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Abstract: It is well known that Hoeffding’s inequality has a lot of applications in the signal and information
processing fields. How to improve Hoeffding’s inequality and find the refinements of its applications have
always attracted much attentions. An improvement of Hoeffding inequality was recently given by Hertz
[1]. Eventhough such an improvement is not so big, it still can be used to update many known results with
original Hoeffding’s inequality, especially for Hoeffding-Azuma inequality for martingales. However, the
results in original Hoeffding’s inequality and its refined version by Hertz only considered the first order
moment of random variables. In this paper, we present a new type of Hoeffding’s inequalities, where the
high order moments of random variables are taken into account. It can get some considerable improvements
in the tail bounds evaluation compared with the known results. It is expected that the developed new type
Hoeffding’s inequalities could get more interesting applications in some related fields that use Hoeffding’s
results.
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1. Introduction

I t is well known that Hoeffding’s inequality has been applied in many scenarios in the signal and
information processing fields. Since Hoeffding’s inequality was first found in 1963 [2], it has been

attracting much attentions in the academic research, i.e., ([3–9]) and industry.
In [3], it employed the Markov inequality similar to that in the deriving of Chernoff-Hoeffding

inequality and considered the tail probability bound of the sums of bounded random variables with limited
independence. In [4], it presented a probability bound for a reversible Markov chain where the occupation
measure of a set exceeds the stationary probability of a set by a positive quantity. In [5], it discussed the
irreducible finite state Markov chains and developed bounds on the distribution function of the empirical
mean, especially, employed Gillman’s approach to estimate the rate of convergence through bounding the
largest eigenvalue of a perturbation of the transition matrix for the Markov chain. In [6], it considered
the finite reversible Markov chain and presented some optimal exponential bounds for the probabilities of
large deviations about the sums of an arbitrary bounded function of random variables. In [7], it presented
Hoeffding-type inequalities for geometrically ergodic Markov chains on general state space, where these
bounds depend only on the stationary mean spectral gap and the end-points of support of the bounded
function of random variables. In [8], it presented a refined version of the arithmetic geometric mean inequality
to improve the Hoeffding’s inequality. In [9], it also presented a refinement of Hoeffding’s inequality and
showed some numerical results to demonstrate its effectiveness.

Especially, in the last decade, it has been used to evaluate the channel code design [10,11] and achievable
rate over nonlinear channels [12] as well as delay performance in CSMA with linear virtual channels under a
general topology [13] in information theory [14]. As one key tool, it also found the applications in machine
learning and big data processing, i.e., PAC-Bayesian method analysis and Markov model analysis in machine
learning [15,16], statistical mode bias analysis [17], concept drift in online learning for big data mining [18] and
compressed sensing of high dimensional sparse functions [19], etc. It also has been employed in biomedical
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fields, i.e., developing the computational molecular modelling tools [20] and analyzing the level set estimation
in medical image and pattern recognition [21], etc.

Due to its widely applications, the refined results and improvements of Hoeffding’s inequality and
Hoeffding-Azuma inequality in martingales usually resulted in more new insights on the developments of
related fields. Recently, Hertz [1] presented an improvement result on the original Hoeffding’s inequality by
utilizing the asymmetric feature of finite distribution interval of random variables. It can reduce the related
exponential coefficient from its arithmetic means to the geometric means of |a| and b, where [a, b] (a < 0, b > 0)
is the distributed interval of random variable X. This improvement motivates us to improve the Hoeffding’s
inequality. For simplicity, let us first review the result of Hoeffding’s inequality [2] and its improvement
obtained by Hertz [1].

1.1. Hoeffding’s Inequality and An Improvement

Assume that X is a zero mean real valued random variable and X ∈ [a, b] with a < 0, b > 0. Hoeffding’s
lemma state that for all s ∈ R, s > 0,

E[esX ] ≤ exp
{

s2(b− a)2

8

}
. (1)

Recently, D. Hertz presented an improved result with the following form

E[esX ] ≤ exp
{

s2Φ2(a, b)
2

}
, (2)

where

Φ(a, b) =

{ |a|+b
2 b >| a |,√
|a|b, b ≤| a | .

Since
√
|a|b ≤ |a|+b

2 , it gives a tighter upper bound for −a > b, compared with the original Hoeffding’s
inequality.

