(ab) = d(a)b + ad(b), ∀a, b ∈ R. The pair (R, d) is called a differential ring (see
[26]).

Theorem 1. Let α ∈ (0, 1], then the ring Cα[0, ∞) with operator Dα : Cα[0, ∞)→ Cα[0, ∞) is a differential ring.

Proof. Since Cα[0, ∞) is a commutative ring with unity f (t) = 1 and the derivation Dα for α ∈ (0, 1] satisfies
following properties from Remark 1

1. Dα(a f1 + b f2) = aDα( f1) + bDα( f2), ∀ f1, f2 ∈ Cα[0, ∞), ∀a, b ∈ R,
2. Dα( f1 f2) = f1Dα( f2) + f2Dα( f1), ∀ f1, f2 ∈ Cα[0, ∞).

Let α ∈ (0, 1] be a fractional number, and f1, f2 ∈ Cα[0, ∞) be two functions, then GFD has the following
properties:

1. Dα( f1
f2
) = f2Dα f1− f1Dα f2

f 2
2

.

2. Dα( f1 ◦ f2) =
tα−1

wt,α
Dα ( f1( f2)) Dα( f2).

3. Dα+β( f1) =
wt,αwt,βt
wt,α+β

DαDβ( f1).
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It is easy to see these properties from Remark 1 that if wt,α = t1−α we have the equality

Dα( f1 ◦ f2) = Dα ( f1( f2)) Dα( f2).

If
wt,α+β

wt,αwt,β
= t we have the equality

Dα+β( f1) = DαDβ( f1), ∀α, β ∈ (0, 1].

Parts 4 and 5 of the properties imply that we can create function spaces with different algebras using different
expressions for wt,α.

By considering previous properties of GFD we called Cα[0, ∞) a wt,α−generalized fractional differential
ring of functions and we denote it by (Cα[0, ∞), Dα, wt,α). Let I ⊂ Cα[0, ∞) be an ideal. If Dα(I) ⊂ I then the
ideal I is called a wt,α−generalized fractional differential ideal. By using the previous properties we can see
the following result:

Theorem 2. Let α ∈ (0, 1], then, associated to any α and any wt,α there exists a fractional differential ring.

4. Some results of Generalized Fractional Derivative

Let α ∈ (0, 1] be a fractional number and t ∈ [0, ∞) then GFD has the following properties:

1. Dα( tα

αwt,α
) = 1,

2. Dα(sin( tα

αwt,α
)) = cos( tα

αwt,α
),

3. Dα(cos( tα

αwt,α
)) = − sin( tα

αwt,α
),

4. Dα(e
( tα

αwt,α
)
) = e

( tα
αwt,α

)
.

Theorem 3. (Rolle’s Theorem for α−Generalized Fractional Differentiable Functions)
Let a > 0 and f : [a, b]→ R be a function with the properties that

1. f is continuous on [a, b],
2. f is α−generalized fractional differentiable on (a, b) for some α ∈ (0, 1],
3. f (a) = f (b).

Then, there exist c ∈ (a, b) such that Dα f (c) = 0.

Proof. Since f is continuous on [a, b] and f (a) = f (b), then the function f has a local extreme in a point
c ∈ (a, b) and

Dα f (c) = lim
ε→0+

f (c + wt,αc1−αε)− f (c)
ε

= lim
ε→0−

f (c + wt,αc1−αε)− f (c)
ε

.

But two limits have different signs, so Dα f (c) = 0.

Theorem 4. (Mean Value Theorem for α−Generalized Fractional Differentiable Functions) Let a > 0 and f : [a, b]→ R
be a function with the properties that

1. f is continuous on [a, b],
2. f is α−Generalized fractional differentiable on (a, b) for some α ∈ (0, 1].

Then, there exists c ∈ (a, b) such that Dα f (c) = αwt,α( f (b)− f (a))
b−a .

