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Abstract: None can underestimate the importance of mathematical modelling for their role in clarifying
dynamics of epidemic diseases. They can project the progress of the disease and demonstrate the result
of the epidemic to public health in order to take precautions. HIV attracts global attention due to rising
death rates and economic burdens and many other consequences that it leaves behind. Up to date, there
is no medicine and vaccine of HIV/AIDS but still many researches are conducted in order to see how to
mitigate this epidemic and reduce the death rate or increase the life expectancy of those who are infected. A
delayed HIV/AIDS treatment and vertical transmission model has been investigated. The model took into
account both infected people from the symptomatics group and asymptomatic group to join AIDS group. We
considered that a child can be infected from the mother to an embryo, fetus or childbirth. Those who are
infected, it will take them some time to get mature and spread the disease. By using mathematical model,
reproduction number, positivity, boundedness, and stability analysis were determined. The results showed
that the model is much productive if time delay is considered.
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1. Introduction

A part from covid-19, HIV/AIDS has attracted more attention worldwide as it has been a big disease that
killed a large number of human being around the globe. HIV/AIDS is still lingering in society, it has

not been eradicated as well. The only solution is all about the preventive measures to make it delay. Many
of existing infectious diseases are transmitted through both vertical and horizontal modes for instance AIDS,
hepatitis B, rubella and more just to mention few [1,2]. Infected hosts persist in a dormant period before they
become infectious [3,4].

In the history of human beings, communicable diseases killed many and left a lot of vulnerable with
various consequences. This cause a global concern in order to mitigate some of the effects of those diseases.
AIDS was first reported in America in 1981 [5]. It is a fatal illness that disintegrates the human immune
system, leaving the victim exposed, threatening infectious diseases, neurological disorders or unexpected
malignancies. It causes the deaths of millions of people and a huge amount of money spent on health care
and disease management. It was estimated that there was 38.6 million people and 2.8 million AIDS death
in 2005 [6], while 39.5 million people in the world were living with HIV, 4.3 million new infections and 2.9
million of people died of AIDS-related diseases in 2006 [7]. Approximately 36.7 million people worldwide
were living with HIV/AIDS at the end of 2015 [8] and about 36.9 million people in 2017 where 66% of all new
HIV infections found in sub-Sahara Africa [9]. Then 37 million people in 2018 [10]. This shows that HIV/AIDS
is still there and active. The world is preoccupied with the global pandemic covid-19, but HIV/AIDS continues
to kill a significant proportion of individuals and has resulted in an increase in the number of orphans and
helpless group of people. HIV/AIDS is a complicated disease caused by human immunodeficiency virus
infection [11]. This HIV attacks the CD4 receptor to connect and enter the lymphocyte [12]. A healthy person,
the level of CD4+T cells is between 800 and 1200/mm3, once this number reaches 200 or less in an HIV
infected patient, the person is identified as having AIDS [13]. The infected person can live longer through
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infective stages before developing AIDS [14]. The modes of transmission of HIV virus are mainly unprotected
sex, through the exchanging of infected needles, infected blood transfusion from mother to child i.e., vertical
transmission [15]. By studying the stability analysis, one could know when and where the disease spreads
using the basic reproduction number [16]. It is regarded to be the limit quantity representing whether the
disease spreads or ends up dead in the susceptible population.

Some different observations have been made to analyze the HIV/AIDS dynamics without delay [17,18].
However, few studies have been conducted on effect of time delays [19,20]. HIV is normally transmitted
in two basic modes namely horizontal transmission and vertical transmission. [8] presented the spread of
disease only by horizontal transmission while [21–23] studied a delayed HIV/AIDS model considering vertical
transmission. Delay approaches provide good functionality with reality as they capture the dynamics from the
onset of diagnosis to infection [21,24,25]. HIV/AIDS can be delayed by taking antiretroviral drugs, which are
prescribed to manage HIV, and slow the replication of the virus and significantly delay the progression to
AIDS.

HIV is transmitted by direct contact between the mucous membranes or bloodstream with HIV-containing
body fluids, such as pre-seminal fluid, blood, vaginal fluid, semen, and breast milk [26]. It can be successfully
transmitted to the closed society [27]. Preventive strategies such as abstinence, fidelity and condom use have
resulted in a modest decline in HIV prevalence, especially in close communities, such as commercial sex
workers and their clients [28]. The HIV virus attacks immune cells, which are called T-helper cells or CD4
cells. These are critical when it comes to maintaining a healthy immune system as they fight against diseases
and infections. HIV cannot grow or reproduce itself. Instead, it makes new copies of itself inside T-helper cells
that damage the immune system and gradually weaken the natural body defense. This process of T-helper
cell multiplication is called the HIV life cycle. How quickly the virus develops depends on how early you
are diagnosed, your overall health, and how well you are taking your treatment. It is useful to know that
antiretroviral drugs keep the immune system healthy if they are taken correctly.