Motivated by this result, an interesting question raises. Can we further improve the Hoeffding’s
inequality? If so, how to do it.

In this paper, we derive a new type of Hoeffding’s inequalities, where higher order moments of random
variable X are taken into account, except E(X) = 0, i.e., E(Xk) = mk(k = 2, 3, ...).

1.2. Main theorem

To give a clear picture of this paper, the new type of Hoeffding’s inequality is given as follows;

Theorem 1. Assume that X is a real valued random variable with E(X) = 0, X ∈ [a, b] with a < 0, b > 0. For all
s ∈ R, s > 0 and an integer k (k ≥ 1), we have

E[esX ] ≤ Υk(a, b) exp
{

s2

2k
Φ2(a, b)

}
(3)

where Υk(a, b) =
[
1 + max{|a|,b}

|a|

]k
− k max{|a|,b}

|a| and Φ(a, b) =

{ |a|+b
2 b >| a |,√
|a|b, b ≤| a | .

Remark 1. When k = 1, it is easy to check that Υ1(a, b) = 1. This indicates that the new type Hoeffding’s
inequality will be reduced to the improved Hoeffding’s inequality (2), still better than the original Hoeffding’s
inequality. When k = 2, Υ1(a, b) = 1 + {max{|a|,b}

|a| }2 and the exponential coefficient has been decreased by 2
times compared to the improved Hoeffding’s inequality (2). In fact, such a result can be refined, which is given
by the following Corollary.

Corollary 1. Under the same assumption of Theorem 1 for k = 2, we have

E[esX ] ≤
[
1 +

m2

a2

]
exp

{
s2

4
Φ2(a, b)

}
where m2 = E(X2).
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If E(X2) is unknown, the inequalities can be relaxed as

E[esX ] ≤
[

1 +
b
|a|

]
exp

{
s2

4
Φ2(a, b)

}
if |a| < b, (4)

and

E[esX ] ≤ 2 exp
{

s2

4
Φ2(a, b)

}
if |a| ≥ b.

Comparing the result in Equation (4) with that presented in Theorem 1, it is easy to check that[
1 +

b
|a|

]
≤ 1 +

{
max{|a|, b}
|a|

}2

holds. This indicates that Corollary 1 really improves the result presented in Theorem 1 for k = 2. Comparing
to that in Equation (2), the exponential coefficient has be reduced by 2 times. That is to say, when parameter
s is relatively large, the new type of Hoeffding’s inequalities will give much tighter results than original
Hoeffding’s inequality and its improvement obtained by Hertz.

The remaining part of this paper is organized as follows: In Section 2, we first present the proof of
Corollary 1 and show the insight by taking higher order moments of real valued random variables into account
and then present the proof of main theorem in this paper. In Section 3, we present the new type Hoeffding’s
inequalities applications in the one sided and two sided tail bounds. We also discuss how to select the integer
parameter k to give a tighter bound in Section 4. Finally, in Section 5, we give the conclusion.

2. The Proof of Main Theoretical Results

Let us first introduce some Lemmas.

2.1. Some Useful Lemmas

Lemma 1. Supposed f (x) is a convex function of x, f (x) > 0 with x ∈ [a, b], then we have the following results:

1.
f (x) ≤ b− x

b− a
f (a) +

x− a
b− a

f (b),

2. f 2(x) is also a convex function of x and

f 2(x) ≤
[

b− x
b− a

f (a) +
x− a
b− a

f (b)
]2

and
f 2(x) ≤ b− x

b− a
f 2(a) +

x− a
b− a

f 2(b).

The proof of Lemma 1 can be directly derived by using the definition of Convex function and ( f 2(x))′ =
2 f (x) f ′(x) and ( f 2(X))′′ = 2( f ′(x))2 + 2 f (x) f ′′(x) > 0.

Lemma 2. Assume that X is a real valued random variable with E(X) = 0, P(X ∈ [a, b]) = 1 with a < 0, b > 0, then
we have

1.
E(X2) ≤ |a|b. (5)

2.
E(X4) ≤ |a|b(a2 + ab + b2) ≤ |a|b(a2 + b2). (6)

Proof. .

