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Abstract: Local convergence of a family of sixth order methods for solving Banach space valued equations is
considered in this article. The local convergence analysis is provided using only the first derivative in contrast
to earlier works on the real line using the seventh derivative. This way the applicability is expanded for these
methods. Numerical examples complete the article.
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1. Introduction

C onsider the problem of solving equation

F(x) = 0, (1)

where F : Ω ⊂ B1 −→ B2 is continuously Fréchet differentiable, X, Y are Banach spaces and Ω is a nonempty
convex set.

In this paper we study the local convergence of a family of sixth order iterative methods using
assumptions only on the first derivative of F. Usually the convergence order is obtained using Taylor
expansions and conditions on high order derivatives not appearing on the methods [1–13]. These conditions
limit the applicability of the methods.

For example, let X = Y = R, D = [− 1
2 , 3

2 ]. Define f on D by

f (s) =

{
s3 log s2 + s5 − s4 i f s 6= 0

0 i f s = 0.

Then, we have x∗ = 1, and
f ′(s) = 3s2 log s2 + 5s4 − 4s3 + 2s2,

f ′′(s) = 6x log s2 + 20s3 − 12s2 + 10s,

f ′′′(s) = 6 log s2 + 60s2 − 24s + 22.

Obviously f ′′′(s) is not bounded on D. So, the convergence of these methods is not guaranteed by the analysis
in these papers.
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The family of methods we are interested are:

yn = xn − γF′(xn)−F(xn)

zn = xn − AnF′(xn)−1F(xn)

xn+1 = zn − BnF′(yn)−1F(zn),

An = a1 I + a2C(yn, xn) + a3C(xn, yn) + a4C(yn, xn)2,

C(xn, yn) = F′(xn)−1F′(yn),

(2)

where Bn = b1 I + b2C(xn, yn) + b3C(yn, xn) + b4C(xn, yn)2, γ = 2
3 , a1 = 5−8a2

8 , a3 = a2
3 , a4 = 9−8a2

24 , b2 =
3+8b1

8 , b3 = 15−8b1
14 , b4 = 9+4b1

12 with a2, b1 and γ free.
The efficiency and convergence order was given in [14] when X = Y = Rk. The convergence was shown

using the seventh derivative. We include error bounds on ‖xn − x∗‖ and uniqueness results not given in [14].
Our technique is so general that it can be used to extend the usage of other methods [1–13].

The article contains local convergence analysis in Section 2 and the numerical examples in Section 3.

2. Local convergence

We develop some real parameters and functions. Set S = [0, ∞). Suppose function:

(i) ω0(t)− 1 has a least zero R0 ∈ S− {0} for some function ω : S −→ S continuous and nondecreasing.
Set S0 = [0, R0).

(ii) ϕ1(t)− 1 = 0 has a least zero r1 ∈ S0 − {0} for some functions ω : S0 −→ S, ω1 : S0 −→ S continuous
and nondecreasing with ϕ1 : S0 −→ S defined by

ϕ1(t) =

∫ 1
0 ω((1− θ)t)dθ + |1− γ|

∫ 1
0 ω1(θt)dθ

1−ω0(t)
.

(iii) ϕ2(t)− 1 has a least zero r2 ∈ S0 − {0} for some function ζ : S0 −→ S with ϕ2 : S0 −→ S defined by

ϕ2(t) =

∫ 1
0 ω((1− θ)t)dθ + ζ(t)

∫ 1
0 ϕ1(θt)dθ

1−ω0(t)
,

where ζ(t) = |a1 − 1|+ ω1(t)
1−ω0(ϕ1(t)t)

+ |a3|ω0(ϕ1(t)t)
1−ω0(t)

+ |a4|
(

ω1(t)
1−ω0(ϕ1(t)t)

)2
.