Most people who are infected with HIV have been able to carry the virus for years before any severe
symptoms develop. But over time, the level of HIV in the blood increases, while the number of CD4+ T cells
decreases. Antiretroviral medicines can help in reducing the amount of virus in the body to preserve CD4+ T
cells and dramatically slow the destruction of the immune system.

Figure 1. Normal T-cells

Figure 2. HIV-infected T-cells

There are many factors that could delay the time between HIV and AIDS, which include taking
antiretroviral treatment consistently, staying in regular HIV care, adhering closely to your doctor’s advice,
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eating healthy foods, taking care of yourself and your genetic background. As HIV/AIDS kills a huge number
of people every year, it is crucial to conduct this study in order to access mathematical analysis of a delayed
HIV/AIDS model with treatment and vertical transmission when a pre-AIDS group is considered.

According to [21] model AIDS patients are isolated which is impossible in real world situation as many
of them are still being in services and they are experts in various domains. In this study, a high number of
symptomatic infections (J) where patients know very well their health status is considered, because this can
help them to take some measures regarding giving birth and the number of newborns infected children can be
limited as well. In case HIV/AIDS patients are from asymptomatic group (I) where they do not know their
health status and still joining AIDS group without any information, the newly born infected children should
increase dramatically. This number is assumed to be small in the present model. This present paper, adds
a pre-AIDS group to the model introduced by [21]. We divided the total populations N(t) into five classes
such as : The susceptible group (S), The asymptomatic infectives or unaware HIV infected group (I), The
symptomatic infective or aware HIV infected group (J), pre AIDS class (Z) and AIDS class or Full-blown
AIDS group (A).

The structure of the paper is as follows: the Section 2 is the model formulation, Section 3 represents model
analysis which consists of positivity and boundedness, Basic reproduction number, stability analysis, local
stability of disease free equilibrium, global stability of disease free equilibrium, global stability of endemic
equilibrium, Section 4 represents numerical results and discussion, and Section 5 represents conclusion and
recommendation.

2. Model formulation

Cai et al., [6] represented local and global stability of the equilibria of a SI JA model with treatment.
Authors assumed that some individuals with the symptomatic phases (J) can be transformed into
asymptomatic individuals (I) after treatment. Naresh et al., [24] studied SIA model with vertical transmission,
assuming that a fraction of newborns, who sustain treatment joint the infective class while others who do not
sustain treatment, join the AIDS class after getting sexual maturity. Osman et al., [21] proposed an HIV/AIDS
model which incorporates time delay and vertical transmission, considered a newly born infected child attains
sexual maturity and becomes infectious. It was assumed that asymptomatic infectives (J) have the symptoms
of AIDS, AIDS patients (A) are isolated hence their probability of producing children is small, and it is
neglected.

Referring to the SI JA Model with treatment introduced by Cai et al., [6] written as:

dS
dt = µk− cβ(I + bJ)S− µS,
dI
dt = cβ(I + bJ)S− (µ + k1)I + αJ,
dJ
dt = k1 I − (µ + k2 + α)J,
dA
dt = k2 J − (µ + d)A.

(1)

And SIA Model with vertical transmission proposed by Naresh et al., [24] which is presented as:
dS
dt = Q0 − βSI

N − dS,
dI
dt = βSI

N − (d + δ)I + γεI(t− τ)e−dτ ,
dA
dt = δI + γ(1− ε)I(t− τ)e−dτ − (α + d)A.

(2)

Then, from (1) and (2), Osman et al., [21] ameliorated the model and came up with stability analysis of a
delayed HIV/AIDS epidemic model with treatment and vertical transmission as follows:

dS
dt = µk− cβ(I + bJ)S− µS,
dI
dt = cβ(I + bJ)S− (µ + k1)I + αJ + γpI(t− τ)e−µτ ,
dJ
dt = k1 I − (µ + k2 + α)J,
dA
dt = k2 J − (µ + d)A + (1− p)γI(t− τ)e−µτ .

(3)

In the model (3), authors considered AIDS patients (A) to be isolated hence their probability of producing
children is very small and it is neglected but still to isolate people with HIV cannot be easy. It is impossible in
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society as many of them serve society in different domains like Education, Leadership, Army, Physicians, and
so on. To solve this problem, we propose the model which consider high number of people who know their
health status (J) and this can decrease the probability of infected newborn and reduce the spread of infection.
We also added the Pre-AIDS group from [8] to the model (3) in order to evaluate the behaviour and stability of
the model. According to [8] the following model was explored:

dS
dt = Rs − βSI

1+α1 I+α2 I2 − (µ + σ)S,
dI
dt = βSI

1+α1 I+α2 I2 − (µ + γ + η)I,
dJ
dt = η I − (µ + γ1)J,
dZ
dt = γI + γ1 J − (µ + ε)Z,
dA
dt = εZ− (µ + α)A.