1. Since f (x) = x2 is a convex function of x in [a, b], we have

x2 ≤ b− x
b− a

a2 +
x− a
b− a

b2
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E(X2) ≤ b
b− a

a2 +
−a

b− a
b2 = |a|b.

2. Since f (x) = x2 is a convex function and f (x) ≥ 0. We know that f 2(x) = x4 is also a convex function of
x according to Lemma 1. Then we have

x4 ≤ b− x
b− a

a4 +
x− a
b− a

b4 (7)

E(X4) ≤ b
b− a

a4 +
−a

b− a
b4 = |a|b(a2 + ab + b2) ≤ |a|b(a2 + b2).

Lemma 3. For 0 < λ < 1 and u > 0, let ψ(u) = −λu + ln(1− λ + λeu). Then we have

ψ(u) = 0.5τ(1− τ)u2

where τ = λ
(1−λ)e−ξ+λ

, ξ ∈ [0, u]. In addition, we have

ψ(u) ≤
{

u2

8 λ ≤ 0.5

λ(1− λ) u2

2 λ > 0.5

This lemma was derived in [1]. For completeness, we reorganize it as follows:

Proof. Since
ψ(u) = −λu + ln(1− λ + λeu).

For u > 0, one can use Taylor’s expansion and obtain

ψ(u) = ψ(0) + ψ
′
(0)u + 0.5ψ

′′
(ξ)u2.

It is easy to check that ψ(0) = 0 and

ψ
′
(u) = −λ +

λeu

1− λ + λeu ,

ψ
′′
(u) =

λeu

1− λ + λeu (1−
λeu

1− λ + λeu ).

That means ψ
′
(0) = 0 and ψ

′′
(ξ) = 0.5τ(1− τ) where τ = λ

(1−λ)e−ξ+λ
, ξ ∈ [0, u]. That is,

ψ(u) = 0.5τ(1− τ)u2.

Now let us divide it into two cases to discuss:

(i) If λ > 0.5, then

τ =
λ

(1− λ)e−ξ + λ
≥ λ > 0.5.

That means, τ(1− τ) reaches its maximum at τ = λ. In other word, τ(1− τ) ≤ λ(1− λ).
(ii) If λ ≤ 0.5, then we have τ(1− τ) ≤ 1

4 .

By combining cases (i) and (ii), we get

ψ(u) ≤
{

u2

8 λ ≤ 0.5,

λ(1− λ) u2

2 λ > 0.5.

The proof is completed.
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2.2. Observation from Corollary 1

Now we first review the Corollary 1. It claimed that under the same assumption of Theorem 1, for k = 2,
we have

E[esX ] ≤
[
1 +

m2

a2

]
exp

{
s2

4
Φ2(a, b)

}
where m2 = E(X2).

Before we present the proof of Corollary 1, let us analyze why such a new type of Hoeffding’s inequality
can decrease its exponential factor by 2 times in philosophy.

Since
f (x) = exp(αx)

is a convex function for any α > 0.
Let α = 2s̃, then

E(exp(2s̃X)) ≤ b2 + m2

(b− a)2 exp(2s̃a) +
m2 + a2

(b− a)2 exp(2s̃b) +
−2ab− 2m2

(b− a)2 exp(s̃a) exp(s̃b)

=
b2 + m2

(b− a)2 exp(2s̃a) +
m2 + a2

(b− a)2 exp(2s̃b) +
−2ab− 2m2

(b− a)2 exp
(

2s̃
a + b

2

)
.

The equation above can be rewritten as

E(exp(αX)) ≤ b2 + m2

(b− a)2 exp(αa) +
m2 + a2

(b− a)2 exp(αb) +
−2ab− 2m2

(b− a)2 exp
(

α
a + b

2

)
. (8)

Using Lemma 2 above, it is easy to see that all of the weighting coefficients of exp(αa), exp(αb) and exp(α a+b
2 )

are non-negative and
b2 + m2

(b− a)2 +
m2 + a2

(b− a)2 +
−2ab− 2m2

(b− a)2 = 1.