Proof. Consider function

h(t) = f (t)− f (a)− αwt,α( f (b)− f (a))
b− a

(
tα

αwt,α
− aα

αwt,α

)
.

Then, the function h satisfies the conditions of the fractional Rolle’s Theorem. Hence, there exists c ∈ (a, b)
such that Dαh(c) = 0. We have the result since

Dαh(c) = Dα f (c)− αwt,α( f (b)− f (a))
b− a

(1) = 0.
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5. Generalized Partial Fractional Derivative

In this section we introduce a partial fractional derivative of first and second order. Also we introduce a
partial fractional differential ring.

Definition 4. Let f (t1, · · · , tn) : [0, ∞)n → R be a function with n variables such that ∀i, then there exists the
partial derivative of f respect to ti. Let α ∈ (0, 1] be a fractional number. We define α−generalized partial
fractional derivative(GPFD) of f with respect to ti at point t = (t1, . . . , tn)

∂α f (t)
∂tα

i
= limε→0

f (t1,...,ti+wti ,αt1−α
i ε,...,tn)− f (t)
ε ,

where wti ,α can be a function depend on α and ti.

Remark 2. As a consequence of Definition 2 we can see for α ∈ (0, 1] and 1 ≤ i ≤ n:

∂α f
∂tα

i
(t) = wti ,α(ti)

1−α ∂ f
∂ti

(t).

Let α ∈ (0, 1] and 1 ≤ i ≤ n. A partial differentiable function f : [0, ∞)n → R is said to be a α−generalized
partial fractional differentiable function respect to ti over [0, ∞) if there exists ∂α f (t)

∂tα
i

for all t ∈ [0, ∞). We

denote by Cα
i [0, ∞)n the set of α−generalized partial fractional differentiable functions respect to ti with real

values in the interval [0, ∞)n in variable t = (t1, . . . , tn). The set (Cα
i [0, ∞)n,+, .) is a ring.

Theorem 5. Let α ∈ (0, 1] and 1 ≤ i ≤ n. The ring Cα
i [0, ∞)n with operator

∂α

∂tα
i

: Cα
i [0, ∞)n → Cα

i [0, ∞)n

is a differential ring.

Proof. Since the ring Cα
i [0, ∞)n is a commutative ring with unity f (t1, . . . , tn) = 1 and the derivation ∂α

∂tα
i

for

α ∈ (0, 1] satisfies the following properties from Remark 2;

1. ∂α( f1+ f2)
∂tα

i
= ∂α( f1)

∂tα
i

+ ∂α( f2)
∂tα

i
f1, f2 ∈ Cα[0, ∞)n,

2. ∂α( f1 f2)
∂tα

i
= f1

∂α f2
∂tα

i
+ f2

∂α f1
∂tα

i
f1, f2 ∈ Cα[0, ∞)n.

Let α ∈ (0, 1] and 1 ≤ i ≤ n. Further let f1, f2 ∈ Cα[0, ∞)n be two functions, then GPFD has the following
properties from Remark 2:

1.
∂α(

f1
f2
)

∂tα
i

=
f2

∂α f1
∂tαi
− f1

∂α f2
∂tαi

f 2
2

,

2. ∂α f1◦ f2
∂tα

i
=

tα−1
i

wti ,α

∂α( f1( f2))
∂tα

i

∂α( f2)
∂tα

i
,

3. ∂α+β( f1)
∂tα

i
=

wti ,αwti ,βti
wti ,α+β

∂α

∂tα
i

∂α( f1)
∂tα

i
.

By considering previous properties of GPFD we called the ring Cα
i [0, ∞)n a wti ,α− generalized partial

fractional differential ring. We denote it by (Cα
i [0, ∞)n, ∂α

∂tα
i
, wti ,α).

We can see the following result by using the previous properties:

Theorem 6. Let α ∈ (0, 1] and 1 ≤ i ≤ n. Associated to any α and any wti ,α there is a partial fractional differential
ring.

