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Abstract: The present study proposes a generalized mean estimator for a sensitive variable using a
non-sensitive auxiliary variable in the presence of measurement errors based on the Randomized Response
Technique (RRT). Expressions for the bias and mean squared error for the proposed estimator are correctly
derived up to the first order of approximation. Furthermore, the optimum conditions and minimum mean
squared error for the proposed estimator are determined. The efficiency of the proposed estimator is studied
both theoretically and numerically using simulated and real data sets. The numerical study reveals that
the use of the Randomized Response Technique (RRT) in a survey contaminated with measurement errors
increases the variances and mean squared errors of estimators of the finite population mean.
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1. Introduction

A uxiliary variables are closely related to the survey variable and are used in a survey at the design and
estimation stage to improve the efficiency of estimators of the finite population mean. The difference

between the true value of a variable and the value recorded in a survey is referred to as measurement errors.
Measurement errors are caused by memory loss, prestige bias, over-reporting, under-reporting, processing
errors, and incorrect values from the respondent. In literature, most researchers assume that the data collected
in a survey are error-free. However this is not the case, the problem of measurement errors is inherent in
survey sampling.

In a survey, the researcher faces the problem of estimation of the finite population mean for a sensitive
survey question with a social stigmatizing characteristic such as ”Have you ever had an abortion?”, ”Are
you a drug addict?” and ”Have you ever been infected with sexually transmitted diseases?”. Moreover, it
is challenging to obtain the correct responses on such questions in personal interviews which involve direct
questioning of the subjects because the respondent’s privacy is unprotected. Consequently, this may result in
measurement errors. Warner [1] proposed the Randomized Response Technique (RRT) which aims at reducing
answer bias in a survey involving a sensitive variable through the protection of the privacy of the respondents.
In the Randomized Response Technique (RRT), a scrambled variable that is independent of the survey and
auxiliary variables are used in the estimation of the finite population means of a sensitive variable. The
respondent is expected to provide a true response for the non–sensitive auxiliary variable and a scrambled
response for the survey variable. The scrambled response is obtained by adding a random number to the true
response of a sensitive question. The value added is unknown to the survey practitioners but the probability
distribution of the scrambled response is assumed to be known.

The problem of estimation of the finite population mean for a non–sensitive variable using auxiliary
variable under simple random sampling is addressed by Shalabh [2], Diwakar et al., [3] and, Yadav et al., [4].
Additionally, Gajendra et al., [5] used calibrated weights to propose ratio and regression type mean estimators
for a non-sensitive variable under stratified random sampling.
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The problem of estimation of the finite population mean for a sensitive variable based on Randomized
Response Technique (RRT) under different sampling schemes is addressed by Eichhorn and Hayre [6], Gupta
and Shabbir [7], Gupta et al., [8], Sousa et al., [9] and Tanveer and Housila [10].

Mushtaq et al., [11] and Mushtaq et al., [12] have proposed different estimators of the finite population
mean for a sensitive variable using a non–sensitive auxiliary variable under stratified random sampling. The
problem of estimation of the finite population mean under stratified two–phase sampling is discussed by
Mushtaq et al., [12]. The joint influence of double sampling and the Randomized Response Technique (RRT)
on the estimation of the finite population mean under simple random sampling is addressed by Mushtaq
and Noor-Ul-Amin [13]. Additionally, the problem of estimation of the finite population mean for a sensitive
variable in the presence of non-response based on the Randomized Response Technique (RRT) is discussed
by Naeem and Shabbir [14]. Zahid and Shabbir [15] proposed a generalized class of estimators of the finite
population mean using a non–sensitive auxiliary variable in the presence of non–response and measurement
errors under simple random sampling and stratified random sampling.

Sadia [16] proposed generalized estimators of the finite population mean in the presence of measurement
errors under simple random sampling and stratified random sampling. The performances of the proposed
estimators were studied in the presence and absence of the measurement errors. Recently, Zhang [17]
addressed the problem of mean estimation for a sensitive variable based on optional Randomized Response
Technique (RRT) in the presence of non-response and measurement errors under simple random sampling and
stratified random sampling.