Now, by using s = α in the inequality (8), we have

E(exp(sX)) ≤ b2 + m2

(b− a)2 exp(sa) +
m2 + a2

(b− a)2 exp(sb) +
−2ab− 2m2

(b− a)2 exp
(

s
a + b

2

)
(9)

It is easy to see that the right hand side of equation is equal to the linear weighting sum of exp(sa), exp(sb) and
exp(s a+b

2 ). That is to say, one can use the information provided by three points to estimate the upper bound
of E(exp(sX)). It exactly provides more information than that only using two point linear weighting sum of
exp(sa) and exp(sb) to estimate the upper bound of E(exp(sX)). Similarly, if one can use the information of
function exp(sx) at multiple points, the upper bound of estimation E(exp(sX)) may be improved further,
this is why we consider the high order moments of random variables to discuss Hoeffding’s inequality
improvement.

2.3. Proof of Corollary 1

Now let us present the proof of Corollary 1.

Proof. Following the inequality (9), we have that

E(exp(sX)) ≤ b2 + m2

(b− a)2 exp(sa) +
m2 + a2

(b− a)2 exp(sb) +
−2ab− 2m2

(b− a)2 exp
(

s
a + b

2

)
=

b2

(b− a)2 exp(sa) +
a2

(b− a)2 exp(sb) +
−2ab

(b− a)2 exp
(

s
a + b

2

)
+

m2

(b− a)2

{
exp

(
s

b
2

)
− exp

(
s

a
2

)}
. (10)
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Let u = s(b−a)
2 ,λ = −a

b−a , and β2 = m2
(b−a)2 , then we have s = 2u

b−a , b
b−a = 1− λ. The inequality (10) can be

rewritten as

E(exp(sX)) ≤
[
(1− λ)e−λu + λe(1−λ)u

]2
+ β2(e(1−λ)u − e−λu)2

≤
[
(1− λ)e−λu + λe(1−λ)u

]2
(

1 +
β2

λ2

)
= exp(2ψ(u))

(
1 +

β2

λ2

)
.

By using Lemma 3, we have

E(exp(sX)) ≤

exp
(

u2

4

) (
1 + β2

λ2

)
|a| < b,

exp
(
λ(1− λ)u2) (1 + β2

λ2

)
|a| ≥ b.

Now we shall discuss the exponential coefficient and the multiply factor
(

1 + β2

λ2

)
in two different cases:

(a) If |a| ≥ b, then by using u = s(b−a)
2 , λ = −a

b−a , and β2 = m2
(b−a)2 , we have

λ(1− λ)u2 ≤ −ab
(b− a)2

s2(b− a)2

4
=

s2|a|b
4

as well as

1 +
β2

λ2 = 1 +
m2

a2 ≤ 1 +
b
|a| ≤ 2.

(b) If |a| < b, then we have
u2

4
=

1
4

s2(b− a)2

4
=

s2(b− a)2

16
and

1 +
β2

λ2 = 1 +
m2

a2 ≤ 1 +
b
|a| .

Combining the two difference cases and using

Φ(a, b) =

{ |a|+b
2 b >| a |,√
|a|b, b ≤| a | .

The proof is completed.

2.4. Proof of Theorem 1

Proof. If k = 1, it is the improved Hoeffding’s inequality (2). Now we mainly focus on the case of k ≥ 2. Since
f (x) = eαx is a convex function of x for all α > 0 and f (X) > 0, we have

eαx ≤ b− x
b− a

eαa +
x− a
b− a

eαb.

For an positive integer k (k ≥ 2), we have

ekαx ≤
[

b− x
b− a

eαa +
x− a
b− a

eαb
]k

=

{[
b

b− a
eαa +

−a
b− a

eαb
]
+ x

[
eαb − eαa

b− a

]}k

and

E
(

ekαX
)
≤ E

{[
b

b− a
eαa +

−a
b− a

eαb
]
+ X

[
eαb − eαa

b− a

]}k

.
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By using s = kα and λ = −a
b−a , u = s

k (b− a), then we have

E
(

esX
)
≤ E

{
[(1− λ)e−λu + λe(1−λ)u] +

X
|a| [λe(1−λ)u − λe−λu]

}k
.