Example 3. Let f (t1, t2) = t3
1 sin(t2) and α ∈ [0, 1) then we have

∂α f
∂tα

1
= wt,α(t1)

1−α(3t2
1) sin(t2).



Open J. Math. Sci. 2021, 5, 279-287 284

Definition 5. Let α ∈ (0, 1] be a fractional number. We define α−generalized partial fractional derivative of
second order with respect to ti and tj at point t = (t1, · · · , tn) is

∂α2
f (t)

∂tα
j ∂tα

i
= ∂α

∂tα
j
( ∂α f (t)

∂tα
i

) = limε→0

∂α f
∂tαi

(t1,...,tj+wtj ,αt1−α
j ε,...,tn)− ∂α f (t)

∂tαi
ε .

Remark 3. As a consequence of Definition 5 we can see for α ∈ (0, 1] and 1 ≤ i, j ≤ n;

∂α2
f (t)

∂tα
j ∂tα

i
= wtj ,αwti ,α(tjti)

1−α ∂

∂tj
(

∂ f
∂ti

(t)).

A partial differentiable function of second order f : [0, ∞)n → R is said to be a α−generalized fractional

partial differentiable function of second order respect to ti and tj over [0, ∞) if there exists ∂α2
f (t)

∂tα
j ∂tα

i
for all t ∈

[0, ∞). We denote Cα2

i,j [0, ∞)n the set of α−generalized partial fractional differentiable functions of second order

respect to ti and tj with real values in the interval [0, ∞)n in variable t = (t1, . . . , tn). The set (Cα2

i,j [0, ∞)n,+, .)
is a ring.

6. Generalized Fractional Derivative for α ∈ (n, n + 1]

In this section we define a fraction differential derivative for α ∈ (n, n + 1].

Definition 6. Let α ∈ (n, n + 1] be a fractional number for n ∈ N and f : [0.∞) → R be a n− differentiable.
The generalized fractional derivative of order α is defined by

Dα f (t) = limε→0
f [α]−1(t+wt,αt[α]−αε)− f [α]−1(t)

ε ,

where [α] is the smallest integer greater than or equal to α.

As a consequence of Definition 6 we can see

Dα( f ) = wt,αt[α]−αD[α]( f ),

where α ∈ (n, n + 1].
Let n < α ≤ n + 1. A function f : [0, ∞) → R is said to be α−generalized differentiable over [0, ∞) if

there exists Dα( f )(t) for all t ∈ [0, ∞). We denote Cα[0, ∞) the set of α−generalized fractional differentiable
functions with real values in the interval [0, ∞) in variable t. The set (Cα[0, ∞),+, .) is a ring.

Theorem 7. The ring (Cα[0, ∞),+, .) with operator Dα is not a differential ring for fractional number α ∈ (n, n + 1].

Proof. Since Dα( f g) 6= f Dαg + gDα( f ) for every f , g ∈ Cα[0, ∞).

7. α-Fractional Taylor Series

There are some articles about fractional Taylor series see ([12,27–29]). In this section we use GFD to define
a fractional taylor series for a function f ∈ Cr[0, ∞) for every fractional number r.

Let 0 < α < 1, we define the α-fractional taylor series of f at real number x0

f (x) = f (x0) +
∞

∑
i=1

Di f (x0)

wx,α(α + i− 1)!
(x− x0)

α+i−1,

where (α + i− 1)! = α(α + 1) · · · (α + i− 1).
Let 1 < α ≤ 2, we define the α-fractional taylor series of f at real number x0

f (x) = f (x0) + D f (x0)(x− x0) +
∞

∑
i=2

Di f (x0)(x− x0)
α+i−2

wx,α(α + i− 2)!
,

where (α + i− 2)! = (α− 1)α(α + 1) · · · (α + i− 2).
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Let n < α ≤ n + 1 such that α = n + A with 0 < A < 1. We define the α-fractional taylor series of f at real
number x0,

f (x) = f (x0) +
n

∑
i=1

Di f (x0)(x− x0)
i

i!
+

∞

∑
i=n+1

Di f (x0)

wx,α(A + i− 1)!
(x− x0)

A+i−1,

where α = n + A, (A + i− 1)! = A(A + 1) · · · (A + i− 1).