(iv) ω0(ϕ1(t)t)− 1 has a least zero R1 ∈ S0 − {0}. Set R = min{R0, R1} and S1 = [0, R).
(v) ϕ3(t)− 1 has a least zero r3 ∈ S1 − {0} for some function ψ : S1 −→ S defined by

ϕ3(t) =

[∫ 1
0 ω((1− θ)ϕ2(t)t)

1−ω0(ϕ2(t)t)
+

(ω0(ϕ2(t)t) + ω0(ϕ1(t)t))
∫ 1

0 ω1(θϕ2(t)t)dθ

(1−ω0(ϕ2(t)t))(1−ω0(ϕ1(t)t))

+
ψ(t)

∫ 1
0 ω1(θϕ2(t)t)dθ

1−ω0(ϕ2(t)t)

]
ϕ2(t)

where ψ(t) = |b1 − 1|+ |b2|ω1(ϕ1(t)t)
1−ω0(t)

+ |b3| ω1(t)
1−ω0(ϕ1(t)t)

+ |b4|
(

ω1(ϕ1(t)t)
1−ω0(t)

)2
.

Define parameter r by
r = min{rm}, m = 1, 2, 3. (3)

It shall be shown that r is a convergence radius for method (2). Set S2 = [0, r). Notice that for each t ∈ S2 the
following hold

0 ≤ ω0(t) < 1, (4)

0 ≤ ω0(ϕ2(t)t) < 1, (5)

and
0 ≤ ϕm(t) < 1. (6)

By T̄(x, δ) we denote the closure of the open ball T(x, δ) with center x ∈ X and of radius δ > 0.
Our local convergence analysis uses hypotheses (H) provided that the functions “ω“ are as previously

given, and x∗ is a simple zero of F. Suppose:
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(H1) ‖F′(x∗)−1(F′(u)− F′(x∗))‖ ≤ ω0(‖u− x∗‖) for each u ∈ Ω. Set Ω0 = Ω ∩ T(x∗, R0);
(H2) ‖F′(x∗)−1(F′(u)− F′(v))‖ ≤ ω(‖u− v‖) and ‖F′(x∗)−1F′(u)‖ ≤ ω1(‖u− x∗‖) for each u, v ∈ Ω0;
(H3) T̄(x∗, r) ⊂ Ω; and
(H4) There exists β ≥ r satisfying

∫ 1
0 ω0(θβ)dθ < 1. Set Ω1 = Ω ∩ T̄(x∗, β).

Next, the local convergence analysis follows for method (2) utilizing hypotheses (H).

Theorem 1. Under hypotheses (H) choose starting point x0 ∈ T(x∗, r) − {x∗}. Then, sequence {xn} generated by
method (2) for any starting point x0 is well defined in T(x∗, r), remains in T(x∗, r) and limn−→∞ xn = x∗, which is the
only zero of F in the set Ω1 given in (H4).

Proof. The following assertions shall be shown using induction

‖yk − x∗‖ ≤ ϕ1(‖xk − x∗‖)‖xk − x∗‖ ≤ ‖xk − x∗‖ < r, (7)

‖zk − x∗‖ ≤ ϕ2(‖xkn− x∗‖)‖xk − x∗‖ ≤ ‖xk − x∗‖, (8)

and
‖xn+1 − x∗‖ ≤ ϕ3(‖xk − x∗‖)‖xk − x∗‖ ≤ ‖xk − x∗‖, (9)

where the radius r is defined in (3) and the ϕm functions are as previously given. Let x ∈ T(x∗, r) − {x∗}.
Using (3), (4), and (H1), we get

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ ω0(‖x− x∗‖) ≤ ω0(r) < 1, (10)

so by a Lemma due to Banach [15–19] on invertible operators F′(x) is invertible and

‖F′(x)−1F′(x∗)‖ ≤
1

1−ω0(‖x− x∗‖)
. (11)

Notice also y0 exists by the first substep of method (2) from which we can write

y0 − x∗ =x0 − x∗ − F′(x0)
−1F(x0) + (1− γ)F′(x0)

−1F(x0)