Let eψ(u) = (1− λ)e−λu + λe(1−λ)u and ϕ(u) = λe(1−λ)u − λe−λu then

E
(
esX) ≤ E

[
eψ(u) +

X
|a| ϕ(u)

]k

= ekψ(u) + ke(k−1)ψ(u)E
(

X
|a|

)
ϕ(u) +

k

∑
i=2

Ci
ke(k−i)ψ(u)E

(
X
|a|

)i
ϕi(u)

= ekψ(u) +
k

∑
i=2

Ci
ke(k−i)ψ(u)E

(
X
|a|

)i
ϕi(u)

≤ ekψ(u) +
k

∑
i=2

Ci
ke(k−i)ψ(u)E

(
|X|
|a|

)i
ϕi(u)

≤ [(1− λ)e−λu + λe(1−λ)u]k
{[

1 +
max{−a, b}
|a|

]k
− k

max{−a, b}
|a|

}

where Ci
k =

k!
i!(k−i)! .

By using (b− a)λ = −a, and ψ(u) = 0.5τ(1− τ)u2, u = s
k (b− a), we have

E(esX) ≤ e
k
2 τ(1−τ)u2

{
[1 +

max{−a, b}
|a| ]k − k

max{−a, b}
|a|

}
≤
{
[1 +

max{|a|, b}
|a| ]k − k

max{−a, b}
|a|

}
exp

(
s2

2k
Φ2
)

= Υk(a, b) exp
(

s2

2k
Φ2
)

where Υk(a, b) =
[
1 + max{|a|,b}

|a|

]k
− k max{|a|,b}

|a| , and Φ =

{
(b−a)

2 −a < b,√
|a|b −a ≥ b.

The proof is completed.

Remark 2. The proof of Theorem 1 create a new routine on how to use multipoint values of exp(sx) to get
tighter approximation of E(exp(sX)) for any random distribution in a finite interval with P(X ∈ [a, b]) = 1.
Comparing with the original Hoeffding’s inequality and its improvement obtained by Hertz, the advantages
is that it can exactly reduce the exponential coefficients by k times when all the moments of less than k order
statistics are taken into account, but the cost is that it will almost enlarge the multiply factor with Ck

1 times,
as shown by Υk(a, b), where C1 is a constant with C1 > 1. That means there exists a trade off between the
exponential coefficient reduction and the multiply factor increment. It needs to be considered in specific
applications.

In some scenarios, one may interested in the case of k = 4. The following Corollary shows one refinement
of Theorem 1.

Corollary 2. Assume that X is a real valued random variable, P(X ∈ [a, b]) = 1 with a < 0, b > 0 and E(X) = 0,
E(X2) = m2, E(X3) = 0 and E(X4) = m4. For all s ∈ R, s > 0, we have

E
[
esX
]
≤
[

1 +
6m2

a2 +
m4

a4

]
exp

(
s2

8
Φ2(a, b)

)
(11)

where Φ(a, b) =

{
(b−a)

2 |a| < b,√
|a|b |a| ≥ b.
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Proof. Since f (x) = eαx is a convex function of x for all α > 0 and f (X) > 0, we have

eαx ≤ b− x
b− a

eαa +
x− a
b− a

eαb

and

e4αx ≤
[

b− x
b− a

eαa +
x− a
b− a

eαb
]4

=

{[
b

b− a
eαa +

−a
b− a

eαb
]
+ x

[
eαb − eαa

b− a

]}4

.

Let s = 4α, and using E(X) = 0,E(X2) = m2 E(X3) = 0 and E(X4) = m4, we have

E(esX) ≤
(

b
b− a

e
s
4 a +

−a
b− a

e
s
4 b
)4

+ 6m2

(
b

b− a
e

s
4 a +

−a
b− a

e
s
4 b
)2
(

e
s
4 b − e

s
4 a

b− a

)2

+ m4

(
e

s
4 b − e

s
4 a

b− a

)4

.

Let λ = −a
b , u = s

4 (b− a), then we have b
b−a = 1− λ, s

4 a = −λu, s
4 b = (1− λ)u. Then the inequality above

can be rewritten as

E
(

esX
)
≤
[
1− λe−λu + λe(1−λ)u

]4
+

6m2

(b− a)2λ2

[
1− λe−λu + λe(1−λ)u

]2 [
λe(1−λ)u − λe−λu

]2

+
m4

(b− a)4λ4

[
λe(1−λ)u − λe−λu

]4

≤
[
1− λe−λu + λe(1−λ)u

]4
[

1 +
6m2

(b− a)2λ2 +
m4

(b− a)4λ4

]
= e4ψ(u)

[
1 +

6m2

(b− a)2λ2 +
m4

(b− a)4λ4

]
.