8. Application to differential equations

There are some articles for applications of fractional differential derivative such as [3,6,7,9]. In this section
we solve some (partial) fractional differential equations by using our definitions. Firstly we solve the fractional
differential equations with the form

aDαy + by = c, (7)

where y = f (t) be a differentiable function and 0 < α < 1.
By substituting GFD in the Equation (7) we have

awt,αt1−αDy + by = c =⇒ Dy +
btα−1

awt,α
y =

tα−1c
awt,α

,

the solutions of this equation have the form y(t) = c
b + c1e

(− btα
awt,αα ).

Example 4. We consider the partial fractional differential equation with boundary conditions
ut + 2 3

√
xux + u = x2, t > 0

u(t, 0) = 0,

u(0, x) = 0,

(8)

where u(x, t) be a differentiable function respect to x and t, u(x, t) be a 1
3−partial fractional differentiable

function of first order respect to x, ut =
∂u
∂t and 3

√
ux = ∂

1
3 u

∂x
1
3

. For wt, 1
3
= 1

3 , by using Remark 2 we can write

ut + 2 3
√

xux + u = x2 =⇒ ut + 2 3
√

xwt,αx1−αux + u = x2 =⇒ ut +
2
3

xux + u = x2.

We solve this equation by taking Laplace transform of equation with respect to t. We denote by U(x, s) the
Laplace of u(x, t) with respect to t, we have the following equation

sU(x, s)−U(x, 0) + 2
3 xUx(x, s) + U(x, s) = x2s

U(t, 0) = 0,

U(0, x) = 0.

(9)

Then

Ux +
3 + 3s

2x
U =

3x
2s

=⇒ U(x, s) =
3x2

s(3s + 7)
+ c(s)x

−3−3s
2 .

By substituting U(0, x) = 0, we have c(s) = 0, then U(x, s) = x2( 3
7s +

9
7(3s+7) ). The solution of equation is

u(x, t) = x2

7 (1− e
−7
3 ).

Example 5. We consider the partial fractional differential equation of second order;

5
√

uxt + 2
u
x
= 0, (10)

where u(x, t) be a 1
5−fractional partial differentiable function of second order respect to t, x. For wx, 1

5
=

x2, wt,, 1
5
= 1

3√t
by using remark 3, we have

x2 5√
x4 5√

t4uxt + 2 3
√

tu = 0. (11)
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We consider a solution of this differential equation of the form u(x, t) = f (x)g(t) such that f a function
depends on x and g a function depends on t. By substituting u(x, t) in the Equation (11) we have

x2 5√
x4 5√

t4D f .Dg + 3 3
√

t f g = 0. (12)

We can write Equation (12) in a form that divide the functions of t and x:

x2 5√x4D f
f

= − 2 3
√

tg
5√t4Dg

, (13)

two sides of the Equality (13) is a constant k. We have
D f

f = k
5√x14
→ Ln f = k 15

√
x + c1 → f = exp(k 15

√
x + c1),

Dg
g = −2

k 15√t7
→ Lng = −2 15√t8

k + c2 → g = exp(−2 15√t8

k + c2).
(14)

The solution of Equation (10) has the form

u(x, t) = exp(k 15
√

x + c1) exp(
−2 15√t8

k
+ c2) = c exp(k 15

√
x +
−2 15√t8

k
).

9. Conclusion

We defined a generalized fractional derivative (GFD). We showed that the previous derivatives are
particular cases. We also showed how it is possible to have infinite fractional derivatives with their algebra.
We present the fractional differential ring, the fractional partial derivatives and their applications.
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