(4)

The following nonlinear dynamic equation system was derived from the model (3) and (4) respectively:

dS
dt = µk− cβ(I + bJ)S− µS,
dI
dt = cβ(I + bJ)S− (µ + k1)I + αJ + γpI(t− τ)e−µτ ,
dJ
dt = k1 I − (µ + k2 + α)J,
dZ
dt = k3 I + k2 J − (µ + ε)Z,
dA
dt = k2 J − (µ + d)A + (1− p)γI(t− τ)e−µτ ,

(5)

subjected to the initial conditions S = S0 ≥ 0, I = I0 ≥ 0, J = J0 ≥ 0, Z = Z0 ≥ 0, A = A0 ≥ 0.

2.1. Model presentation

In this section, we develop a compartmental model of delayed HIV/AIDS treatment and vertical
transmission epidemic, including pre-AIDS class. Based on the epidemiological status, the population is
divided into five groups, as pointed out earlier. We can represent the diagram of a delayed HIV/AIDS model
as (Figure 3):

Figure 3. The diagram of the delayed HIV/AIDS model

The variables and parameters in the model (5) are described in Table 1.

3. Model analysis

The analysis focuses on how to obtain the basic reproduction number, the point of the free disease
(non-endemic) and its stability, and the point of the endemic disease and its stability. In this section, we find
the fundamental properties of the system (5), which is important in the proof of the following sections.
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Table 1. Description of variables and parameters of the model

Parameters Description
S The susceptibles
I The asymptomatic infectives (un-aware)
J The symptomatic infectives (aware)
Z The pre-AIDS group
A The Full-blown AIDS group (AIDS class)
γ The birth rate of infected newborns
k The recruitment rate of the population
µ The death rate
c The average number of contacts of an individual per unit of time
β The probability of disease transmission per contact by an infective in the first stage
b The probability of disease transmission per contact by an infective in second stage

by an infective in the first stage and in the second stage
k1 The rate from the asymptomatic phase (I) to the symptomatic phase (J)
k2 The rate from the symptomatic phase J to the AIDS cases A
k3 The transfer rate of asymptomatic phase (I) ( un-ware) to AIDS group A
α The transformation rate from the symptomatic phase (J) to asymptomatic phase (I)
d The disease related death rate of the AIDS cases
p The fraction of infected newborns joining the asymptomatic infective class after getting sexual maturity
ε The AIDS related death rate
t The time
τ Length in delay

3.1. Positivity and boundedness

The associated parameters in (5) with respect to the original conditions are non-negative for all t > 0 and
this is shown in the following procedures:

Lemma 1. If S(0), I(0), J(0), Z(0), A(0) and all parameters of the system are positive, then solutions S(t), I(t), J(t),
Z(t), A(t) are all positive ∀ t > 0.

Proof. Let t1 = sup {t > 0 |S(t) ≥ 0, I(t) ≥ 0, J(t) ≥ 0, Z(t) ≥ 0, A(t) ≥ 0}. The first equation in (5) yields

dS
dt

= µk− cβ[I(t) + bJ(t)]S(t)− µS(t).

Since µk ≥ 0, then dS
dt ≥ −(µ + ω)S, where ω = [cβ(I(t) + bJ(t))] yields

∫ t1

o

dS
S

= −
∫ t1

0
(µ + ω)dt,

ln |S(t)|t1
0 ≥ −(µ + ω)t1,

|S(t)|t1
0 ≥ e−(µ+ω)t1 ,

S(t) ≥ S(0) + e−(µ+ω)t1 > 0.

Next, we prove that I(t) > 0. The second equation in (5) gives

dI
dt

= ωS(t)− (µ + k1)I(t) + αJ(t) + γpI(t− τ)e−µτ .

Since (ωS + αJ) ≥ 0, then
dI
dt
≥ −

[
(µ + k1) + γp(τ − t)e−µτ

]
I.
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Integrating both sides yields,

∫ t1

o

dI
I

=−
∫ t1

0

[
(µ + k1) + γp(τ − t)e−µτ

]
dt

=−
∫ t1

o

[
(µ + k1) + γpτe−µτ

]
dt +

∫ t1

o
γpte−µτdt

=
∣∣− [(µ + k1) + γpτe−µτ

]
t
∣∣t1
0 +

∣∣∣∣γpe−µτ t2

2

∣∣∣∣t1

0

=−
[(
(µ + k1) + γpτe−µτ

)
− γpe−µτ t1

2

]
t1,

ln |I(t)|t1
0 ≥−

[(
(µ + k1) + γpτe−µτ

)
− γpe−µτ t1

2

]
t1,

|I(t)|t1
0 ≥e−

[
((µ+k1)+γpτe−µτ)−γpe−µτ t1

2

]
t1 ,

I(t) ≥I(0) + e−
[
((µ+k1)+γpτe−µτ)−γpe−µτ t1

2

]
t1 > 0.