Handling sensitive survey questions and measurement errors is a major challenge for survey practitioners
especially when both occur simultaneously in a survey. The present study fills the existing gap in the
literature on mean estimation for a sensitive variable using a non-sensitive auxiliary variable in the presence of
measurement errors under stratified double sampling. Also, the combined effect of measurement errors and
Randomized Response Technique (RRT) on estimators of the finite population mean is investigated.

The study considers an additive Randomized Response Technique (RRT) model in which the respondent
adds a random number to the true answer of a sensitive question to give a scrambled response. Further, the
probability distribution of the scrambling variable is assumed to be known by the survey practitioner. The
proposed strategy assumes that measurement errors are present in both first and second-phase samples of
stratified double sampling.

In the present paper, Section 2 gives a detailed description of the population under study. The ordinary
mean estimator of the finite population mean for a sensitive variable is discussed in Section 3. Section 4
describes the properties of the proposed estimator of the finite population mean for a sensitive variable using
a non-sensitive auxiliary variable in the presence of measurement error. In Section 5, members of the family
of the proposed generalized estimator are discussed. The efficiency of the proposed estimator is studied
theoretically in Section 6. Finally, a numerical analysis of the performance of the proposed estimator is done in
Section 7.

2. Population description and notations

Consider a heterogeneous population U = 1, 2 . . . N of size N consisting of a survey variable Y, and
auxiliary variable, X. The population is categorized into L homogeneous groups of sizes Nh each known
as strata. In a survey, direct observations cannot be made on a sensitive variable with social stigmatizing
characteristics hence the Randomized Response Technique (RRT) is used for obtaining unbiased estimates of
the finite population parameters. Let S, be a scrambling variable that is normally distributed with mean 0 and
variance S2

Sh. The respondent is expected to provide a true response for the auxiliary variable and a scrambled
response for the sensitive variable. Let Zhi = Yhi + Shi, denote the ith value of a scrambled response in hth

stratum. Further, let Zhi and Xhi denote ith value of Z and X respectively in hth stratum. Additionally, let
Zh and Xh be the population means for Z and X respectively in hth stratum. Further, let S2

Zh and S2
Xh be the

population variances of Z and X respectively in hth stratum. Let SZXh and ρZXh denote the covariance and
coefficient of correlation between their subscripts in hth stratum.

In the presence of measurement errors, let (x∗hi, z∗hi) and (X∗hi, Z∗hi) be the observed and true values of
X and Z respectively in hth stratum. Let T∗hi = z∗hi − Z∗hi and V∗hi = x∗hi − X∗hi denote the measurement errors
associated with Z and X respectively in hth stratum. The measurement errors are assumed to be normally
distributed with mean zero and variances S2

Th and S2
Vh, for Z and X respectively in hth stratum.
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A relatively large sample of size n is drawn from the population using a simple random sampling without
replacement (SRSWOR) and the units are classified into L homogeneous strata of size n′h each. A second phase
random sample of size nh is drawn from the first phase sample using a simple random sampling without
replacement (SRSWOR) and both the survey and auxiliary variables are studied. Let x′h denote the first phase
hth stratum sample mean for X. Further, let xh and zh denote the second phase hth stratum sample means for
X and Z respectively. Let

σX1h = x′h − Xh, (1)

σXh = xh − Xh, (2)

and
σZh = zh − Zh. (3)

Take expectation on both sides of Equations (1)-(3) to obtain

E (σX1h) = E (σXh) = E (σZh) = 0. (4)

Square both sides of Equations (1)-(3) and then take expectations to obtain

Ah = E
(

σ2
Xh

)
= θh (S2

Xh + S2
Vh), (5)

Bh = E
(

σ2
Zh

)
= θh (S2

Zh + S2
Th), (6)

Ch = E
(

σ2
X1h

)
= E (σX1hσXh) = θ′h(S

2
Xh + S2

Vh), (7)

Dh = (σX1hσZh) = θ′hSZXh, (8)

Eh = (σXhσZh) = θhSZXh, (9)

where θ′h =
(

1
n′h
− 1

Nh

)
and θh =

(
1

nh
− 1

Nh

)
.