By using (b− a)λ = −a, and Lemma 3, we have

E
(

esX
)
≤
[

1 +
6m2

a2 +
m4

a4

]
e

s2Φ2
8

where Φ =

{
(b−a)

2 −a < b,√
|a|b −a ≥ b.

The proof is completed.

If the E(X2) and E(X4) are not exactly known and |a| = b, we have the following result:

Corollary 3. Assume that X is a real valued random variable, P(X ∈ [−a, a]) = 1 with a > 0 and E(X) = 0 and
E(X3) = 0. For all s ∈ R, s > 0, we have

E
[
esX
]
≤ 8 exp

(
a2s2

8

)
.

Proof. By using m2 ≤ a2, m4 ≤ a4 and the inequality in Corollary 2, we can get the result directly.

3. Applications in Tail Bound Evaluation

Let us consider the scenario, where X1, X2, . . . , Xn be independent random variables such that Xi ∈
[ai, bi], ai < 0, bi > 0 and EXi = 0 for i = 1, 2, . . . , n.

Define Sn = ∑n
i=1 xi.
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It is easy to check that ESn = 0. For all s > 0, we have

P(Sn ≥ t) = P
(

esSn ≥ est
)

Chernoff

≤ e−stEesSn Markov

= e−st
n

∏
i=1

EesXi .

(12)

Using the results of Theorem 1 and its Corollaries, one can obtain that

EesXi ≤ Aki
exp

(
s2

2ki
Φi

)
where Aki

and ki are based on which one inequality of Xi being selected in Theorem 1 with

Aki
=


1 ki = 1,

1 + max{|a|,b}
|a| ki = 2,[

1 + max{|a|,b}
|a|

]ki
− ki

max{|a|,b}
|a| ki ≥ 3,

or others presented in Corollaries, and Φi = Φ(ai, bi).
In this case, we get

P (Sn ≥ t) ≤
(

n

∏
i=1

Aki

)
exp

{
−st + s2

(
n

∑
i=1

Φ2
i

2ki

)}
.

Now selecting s = t

2
(

∑n
i=1

Φ2
i

2ki

) to minimize the exponent in inequality (12), we obtain

P (Sn ≥ t) ≤
(

n

∏
i=1

Aki

)
exp

−t2

(
2

n

∑
i=1

Φ2
i

ki

)−1
 . (13)

In particular, if all the ki, (i = 1, 2, · · · , n) are selected as 1, then Aki
= 1, it reduces to the improved Hoeffding’s

one side tail bound.
If all the ki, (i = 1, 2, · · · , n) are selected as 2 and |ai| = bi, then Aki

= 2, and the inequality can be
rewritten as

P(Sn ≥ t) ≤ 2n exp

{
− t2

∑n
i=1 a2

i

}
.

Furthermore,

P
(

Sn

n
≥ l
)
≤
(

n

∏
i=1

Aki

)
exp

{
−nl2

2Φ̃2
i

}

where l is a positive number and Φ̃2
i = 1

n

(
∑n

i=1
Φ2

i
2ki

)
.

The two sided tail bound can be given by

P (|Sn| ≥ t) ≤
(

n

∏
i=1

Aki

)
exp

−t2

(
2

n

∑
i=1

Φ2
i

ki

)−1
+

(
n

∏
j=1

Bkj

)
exp

−t2

(
2

n

∑
j=1

Φ2
j

k j

)−1


where {Bkj
, j = 1, 2, · · · , n} is a sort of {Aki

, i = 1, 2, · · · , n} complement. That is to say, the calculation of Bkj

is just changing the positions of aj and bj in such a way −aj → bi and −bj → ai in the calculation of Aki
if the

integer index k j of Bkj
is equal to the integer index ki of Aki

. In other word, for the same Xi, it may select two
different integer parameter values of ki to estimate both sided tail bounds for the positive and the negative
directions.
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4. Selection of Integer Parameter k

On the selection of integer parameter ki, we shall discuss it firstly from one sided tail bound. For
simplicity, let us consider n = 1. The first question is when selecting a larger k will get a tighter bound.
The question can be solved by

Ak+1 exp

{
−t2

(
2

Φ2

k + 1

)−1}
< Ak exp

{
−t2

(
2

Φ2

k

)−1}
. (14)

Using logarithm on both sides of inequality (14) and after some manipulations, we get

t2

2Φ2 > ln Ak+1 − ln Ak.