Now, we prove that J(t) > 0. The third equation in (5) yields

dJ
dt

= k1 I(t)− (µ + k2 + α)J(t).

Since k1 I(t) ≥ 0, then
dJ
dt
≥ −(µ + k2 + α)J.

Integrating both sides, we get ∫ t1

0

dJ
J

= −
∫ t1

0
(µ + k2 + α)dt

ln |J(t)|t1
0 ≥ −(µ + k2 + α)t1,

|J(t)|t1
0 ≥ e−(µ+k2+α)t1 ,

J(t) ≥ J(0) + e−(µ+k2+α)t1 > 0.

Now, we prove that Z(t) > 0. The fourth equation in (5) gives

dZ
dt

= k3 I(t) + k2 J(t)− (µ + ε)Z(t).

Since (k3 I(t) + k2 J(t)) ≥ 0, then
dZ
dt
≥ −(µ + ε)Z(t).

Integrating the two sides, yields

∫ t1

0

dZ
Z

= −
∫ t1

0
(µ + ε)dt,

ln |Z(t)|t1
0 ≥ −(µ + ε)t1,

|Z(t)|t1
0 ≥ e−(µ+ε)t1 ,

Z(t) ≥ Z(0) + e−(µ+ε)t1 > 0.

To show that A(t) ≥ 0 , consider the fifth equation of (5):

dA
dt

= k2 J(t)− (µ + d)A(t) + (1− p)γI(t− τ)e−µτ .

Since k2 J(t) + (1− p)γI(t− τ)e−µτ ≥ 0, then

dA
dt
≥ −(µ + d)A(t).
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Integrating both sides yields

∫ t1

0

dA
A
≥ −

∫ t1

0
(µ + d)dt,

ln |A(t)|t1
0 ≥ −(µ + d)t1,

|A(t)|t1
0 ≥ e−(µ+d)t1 ,

A(t) ≥ A(0) + e−(µ+d)t1 > 0.

Since the rate at which the total population N(t) = S(t) + I(t) + J(t) + Z(t) + A(t), varies over time, so

dN(t)
dt

=
dS(t)

dt
+

dI(t)
dt

+
dJ(t)

dt
+

dZ(t)
dt

+
dA(t)

dt
= µk− µS(t) + (−µ + k3)I(t) + (−µ + k2)J(t)− (µ + ε)Z(t)− (µ + d)A(t) + γI(t− τ)e−µτ

= µk− µS(t) + (−µ + k3 + γ(t− τ)e−µτ)I(t) + (−µ + k2)J(t)− (µ + ε)Z(t)− (µ + d)A(t).

Let each parameter of the variables be ϑ < 0, i.e.,

dN
dt

= µk− ϑS(t)− ϑI(t)− ϑJ(t)− ϑZ(t)− ϑA(t)

= µk− ϑ(S + I + J + Z + A)

= µk− ϑN.

Lemma 2. The closed set Θ =
{
(S + I + J + Z + A) ∈ <5

+

∣∣∣ 0 ≤ (S + I + J + Z + A) ≤ µk
ϑ

}
is positively

invariant.

Proof. Consider {(S(t) + I(t) + J(t) + Z(t) + A(t))} ∈ <5
+ with t > 0, then (5) can be written as:

dN
µk− ϑN

= dt,∫ t

0

dN
µk− ϑN

=
∫ t

0
dt,

N(t) = N(0)e−µkt +
µk
ϑ
(1− e−µkt),

lim
t−→∞

N(t) = lim
t−→∞

[
N(0)e−µkt +

µk
ϑ
(1− e−µkt)

]
=

µk
ϑ

.

If N(0) ≤ µk
ϑ , then we have N(t) ≤ µk

ϑ , for all t > 0. Moreover, if N(0) > µk
ϑ , then the solution

(S(t), I(t), J(t), Z(t), A(t)) enter the closed set Θ which affirms that ϑ is positively invariant. So, the region
Θ contains all solutions in <5

+. It is therefore sufficient to study the dynamics of disease transmission under
the dynamic structure (5) in Θ.