3. Existing estimators in the literature

The ordinary mean estimator in the presence of measurement errors in stratified double sampling is
defined as

t0 =
L

∑
h=1

whzh . (10)

The variance is given as

Var(t0)
∼=

L

∑
h=1

W2
h Bh . (11)

4. Proposed estimator

Let x′h = 1
n′h

∑L
h=1 xh and xh = 1

nh
∑L

h=1 xh denote the first and second-phase stratum sample means for

the auxiliary variable respectively. Further, let zh = 1
nh

∑L
h=1 zh denote the mean for a scrambled response in

the second phase stratum sample and wh denote the hth stratum weight. The proposed estimator of the finite
population mean in the presence of measurement errors is given as

tg =
L

∑
h=1

whzh

(
x′h
xh

)[
αh exp

(
x′h − xh

x′h + xh

)
+ (1− αh) exp

(
xh − x′h
xh+x′h

) ]
, (12)

where αh, is a suitably chosen constant whose value is to be determined.
Substitute Equations (1) - (3) in (12) and solve using Taylor’s approximation while ignoring terms of order

greater than two, and then subtract the population mean to obtain

(
tg − Z

)
=

l

∑
h=1

wh

[
σZh −

1
2

RhσXh +
1
2

RhσX1h +
3
8

Rh

Xh
σ2

Xh −
1
8

Rh

Xh
σ2

X1h −
σXhσZh

2Xh
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+
σX1hσZh

2Xh
− Rh

4Xh
σXhσX1h + αhRhσX1h − αhRhσXh +

αhσX1hσZh

Xh
− αhσXhσZh

Xh

+
αhRhσ2

X1h
2Xh

+
3αhRhσ2

Xh
2Xh

− 2αhRh

Xh
σXhσX1h

]
. (13)

Take expectations on both sides of Equation (13) and substitute Equations (4)-(9) to obtain the approximation
for the bias as

Bias(tg) ∼=
L

∑
h=1

Wh

Xh

[
Rh

(
3
8
+

3
2

αh

)
(Ah − Ch)−

(
1
2
+ αh

)
(Eh − Dh)

]
. (14)

Square both sides of Equation (13) and simplify while ignoring terms of order greater than two, and then take
expectations to obtain the approximation for the mean squared error as

MSE(tg) ∼=
L

∑
h=1

W2
h

[
Bh + R2

h

(
1
4
+ αh + α2

h

)
(Ah − Ch)− Rh (1 + 2αh) (Eh − Dh)

]
. (15)

Differentiate Equation (15) partially with respect to αh and then equate to zero to obtain

α∗h =
Eh − Dh

Rh(Ah − Ch)
− 1

2
. (16)

Substitute Equation (16) in (15) to obtain the minimum mean squared error as

MSE(tg) ∼=
L

∑
h=1

W2
h

[
Bh −

(Eh − Dh)
2

(Ah − Ch)

]
. (17)

5. Members of family of Proposed generalized estimator

Members of the family of the proposed estimator are obtained as follows;

(i) For αh = 1
2 , the proposed estimator reduces to ratio estimator given as

tr =
L

∑
h=1

whzh

(
x′h
xh

)
(18)

The bias and mean squared error are given as

Bias (tr) ∼=
L

∑
h=1

Wh

Xh

[
9
8

Rh (Ah − Ch)− (Eh − Dh)

]
, (19)

and

MSE(tr) ∼=
L

∑
h=1

W2
h

[
Bh + R2

h (Ah − Ch)− 2Rh(Eh − Dh)
]

(20)

(ii) For αh = 1 , the proposed estimator reduces to exponential ratio-type estimator given as

terr =
L

∑
h=1

whzh

(
x′h
xh

)
exp

(
x′h − xh

x′h + xh

)
(21)

The bias and mean squared error are given as

Bias (terr) ∼=
L

∑
h=1

Wh

Xh

[
15
8

Rh (Ah − Ch)−
3
2
(Eh − Dh)

]
, (22)

and

MSE(terr) ∼=
L

∑
h=1

W2
h

[
Bh +

9
4

R2
h (Ah − Ch)− 3Rh(Eh − Dh)