That is

t > Φ

√
2 ln

Ak+1
Ak

.

To clear illustrate the effect of k selection, we give following three examples:

Example 1. For a = −1 and b = 1, the selection rule of k (k = 1, 2, 3) is given by

k =


1, 0 < t <

√
2 ln 2 ≈ 1.177,

2,
√

2 ln 2 < t <
√

2 ln(2.5) ≈ 1.3537,

3, t >
√

2 ln(2.5).

Example 2. For a = −1 and b = 5, the selection rule of k (k = 1, 2, 3) is given by

k =


1, 0 < t < 3

√
2 ln 6 ≈ 5.679,

2, 3
√

2 ln 6 < t < 3
√

2 ln(191/6) ≈ 7.892,

3, , t > 3
√

2 ln(191/6).

Example 3. For a = −5 and b = 1, the selection rule of k (k = 1, 2, 3) is given by

k =


1, 0 < t < 1

2

√
10 ln(6/5) ≈ 0.6751,

2, 1
2

√
10 ln(6/5) < t <

√
10 ln(25/6) ≈ 3.778,

3, t >
√

10 ln(25/6).

Remark 3. All the three examples show that when t is relatively small, i.e., close to zero, selecting parameter
k = 1 is the best one. The results in Example 3 show that when t = 0.8, selecting k = 2 will give a tighter tail
bound. The results in Example 2 and Example 3 also indicates when random variable X with P(X ∈ [−1, 5]) =
1, where a = −1, b = 5, one need to estimate P(|X| > 0.8), the right hand sided bound should select k = 1 as
its estimation while the left hand sided bound should select k = 2 as its estimation. This result shows that one
may not consistently select the same parameter k to deal with both sided tail bounds when |a| 6= b.

Now let consider the general case.
The goal of parameters ki selection is basically to minimize the right hand of inequality (13). Thus, one

can set up an optimization problem as follows:

Problem 1. For a given t > 0,

min
ki

(
n

∏
i=1

Aki

)
exp

−t2

(
2

n

∑
i=1

Φ2
i

ki

)−1
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where Aki
are calculated by using the theoretical results in Theorem 1 and its Corollaries for a given ki. It is

equivalent to

min
ki

(
n

∑
i=1

ln(Aki
)

)
− t2

(
2

n

∑
i=1

Φ2
i

ki

)−1

and

max
ki

1(
2 ∑n

i=1
Φ2

i
ki

) − (∑n
i=1 ln(Aki

)
)

t2 .

In fact, such an optimization problem can be solved by using computer search. Here, in order to provide a

tractable mode, we relax Aki
with the form

[
1 + max{|a|,b}

|a|

]k
given in Theorem 1. In this case, the optimization

problem can be transformed into the following problem.

Problem 2. Take

max
ki

1(
2 ∑n

i=1
Φ2

i
ki

) −
(

∑n
i=1 ki ln

(
1 + max{|ai |,bi}

|ai |

))
t2 .

Let us define

g (k1, k2, . . . , kn) =
1(

2 ∑n
i=1

Φ2
i

ki

) −
(

∑n
i=1 ki ln

(
1 + max{|ai |,bi}

|ai |

))
t2 .

In order to get some insights, let us consider k j to be a real number rather than an integer, then the partial
derivative of function g(.) to k j is given by

∂g
∂k j

=
2Φ2

i k−2
j(

2 ∑n
i=1

Φ2
i

ki

)2 −
ln
(

1 +
max{|aj |,bj}

|aj |

)
t2 .

Let ∂g
∂kj

= 0, after some manipulations, we obtain

k j =
Φj√

2 ln
(

1 +
max{|aj |,bj}

|aj |

) t

∑n
i=1

Φ2
i

ki

=
Φ(aj, bj)√

2 ln
(

1 +
max{|aj |,bj}

|aj |

) t

∑n
i=1

Φ2
i

ki

.