3.2. Basic reproduction number

In this study, the next generation matrix is used to obtain the basic reproduction number [29]. Before
determining basic reproduction (R0), to have information about non-endemic equilibrium is crucial. The
model (5) always has a disease-free equilibrium E0 = (K, 0, 0, 0) as I = J = Z = 0. We define the basic
reproduction number R0. Since the variable A of model (5) does not appear in the first four equations, we only
consider the following sub-model
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

dS
dt = µk− cβ(I + bJ)S− µS,
dI
dt = cβ(I + bJ)S− (µ + k1)I + αJ + γpI(t− τ)e−µτ ,
dJ
dt = k1 I − (µ + k2 + α)J,
dZ
dt = k3 I + k2 J − (µ + ε)Z.

(6)

Let x = (I, J, Z, S)T then ẋ = F(x)− v(x), where

F(x) =


cβS[I + BJ]

0
0
0

 and V(x) =


(µ + k1 − γpe−µτ)I − αJ
−k1 I + (µ + k2 + α)J
−k3 I − k2 J + (µ + ε)Z
−µK + cβ[I + bJ]S + µS

 .

The Jacobian matrices of F(x) and V(x) at disease-free equilibrium E0 are

DF(E0) =

(
F 0 0
0 0 0

)
and DV(E0) =

(
V 0 0

cβk cβbk 0

)
,

where

F =

0 cβk cβbk
0 0 0
0 0 0

 and V =

µ + k1 − γpe−µτ −α 0
−k1 µ + k2 + α 0
−k3 −k2 µ + ε

 .

We have to determine the inverse of matrix V as follows

V−1 =
1

detV
AdjointV =

1
detV

CT .

The determinant of matrix V is

det

µ + k1 − γpe−µτ −α 0
−k1 µ + k2 + α 0
−k3 −k2 µ + ε

 =
(
µ + k1 − γpe−µτ

) ∣∣∣∣∣µ + k2 + α 0
−k2 µ + ε

∣∣∣∣∣+ α

∣∣∣∣∣−k1 0
−k3 µ + ε

∣∣∣∣∣
=
(
µ + k1 − γpe−µτ

)
(µ + k2 + α)(µ + ε)− αk1(µ + ε)

=
[(

µ + k1 − γpe−µτ
)
(µ + k2 + α)− αk1

]
(µ + ε)

=
[
(µ + k1)(µ + k2) + αµ− (µ + k2 + α)γpe−µτ

]
(µ + ε).

Let det V = η = [(µ + k1)(µ + k2) + αµ− (µ + k2 + α)γpe−µτ ] (µ + ε). The minor matrix of V is;

MinV =

(µ + ε)(µ + k2 + α) −k1(µ + ε) 0
−α(µ + ε) (µ + ε)(µ + k1 − γpe−µτ) 0

0 0 −(µ + ε)(αk)(µ + k2 + α)(µ + k1 − γpe−µτ)

 .

The cofactor matrix of V is;

C =

(µ + ε)(µ + k2 + α) k1(µ + ε) 0
α(µ + ε) (µ + ε)(µ + k1 − γpe−µτ) 0

0 0 (µ + ε)(αk)(µ + k2 + α)(µ + k1 − γpe−µτ)

 .

The inverse matrix of matrix V is given by V−1 = 1
detV CT , where CT stands for transpose of C, therefore

V−1 =
1
η

CT

=


(µ+ε)(µ+k2+α)

η
α(µ+ε)

η 0
k1(µ+ε)

η
(µ+ε)(µ+k1−γpe−µτ)

η 0

0 0 αk(µ+ε)(µ+k2+α)(µ+k1−γpe−µτ)
η


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=


µ+k2+α

(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ
α

(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ 0
k1

(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ
µ+k1−γpe−µτ

(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ 0

0 0 αk(µ+k2+α)(µ+k1−γpe−µτ)
(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ

 .

Then,

FV−1 =

0 cβk cβbk
0 0 0
0 0 0

 ∗


µ+k2+α
(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ

α
(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ 0

k1
(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ

µ+k1−γpe−µτ

(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ 0

0 0 αk(µ+k2+α)(µ+k1−γpe−µτ)
(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ



=


cβk(k1)

(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ
(cβk(µ+k1−γpe−µτ)

(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ
(cβbk[αk(µ+k2+α)(µ+k1−γpe−µτ)]

(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ

0 0 0
0 0 0

 .

To find the spectral radius of matrix FV−1, we calculate the following determinant∣∣∣∣∣∣∣
cβk(k1)

(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ − λ
cβk(µ+k1−γpe−µτ)

(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ
cβbk[αK(µ+k2+α)(µ+k1−γpe−µτ)]

(µ+k1)(µ+k2)+αµ−(µ+k2+α)γpe−µτ

0 0− λ 0
0 0 0− λ

∣∣∣∣∣∣∣ = 0,

that is (
cβk(k1)

(µ + k1)(µ + k2) + αµ− (µ + k2 + α)γpe−µτ − λ

) ∣∣∣∣∣−λ 0
0 −λ

∣∣∣∣∣ = 0,

implies
cβk(k1)

(µ + k1)(µ + k2) + αµ− (µ + k2 + α)γpe−µτ = λ.