]
(23)
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(iii) For αh = 0 , the proposed estimator reduces to exponential ratio- product- type estimator given as

terp =
L

∑
h=1

whzh

(
x′h
xh

)
exp

(
xh − x′h
xh+x′h

)
(24)

The bias and mean squared error are given as

Bias
(
terp
) ∼= L

∑
h=1

Wh

Xh

[
3
8

Rh (Ah − Ch)−
1
2
(Eh − Dh)

]
, (25)

and

MSE(terp) ∼=
L

∑
h=1

W2
h

[
Bh +

1
4

R2
h (Ah − Ch)− Rh(Eh − Dh)

]
(26)

6. Efficiency comparison

In this section, the performances of the proposed estimators are studied theoretically.

i. From Equations (11) and (17), MSE(tg)min −Var (t0) < 0 if

(Eh − Dh)
2 > 0.

ii. From Equations (17) and (20), MSE(tg)min −MSE (tr) < 0 if

(Dh − Eh)
2 − R2

h (Ah − Ch)
2 − 2Rh (Eh − Dh) (Ah − Ch) > 0.

iii. From Equations (17) and (23), MSE(tg)min −MSE (terr) < 0 if

(Dh − Eh)
2 − 9

4
R2

h(Ah − Ch)
2 − 3Rh (Eh − Dh) (Ah − Ch) > 0.

iv. From Equations (17) and (26), MSE(tg)min −MSE
(
terp
)
< 0 if

(Dh − Eh)
2 +

1
4

R2
h(Ah − Ch)

2 − Rh (Eh − Dh) (Ah − Ch) > 0.

The stated inequalities provide the necessary conditions under which the proposed optimum estimator is
more efficient than existing estimators of the finite population mean. The numerical study reveals that these
conditions are true hence the proposed optimum estimator is recommended for use by survey practitioners
when the conditions hold. Furthermore, the proposed strategy is useful for the construction of accurate
confidence intervals for unknown population parameters in a survey based on the Randomized Response
Technique (RRT) and contaminated with measurement errors.

7. Numerical study

7.1. Introduction

A numerical study is conducted using both simulated and real data sets to compare the performance of the
proposed estimator with some existing estimators in the literature. The real data set is obtained from Sarndal et
al., [18]. The simulated data is generated using R−programming Language. The data sets consist of the survey
variable, Y and auxiliary variable, X. Scrambling responses that are normally distributed, Shi ∼ N (0, 2)
is generated for each unit in the data set. Thereafter, the response variable is obtained as Zhi = Yhi + Shi.
Finally, normally distributed measurement errors with mean 2 and variance 5 are introduced to each unit
of the response and auxiliary variables. The efficiency of the proposed estimator is compared with other
estimators using the minimum variance and the Percent Relative Efficiency (PRE) approaches. The Percent
Relative Efficiency (PRE) of the estimators are obtained using the expression;

PRE =
Var(t0)

MSE(tj)
× 100, (27)
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where tj = tg, tr, terr and terp denotes estimators of the finite population mean. The estimator with the
highest PRE is considered to be more efficient than the corresponding estimators. The performances of the
estimators are compared in cases for measurement errors and without measurement errors. The description of
the populations are as follows;
Population I: Simulated data
Stratum 1

X1 = rnorm(100, 450, 15),

x1 = X1 + rnorm(100, 2, 5),

Y1 = 0.8 + 0.5X1 + rnorm(100, 0, 1),

Z1 = Y1 + rnorm(100, 0, 0.2), and

z1 = Z1 + rnorm(100, 2, 5).

Stratum 2

X2 = rnorm(250, 50, 15),

x2 = X2 + rnorm(250, 2, 5),

Y2 = 0.8 + 0.5X2 + rnorm(250, 0, 1),

Z2 = Y2 + rnorm(250, 0, 0.2), and

z2 = Z2 + rnorm(250, 2, 5).

Stratum 3

X3 = rnorm(300, 920, 25),

x3 = X3 + rnorm(300, 2, 5),

Y3 = 0.8 + 0.5X3 + rnorm(300, 0, 1),

Z3 = Y3 + rnorm(300, 0, 0.2), and

z3 = Z3 + rnorm(300, 2, 5).