Since t

∑n
i=1

Φ2
i

ki

is a common factor for all the k j,(j = 1, 2, . . . , n). This means

k j ∝
Φ(aj, bj)√

2 ln
(

1 +
max{|aj |,bj}
|aj |

) .

That is to say, the near optimal value of k j is mainly determined by aj and bj except a common factor, the
parameters of distribution interval of Xj. This is an interesting result, which can provide more insight. In most
of applications, all the Xi (i = 1, 2, . . . , n) are distributed with the same interval. In this case, one can select the
same ki value for all of them, so that it can approximate the near optimal tighter tail bound. Such a discussion
can be extended to the scenarios of two sided tail bound.

Remark 4. Consider the distribution interval is symmetric, where |ai| = bi. In this case, we have

Φ(aj, bj)√
2 ln

(
1 +

max{|aj |,bj}
|aj |

) =
|aj|√
2 ln 2

.
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Figure 1. The logarithm of the one sided tail bound of three different group selection of parameters k with n = 4
in Example 5.

This means
k j ∝ |aj|

It indicates the integer parameter k j selection is proportional to the distribution interval length. When |aj| is
relatively small, i.e., |aj| is close to zero, the linear interpolation of two points with x1 = aj and x2 = |aj| is
good enough to approximate the random curve of esX . That is to say, select k j = 1 is good enough.

When |aj| is relatively large, the linear interpolation of two points with x1 = aj and x2 = |aj| may not be
good enough to approximate the curve of esX . It needs more points in the curve of esx to do the interpolation
so that it could have a good approximation to the random curve of esX . That is to say, selecting a larger k j
is necessary. Such an observation is consistent with our "intuitive feeling" on the function approximation in
philosophy. We shall illustrate such phenomenon in detail with some examples below.

Example 4. Let a = −5, b = 5 and m2 = 5. The selection rule of k (k = 1, 2, 3) is given by

k =


1, 0 < t < 5

√
2 ln 2(6/5) ≈ 3.019,

2, 5
√

2 ln 2(6/5) < t < 5
√

2 ln(25/6) ≈ 8.447,

3, t > 5
√

2 ln(25/6).

Remark 5. The results in Example 1 show, selecting k = 1 is always the best since the best working region for
t of k ≥ 2 is out of the X distributed interval, which can not occur in practice. Example 4 shows that when m2

is given, it is possible to select k ≥ 2 to get a tighter tail bound, i.e., t = 4, the best selection of k is k = 2, which
also show that when the distribution interval is relatively larger, it is possible to select the larger integer value
of k for the tail bound estimation.

Example 5. Let us consider n = 4, where X1 ∈ [−1, 1], X2 ∈ [−5, 5], X3 ∈ [−1, 5] and X4 ∈ [−5, 1] with
E(X1) = E(X2) = E(X3) = E(X4) = 0, E(X2

2) = 5 and S4 = X1 + X2 + X3 + X4. It is easy to check that
S4 ∈ [−12, 12].

Figure 1 shows different curves of one sided tail bounds, in which Group one: k1 = k2 = k3 = k4 = 1.
Group two: k1 = k3 = k4 = 1, k2 = 2 and Group three: k1 = k3 = 1, k2 = k4 = 2, where the y-label is the

logarithm of the one sided tail bound,
(
∑n

i=1 ln(Aki
)
)
− t2

(
2 ∑n

i=1
Φ2

i
ki

)−1
, the x-label is t. It is observed that

among the three groups of parameter k selection, when 0 < t < 5.6647, the curve of Group one provides the
tightest bound. When 5.6647 < t < 10.0138, the curve of Group two provides the tightest bound and when
10.0138 < t < 12, the curve of Group three provides the tightest bound.

The results in Example 5 exactly demonstrate that the new type Hoeffding’s inequalities are useful in the
tail bound estimation.

Remark 6. In real applications, one would not like to pay more attention on the selection of parameter ki in
order to make the system analysis simplified. It recommends to select ki to be 1 or 2.
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5. Conclusion

In this paper, we presented new type of Hoeffding’s inequalities by using higher order moments of
random variables. Some applications in one and two sided tail bound improvements can also be obtained
by using the exponential function positiveness and Chernoff inequality. Perhaps, future research may focus on
trying to improve the related inequalities that use Hoeffding’s Lemma.
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