The spectral radius of matrix FV−1 is

ρ(FV−1) =
cβk(k1)

(µ + k1)(µ + k2) + αµ− (µ + k2 + α)γpe−µτ .

Therefore, the reproductive number is

R0 =
cβk(k1)

(µ + k1)(µ + k2) + αµ− (µ + k2 + α)γpe−µτ .

3.3. Stability analysis

In this section, we determine the disease free and endemic equilibrium points of (5).

3.3.1. Disease free equilibrium (DFE)

The disease-free state denoted as E0 is when there is no infection I = J = Z = A = 0 and is
obtained by taking the right side of (5) equals to zero. The corresponding disease-free equilibrium point is
E0 = (S0, 0, 0, 0, 0) = (k, 0, 0, 0, 0).

3.3.2. Endemic equilibrium (EE)

Lemma 3. The endemic equilibrium of the system (5) is given by E1 = (S∗, I∗, J∗, Z∗, A∗), where

S∗ =
k1µk

cβ(µ + k2 + α + k1b)J(t) + k1µ
,

I∗ =
µ + k2 + α

k1
J(t),
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Z∗ =
k3(µ + k2 + α + k1k2)

k1(µ + ε)
J(t),

A∗ =
(1− p)γ(µ + k2 + α)(t− τ)e−µτ + k1k2

k1(µ + d)
J(t).

Proof. From the third equation of the system (5),

I(t) =
µ + k2 + α

k1
J(t). (7)

Taking (7) in the fourth equation of the system (5) gives

Z(t) =
k3(µ + k2 + α + k1k2

k1(µ + ε)
J(t). (8)

Taking (7) in the first equation of the system (5) gives

S(t) =
k1µk

cβ(µ + k2 + α + k1b)J(t) + k1µ
. (9)

Taking (7) in the fifth equation of the system (5) gives

A(t) =
(1− p)γ(µ + k2 + α)(t− τ)e−µτ + k1k2

k1(µ + d)
J(t). (10)

Since, after expressing all variables in terms of J(t), it is fixed and the corresponding endemic equilibrium
point of the system (5) is

S∗ =
k1µk

cβ(µ + k2 + α + k1b)J(t) + k1µ
,

I∗ =
µ + k2 + α

k1
J(t),

Z∗ =
k3(µ + k2 + α + k1k2)

k1(µ + ε)
J(t),

A∗ =
(1− p)γ(µ + k2 + α)(t− τ)e−µτ + k1k2

k1(µ + d)
J(t).

3.4. Local stability of disease free equilibrium

In this subsection, we prove the local stability of the disease free equilibrium of Equation (5). Let

J =


δS
δt

δI
δt

δJ
δt

δZ
δt

δS
δt

δI
δt

δJ
δt

δZ
δt

δS
δt

δI
δt

δJ
δt

δZ
δt

δS
δt

δI
δt

δJ
δt

δZ
δt

 =


cβ(I + bJ)− µ −cβS −bcβS 0

cβ(I + bJ) cβS− (µ + k1) + γpe−µτ cbβS + α 0
0 k1 −(µ + k2 + γ) 0
0 k3 k2 −(µ + ε)

 .

Theorem 1. If the reproduction number R0 < 1 then disease free equilibrium point E0 is locally asymptotically stable
and if R0 > 1 then E0 is unstable.

Proof. We consider the Jacobian matrix of Equation (5) at E0, which is

J(E0) =


−µ −cβk −bcβk 0
0 cβk− (µ + k1) + γpe−µτ cbβk + α 0
0 k1 −(µ + k2 + γ) 0
0 k3 k2 −(µ + ε)

 .
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By determining the eigenvalues of the matrix J(E0), we get the following characteristic equation;

det(λI − J(E0)) = det(J(E0)− λI) = 0,

implies

J(E0) =

∣∣∣∣∣∣∣∣∣
−µ− λ −cβk −bcβk 0

0 cβk− (µ + k1) + γpe−µτ − λ cbβk + α 0
0 k1 −(µ + k2 + γ)− λ 0
0 k3 k2 −(µ + ε)− λ

∣∣∣∣∣∣∣∣∣ = 0,

which gives
(µ + λ)(µ + ε + λ)

[
λ2 + (µ + k2 + α− n)λ− ψ

]
= 0, (11)

where n = cβk− (µ + k1) + γp(t− τ)e−µτ and ψ = n(µ + k2 + α) + k1(cβbk + α). If τ = 0, then n becomes Φ
and ψ becomes m with

Φ = cβk− (µ + k1) + γp(t) and m = [cβk− (µ + k1) + γp(t)] (µ + k2 + α) + k1(cβbk + α).