Stratum 4

X4 = rnorm(350, 500, 8),

x4 = X4 + rnorm(350, 2, 5),

Y4 = 0.8 + 0.5X4 + rnorm(350, 0, 1),

Z4 = Y4 + rnorm(350, 0, 0.2), and

z4 = Z4 + rnorm(350, 2, 5).

Population II: Sarndal et al., [18]
The population consist of five strata of sizes; N1 = 38, N2 = 14, N3 = 11, N4 = 33, and N5 = 24.

Table 1 represents summary statistics for populations I and II.

Table 1. Parameters for populations I and II

Population stratum Xh Zh S2
Xh S2

Zh ρXZh S2
Th S2

Vh
I 1 450.2457 227.7285 227.9771 81.01574 0.8406767 22.31754 20.40296

2 577.5290 291.1661 3583.724 929.5202 0.9824869 30.78505 27.55788
3 921.7221 463.7038 643.6014 212.0282 0.9236006 30.68011 25.67958
4 499.8988 252.5883 61.48334 46.27591 0.613076 28.21903 22.29580

II 1 1029.158 16.09219 3667896 327.0976 0.7177369 30.54519 22.30025
2 25671.57 29.88566 6568461403 3617.208 0.9645813 26.56678 25.47327
3 5028.818 28.29478 63348743 1493.623 0.979968 22.46011 19.04889
4 7533.939 82.67373 440717912 45688.17 0.3021371 29.60195 17.35155
5 16315.25 22.62072 408441212 405.7601 0.8939683 16.27989 21.05136
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7.2. Discussion

Tables 2 and 3 show the contribution of measurement errors and the Randomized Response Technique
(RRT) to the bias, mean squared error (MSE), and Percent Relative Efficiency (PRE) of the mean estimators.
Through numerical study, it is observed that the Mean Squared Error (MSE) for the estimators are lower in
cases without measurement errors but increases when measurement errors are introduced into the survey.
Moreover, the Percent Relative Efficiency (PRE) for the mean estimators decreases when measurement errors
are present in the survey. Additionally, the proposed generalized estimator has the minimum bias compared
to other estimators of the finite population mean. A very significant finding of the study is that the proposed
estimator performs better than other estimators under both cases for with and without measurement errors for
both real and simulated data.

Table 2. Bias (in brackets), MSE and PRE of estimators for population I

Estimator Without measurement errors With measurement errors
MSE PRE MSE PRE

t0 0.1389270 100 0.1964786 100
tg 0.0620388 223.8805 0.1075719 182.6487

(0.0001302) (0.0001629)
tr 0.0007016 198.0145 0.1118722 175.6281

(0.0001325) (0.0001789)
terr 0.0817005 170.0022 0.1322906 148.5205

(0.0003902) (0.0004957)
terp 0.0811046 171.2513 0.1291244 152.1623

(-0.0001238) (-0.0001379)

Table 3. Bias (in brackets), MSE and PRE of estimators for population II

Estimator Without measurement errors With measurement errors
MSE PRE MSE PRE

t0 62.54516 100 63.04892 100
tg 58.18433 107.4949 58.95167 106.9502

(0.124300) (0.132101)
tr 76.12109 82.16552 78.65928 80.15446

(1.721466) (1.929885)
terr 110.9480 56.36996 116.9480 53.91193

(3.065028) (3.414083)
terp 59.98440 104.2690 60.83360 103.6416

(0.377905) (0.4456877)

7.3. Conclusion

The study proposes a generalized estimator of the finite population mean for a sensitive variable using
a non-sensitive auxiliary variable in the presence of measurement errors based on the Randomized Response
Technique (RRT). Expressions for the bias and Mean Squared Error (MSE) for the proposed estimator have been
derived up to the first order of approximation. The performance of the proposed estimator has been studied
both theoretically and numerically. The numerical study reveals that the presence of measurement errors in a
survey based on the Randomized Response Technique (RRT) increases the variance and Mean Squared Error
(MSE) resulting in biased estimates of the finite population mean. Finally, the proposed strategy is applicable
in surveys involving sensitive variables such as bribery, cheating in examination, drug abuse, homosexuality,
habitual tax evasion, reckless driving, abortion, indiscriminate gambling among others.
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