=(F′(x0)
−1F′(x0))(

∫ 1

0
F′(x∗)−1F′(x∗ + θ(x0 − x∗))− F′(x0))dθ(x0 − x∗))

+ (1− γ)(F′(x0)
−1F′(x∗))(

∫ 1

0
F′(x∗)−1F′(x∗ + θ(x0 − x∗))dθ(x0 − x∗)). (12)

By (3), (6) (for m = 1), (11) (for x = x0), (H2) and (12), we have

‖y0 − x∗‖ ≤
∫ 1

0 ω((1− θ)‖x0 − x∗‖)dθ + |1− γ|
∫ 1

0 ω1(θ‖x0 − x∗‖)dθ

1−ω0(‖x0 − x∗‖)
‖x0 − x∗‖

≤ ϕ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (13)

showing (7) for n = 0 and y0 ∈ T(x∗, r). Then, we also have that (11) holds for x = y0 and F′(y0) is invertible.
Hence, z0 exists by the second substep of method (2) from which we can also write

z0 − x∗ = x0 − x∗ − F′(x0)
−1F(x0) + (I − A0)F′(x0)

−1F(x0). (14)

By (3), (6) (for m = 2), (11) (for x = x0, y0), (13) and (14), we have

‖z0 − x∗‖ ≤
[∫ 1

0 ω((1− θ)‖x0 − x∗‖)dθ

1−ω0(‖x0 − x∗‖)
+

ζ(‖x0 − x∗‖)
∫ 1

0 ω1(θ‖x0 − x∗‖)dθ

1−ω0(‖x0 − x∗‖)

]
‖x0 − x∗‖

≤ϕ2(‖x0 − x∗‖) ≤ ‖x0 − x∗‖, (15)



Open J. Math. Sci. 2021, 5, 300-305 303

showing (8) for n = 0 and z0 ∈ T(x∗, r), where we also used the estimate

‖I − A0‖ ≤|a1 − 1|+ |a2|
ω1(‖x0 − x∗‖)

1−ω0(‖y0 − x∗‖)
+ |a3|

ω1(‖y0 − x∗‖)
1−ω0(‖y0 − x∗‖)

+ |a4|
(

ω1(‖x0 − x∗‖)
1−ω0(‖y0 − x∗‖)

)2

≤ζ(‖x0 − x∗‖) (by the definition of A0). (16)

Similarly, we have that x1 exists and we can write by the third substep of method (2)

x1 − x∗ =z0 − x∗ − F′(z0)
−1F(z0) + F′(z0)

−1(F′(y0)− F′(z0))F′(y0)
−1F(z0) + (I − B0)F′(y0)

−1F(z0). (17)

Then, by (3), (6)( for m = 3), (11) (for x = z0, y0), (13), (15) and (17), we get

‖x1 − x∗‖ ≤
[∫ 1

0 ω((1− θ)‖z0 − x∗‖)dθ

1−ω0(‖z0 − x∗‖)
+

(ω0(‖z0 − x∗‖) + ω0(‖y0 − x∗‖))
∫ 1

0 ω1(θ‖z0 − x∗‖)dθ

(1−ω0(‖z0 − x∗‖))(1−ω0(‖y0 − x∗‖))

+
ψ(‖x0 − x∗‖)

∫ 1
0 ω1(θ‖z0 − x∗‖)dθ

1−ω0(‖y0 − x∗‖)

]
‖z0 − x∗‖

≤ϕ3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (18)

showing (9) for n = 0 and x1 ∈ T(x∗, r), where we also used

‖I − B0‖ ≤|b1 − 1|+ |b2|
ω1(‖y0 − x∗‖)

1−ω0(‖x0 − x∗‖)
+ |b3|

ω1(‖x0 − x∗‖)
1−ω0(‖y0 − x∗‖)

+ |b4|
(

ω1(‖x0 − x∗‖)
1−ω0(‖x0 − x∗‖)

)2

≤ψ(‖x0 − x∗‖) (by the definition of B0). (19)

Exchange x0, y0, z0, x1 by xn, yn, zn, xn+1 in the preceding calculations to complete the induction for (7)-(9).
Then, from the estimation