Then (11) becomes
(µ + λ)(µ + ε + λ)

[
λ2 + (µ + k2 + α− φ)λ−m

]
= 0. (12)

Clearly, first two roots of (12) are λ1 = −µ and λ2 = −(µ + ε). By move on and considering τ = 0 as it is
highlighted in (12)

λ2 + (µ + k2 + α− φ)λ−m = 0.

This implies that

λ3 = − (µ + k2 + α− φ) +
√
(µ + k2 + α− φ)2 + 4m
2

,

and

λ4 = − (µ + k2 + α− φ)−
√
(µ + k2 + α− φ)2 + 4m
2

.

Since, the product of these eigenvalues are positive i.e., λ1 ∗ λ2 ∗ λ3 ∗ λ4 > 0 and since their sum is negative
i.e., λ1 + λ2 + λ3 + λ4 < 0, then the disease free equilibrium is locally asymptotically stable.

3.5. Global stability of disease free equilibrium

In this section, we show the global stability of the disease free equilibria of (5).

Theorem 2. If R0 ≤ 1, then the disease free equilibrium of (5) is globally asymptotically stable.

Proof. We consider the classes of asymptomatic infectives (un-aware) I and symptomatic infectives (aware) J
of the model (5) and use an appropriate Lyapunov functions V(t) = C1 I +C2 J, where V ∈ K1 (the vector space
of continuously differentiable functions) and C1, C2 are positive constants. Now

dV(t)
dt

= C1
dI
dt

+ C2
dJ
dt

,

where

dI
dt

=cβ(I + bJ)S− (µ + k1)I + αJ + γpI(t− τ)e−µτ ,

and

dJ
dt

=k1 I − (µ + k2 + α)J.

By applying the above approach, we have

dV(t)
dt

≤ C1
[
cβ(I + bJ)S− (µ + k1)I + αJ + γpI(t− τ)e−µτ

]
+ C2

[
k1 I − (µ + k2 + α)J

]
.
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Since all variables and parameters of the model (5) are non-negative, then dV(t)
dt ≤ 0 for R0 ≤ 1 and dV(t)

dt = 0
for dI

dt = dJ
dt = 0. The disease free equilibrium is therefore globally asymptotically stable if R0 ≤ 1.

3.6. Global stability of endemic equilibrium

In this subsection, we prove the global stability of the endemic equilibrium of (5).

Theorem 3. If R0 > 1, then the endemic equilibrium point is globally asymptotically stable.

Proof. Assume that the solutions (S∗, I∗, J∗, Z∗, A∗) of the model (5) belongs to the positive orthant R5
+. We

define a Lyapunov function V which is a function of t as,

V =C1S∗

(
S
S∗
− ln

(
S
S∗

))
+ C2 I∗

(
I
I∗
− ln

(
I
I∗

))
+ C3 J∗

(
J
J∗
− ln

(
J
J∗

))
+ C4Z∗

(
Z
Z∗
− ln

(
Z
Z∗

))
+ C5 A∗

(
A
A∗
− ln

(
A
A∗

))
.

We note that V = 0 whenever (S, I, J, Z, A) = (S∗, I∗, J∗, Z∗, A∗) and V > 0 otherwise; V is also radially
unbounded. Now, we need to show that dV

dt is negative. The derivative of V with respect to t gives,

dV
dt

= C1

(
1− S∗

S

)
dS
dt

+ C2

(
1− I∗

I

)
dI
dt

+ C3

(
1− J∗

J

)
dJ
dt

+ C4

(
1− Z∗

Z

)
dZ
dt

+ C5

(
1− A∗

A

)
dA
dt

.

For Ci, i = 1.2, 3, 4, 5; since the arithmetic mean is greater than or equal to the geometric mean, then the
terms between brackets are less than or equal to zero. Hence, dV

dt = 0 holds, provided that (S, I, J, Z, A) =

(S∗, I∗, J∗, Z∗, A∗). The singleton set (S, I, J, Z, A) = (S∗, I∗, J∗, Z∗, A∗) which is a subset of the set where dV
dt =

0 is the largest compact invariant set. Therefore, by Lasalle’s invariance principle, it follows that as time t
approaches infinity, (S, I, J, Z, A)→ (S∗, I∗, J∗, Z∗, A∗). We therefore conclude that the endemic equilibrium
point is globally asymptotically stable.

Moreover, since we have been able to find the global stability of endemic equilibrium, in this study it is
assumed that the local stability of endemic equilibrium exists too.

4. Numerical results and discussion

In this section, the model (5) is numerically integrated with the help of MATLAB code odde23, using the
following set of parameter values:

Table 2. Description of variables and parameters of the model

Parameters Values Source
S(0) 5000 or 80000 Assumed
I(0) 2000 or 10000 [6,22]
J(0) 3000 or 30000 Assumed
Z(0) 500 [22]
A(0) 200 or 1000 [6,22]
γ 0.4 [22]
K 120 [6]
µ 0.5 [22]
c 3 [6]
β 0.0003 [6]
b 0.3 [6]
k1 0.01 [6]
k2 0.02 [6]
k3 0.1 [6]
α 0.04 [6]
d 1 [6,22]
p 0.6 [6]
ε 0.0909 [9,30]
τ [0,18] [9]
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The basic reproduction number R0 is crucial as it determines the spread of the HIV infectious disease [13].
If R0 ≤ 1, the disease always dies out and the disease-free equilibrium is globally stable. If R0 > 1, the disease
persists and infected people increase exponentially.

Mathematical analysis of model (3) is studied where R0 < 1 with R0 = 0.3893, the results show how
disease disappear in middle ten to fifteen years due to treatment and isolation of people with AIDS cases as it
is shown in Figure 4 and Figure 5.

Figure 4. Model (3) with low initial values.

Figure 5. Model (3) with high initial values.

As the number of people who are un-aware about decrease, and a small number of people who tested
negative who live in danger area to be infected with HIV is considered. The model (5) in Figures 6 and 7 show
very accurate results compared to the model (3).

Figure 6. Model with pre-AIDS group.
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Figure 7. Model with pre-AIDS group.

By accommodating pre-AIDS group with considering no time delay in Figures 8 and 9, the models behave
almost the same as the number of people aware about their health status increase and the number of newborns
who live with HIV decrease and tends to zero.

Figure 8. Model without time delay.

Figure 9. Model without time delay
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Figure 10. Fully AIDS group with time delay.

Figure 11. Fully AIDS group without time delay.

Let us compare each group by its own in model (5) with time delay and without time delay. Figures 10
and 11 show full AIDS group with time delay and without time delay respectively. Here, the model behaves
almost the same as the number of people who are aware about their health status is big.

Figure 12. Pre - AIDS group with time delay.
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Figure 13. Pre - AIDS group without time delay.

Figures 12 and 13 show Pre-AIDS group with time delay and without time delay respectively. These
figures show that the model with time delay is doing better as people in Pre-AIDS group can live longer
compared to those without time delay.

Figure 14. The symptomatic group with time delay.

Figure 15. The symptomatic group without time delay.

Figures 14 and 15 show the symptomatic group with time delay and without time delay respectively.
The figures show that the model behaves almost the same as a high number of the symptomatic group is
considered. As the number of people in the symptomatic group decrease and until they disappear, this implies
the biggest reduction of number of people in full AIDS group.
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Figure 16. The asymptomatic group with time delay.

Figure 17. The asymptomatic group without time delay.

Figure 16 and 17 show the asymptomatic group with time delay and without time delay respectively. The
figures show that the model behaves almost the same as a low number of asymptomatic group is considered.
This also show that as the number of un-aware of their health status decreases, the number of people in Full
AIDS group will decrease as well.

Figure 18. The susceptible group with time delay.
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Figure 19. The susceptible group without time delay.

Figures 18 and 19 demonstrate the susceptible group with time delay and without time delay respectively.
The figures show that the model behaves almost the same as the number of asymptomatic group decreases and
symptomatic group increases. This shows that as the number of new infection decreases then the number of
the susceptible group should increase.

5. Conclusion and recommendation

The HIV/AIDS model with treatment, time delay and vertical transmission is proposed in this study
under some assumptions. We formulated a mathematical model diagram that involves five distinct
sub-population groups. The basic reproduction number R0 has been calculated using the next generation
matrix method. In addition, we determined the equilibrium points, i.e., disease free and endemic. The local
and global stability of disease free and endemic are established. We also carried out numerical simulations of
the stable states when R0 < 1. The study simulation results suggest a high number of people from symptomatic
group (people aware of their health status) rather than isolating AIDS patients which is impossible in real
life situation as these people serve society in various domains. As the number of symptomatic group is
high, the risk of producing HIV-infected children become small and ignored in the model. Furthermore, the
basic reproduction number R0 is computed and, due to the values of the parameters given, it is found that
R0 = 0.0011 which is less than one, as this is an implication that the disease will disappear.

As limitation, authors didn’t get real data to use in this study. Hence, parameters estimation were
adopted. We therefore recommend further studies for HIV/AIDS infection predictions in 20, 50, 80, 100 years
to come as the number of people living with HIV/AIDS is increasing with time according to literature.
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