‖xn+1 − x∗‖ ≤ p‖xn − x∗‖, (20)

where p = ϕ3(‖x0 − x∗‖) ∈ [0, 1), we get limn−→∞ xn = x∗, and xn+1 ∈ T(x∗, r).
Set M =

∫ 1
0 F′(x∗ + θ(q− x∗))dθ for some q ∈ Ω1 with F(q) = 0. Using (H1) and (H4)

‖F′(x∗)−1(M− F′(x∗))‖ ≤
∫ 1

0
ω0(θ‖q− x∗)‖dθ ≤

∫ 1

0
ω0(θβ)dθ < 1,

so q = x∗ is implied by the identity 0 = F(q)− F(x∗) = M(q− x∗) and the invertability of M.

Remark 1. 1. In view of (H2) and the estimate

‖F′(x∗)−1F′(x)‖ = ‖F′(x∗)−1(F′(x)− F′(x∗)) + I‖
≤ 1 + ‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ 1 + ϕ0(‖x− x∗‖)

the second condition in (H3) can be dropped and ϕ1 can be replaced by ϕ1(t) = 1 + ϕ0(t) or ϕ1(t) =

1 + ϕ0(R0), since t ∈ [0, R0).
2. The results obtained here can be used for operators F satisfying autonomous differential equations [15]

of the form F′(x) = P(F(x)) where P is a continuous operator. Then, since F′(x∗) = P(F(x∗)) = P(0),
we can apply the results without actually knowing x∗. For example, let F(x) = ex − 1. Then, we can
choose: P(x) = x + 1.

3. Let ϕ0(t) = L0t, and ϕ(t) = Lt. In [15,16] we showed that rA = 2
2L0+L is the convergence radius of

Newton’s method:
xn+1 = xn − F′(xn)

−1F(xn) for each n = 0, 1, 2, · · · (21)
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under the conditions (H1) - (H3). It follows from the definition of α, that the convergence radius r of the
method (2) cannot be larger than the convergence radius rA of the second order Newton’s method (21).
As already noted in [15,16] rA is at least as large as the convergence radius given by Rheinboldt [10]

rR =
2

3L
, (22)

where L1 is the Lipschitz constant on D. The same value for rR was given by Traub [13]. In particular, for
L0 < L1 we have that rR < rA and rR

rA
→ 1

3 as L0
L1
→ 0. That is the radius of convergence rA is at most

three times larger than Rheinboldt’s.

4. We can compute the computational order of convergence (COC) defined by ξ =
ln
( dn+1

dn

)
ln
(

dn
dn−1

) , where dn =

‖xn − x∗‖ or the approximate computational order of convergence ξ1 =
ln
( en+1

en

)
ln
(

en
en−1

) , where en = ‖xn −

xn−1‖.

3. Numerical Examples

Example 1. Consider the kinematic system

F′1(x) = ex, F′2(y) = (e− 1)y + 1, F′3(z) = 1

with F1(0) = F2(0) = F3(0) = 0. Let F = (F1, F2, F3). Let B1 = B2 = R3, D = B̄(0, 1), p = (0, 0, 0)t. Define
function F on D for w = (x, y, z)t by

F(w) = (ex − 1,
e− 1

2
y2 + y, z)t.

Then, we get

F′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 ,

so ω0(t) = (e− 1)t, ω(t) = e
1

e−1 t, ω1(t) = e
1

e−1 . Then, the radii are

r1 = 0.154407, r2 = 0.367385, r3 = 0.323842.

Example 2. Consider B1 = B2 = C[0, 1], D = B(0, 1) and F : D −→ B2 defined by

F(φ)(x) = ϕ(x)− 5
∫ 1

0
xθφ(θ)3dθ. (23)

We have that

F′(φ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθφ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, so ω0(t) = 7.5t, ω(t) = 15t and ω1(t) = 2. Then, the radii are

r1 = 0.02222, r2 = 0.091401, r3 = 0.0656309.

Example 3. By the academic example of the introduction, we have ω0(t) = ω(t) = 96.6629073t and ω1(t) = 2.
Then, the radii are

r1 = 0.00229894, r2 = 0.0065021, r3 = 0.0905654.
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