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Abstract: A new series representation of the modified Bessel function of the second kind K0(x) in terms
of simple elementary functions (Kummer’s function) is obtained. The accuracy of different orders in this
expansion is analysed and has been shown not to be so good as those of different approximations found in the
literature. In the sequel, new polynomial approximations for K0(x), in the limits 0 < x ≤ 2 and 2 ≤ x < ∞,
are obtained. They are shown to be much more accurate than the two best classical approximations given by
the Abramowitz and Stegun’s Handbook, for those intervals.
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1. Introduction

R ecently, motivated by numerical problems raised by attempts to enhance the transmission rate of a
particular communication system, which depends on modified Bessel functions of the second kind,

Kν(x), a paper was published, based on novel approach, trying to rewrite those Bessel functions in series from
using simple elementary functions [1]. However, no attention was given to the particular case of K0(x) in this
publication. Therefore, starting from the new series obtained in this paper for Kν(x), with ν 6= 0, we want to
find out a series representation of the modified Bessel function of the second kind K0(x) in terms of simple
elementary functions (Section 2). The new approximation is analysed (Section 3) and then is compared with
some well known series (Section 4). A new polynomial approximation is presented in Section 5 and final
remarks are given in Section 6.

In [1], it is shown that, for ν > 0, Kν(x) can be represented by an infinite series given by

Kν(x) = e−x
∞

∑
n=0

n

∑
k=0

Λ(ν, n, k) xk−ν, (1)

with the coefficients

Λ(ν, n, k) =
(−1)k√π Γ(2ν) Γ

(
1
2 + n− ν

)
L(n, k)

2ν−k Γ
(

1
2 − ν

)
Γ
(

1
2 + n + ν

)
n!

, (2)

where L(n, k) are the Lah numbers defined by

L(n, k) =

(
n− 1
k− 1

)
n!
k!

=
(n− 1)!

(k− 1)!(n− k)!
n!
k!

, for n, k > 0, (3)

with the conventions L(0, 0) = 1, and L(n, 0) = 0, for n ≥ 1.
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2. The case ν = 0

In order to get the expansion we are looking for, we start from the well known recursion formula [2]

xKν−1(x)− xKν+1(x) = −2νKν(x),

which, from Equations (1-3) allow us to express K0(x) as a sum of two series, i.e.,

K0(x) = − 2
x

K1(x) + K2(x), (4)

where K1(x) = e−x
∞

∑
n=0

n

∑
k=0

Λ(1, n, k) xk−1, and K2(x) = e−x
∞

∑
n=0

n

∑
k=0

Λ(2, n, k) xk−2, with the respective

coefficients

Λ(1, n, k) =
(−1)k√π Γ(2) Γ

(
n− 1

2

)
L(n, k)

21−k Γ
(
− 1

2

)
Γ
(
n + 3

2
)

n!
,

and

Λ(2, n, k) =
(−1)k√π Γ(4) Γ

(
n− 3

2
)

L(n, k)
22−k Γ

(
− 3

2
)

Γ
(
n + 5

2
)

n!
.

The dependence of these coefficients on the Γ function can be removed by applying its recursion relations.
Doing so, both coefficients can be written in a simpler formula as

Λ(1, n, k) =
(−1)k+1

22−k
1(

n2 − 1
4

) L(n, k)
n!

,

and

Λ(2, n, k) =
9
2
(−1)k

22−k
1(

n2 − 9
4
) (

n2 − 1
4

) L(n, k)
n!

.

Substituting these factors in Equation (4), we get, after a straightforward calculation, the polynomial
expansion formula for K0(x), namely

K0(x) = e−x
∞

∑
n=0

n n!(
n2 − 1

4

) (
n2 − 9

4
) n

∑
k=0

(−1)k 2k−1 k xk−2

(k!)2 (n− k)!
. (5)

Knowing that the confluent hypergeometric function (Kummer’s function) of the first kind 1F1 is given
by

1F1(1− n; 2; 2x) = −
n

∑
k=0

(n− 1)!(−1)k2k−1k xk−1

(k!)2(n− k)!
.

The result of Equation (5) can be expressed in terms of only one summation of a well known function as

K0(x) = e−x
∞

∑
n=0

−n2(
n2 − 9

4
) (

n2 − 1
4

) 1F1(1− n; 2; 2x)
x

, (6)

or, more simply

x ex K0(x) = −
∞

∑
n=0

n2(
n2 − 9

4
) (

n2 − 1
4

) 1F1(1− n; 2; 2x). (7)

Recently, two finite sum representation formulae for the modified Bessel function of the second kind
Kn(x) were established for positive integer order, one of them including K0(x), K1(x) and the generalized
hypergeometric function 1F2 [3].
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3. Discussions of our result

We give the explicit values of the coefficients Λ(1, n, k), for n and k varying from 0 to 10 in Table 1. The
coefficients Λ(2, n, k) can be straightforwardly obtained from the values of Table 1 by using the equality

Λ(2, n, k) = − 18
(4n2 − 9)

Λ(1, n, k). (8)

From Table 1 and from Equations (1) and (8), we can easily get the explicit formulae for a finite terms
expansion of the Bessel functions for ν = 1 and ν = 2. Indeed, the truncated summation up to n = 8, for
example, for K1 and K2 are, respectively,

K1(x) = e−x
(

16
7

+
1
x
− 467144x

765765
+

373696x2

765765
− 37372x3

153153
+

22688x4

328185
+ − 1168x5

109395
+

32x6

38675
− 2x7

80325

)
, (9)

and

K2(x) = e−x
(

784
1615

+
2
x2 +

3232
1615x

− 448x
4845

+
5416744x2

190855665
− 93376x3

14549535

+
27424x4

31177575
− 512x5

8083075
+

4x6

2204475

)
. (10)

Table 1. Values for Λ(1, n, k)

H
HHHHn

k k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

0 1
1 0 2/3
2 0 2/15 -2/15
3 0 2/35 -4/35 4/105
4 0 2/63 -2/21 4/63 -2/189
5 0 2/99 -8/99 8/99 -8/297 4/1485
6 0 2/143 -10/143 40/429 -20/429 4/429 -4/6435
7 0 2/195 -4/65 4/39 -8/117 4/195 -8/2925 8/61425
8 0 2/255 -14/255 28/255 -14/153 28/765 -28/3825 8/11475 -2/80325
9 0 2/323 -16/323 112/969 -112/969 56/969 -224/14535 32/14535 -16/101745 4/915705

10 0 2/399 -6/133 16/133 -8/57 8/95 -8/285 32/5985 -8/13965 4/125685 -4/5655825

Table 2. Values for K0(x) expansion given by Equation (5) for different n values

x K0(x) K0(x) expansion up to n
8 |εr| (%) 15 |εr| (%) 20 |εr| (%)

0.1 2.42707 2.5268 4.11 2.40169 1.046 2.39917 1.15
0.2 1.7527 1.72407 1.63 1.7402 0.71 1.75031 0.14
0.3 1.37246 1.35125 1.55 1.37292 0.03 1.37533 0.21
0.4 1.11453 1.10552 0.81 1.1174 0.26 1.11603 0.13
0.5 0.924419 0.922763 0.18 0.926341 0.21 0.924409 0.0011
0.6 0.777522 0.779281 0.23 0.778119 0.076 0.776932 0.076
0.7 0.66052 0.663358 0.43 0.66026 0.039 0.659982 0.081
0.8 0.565347 0.568067 0.48 0.564752 0.11 0.56509 0.045
0.9 0.48673 0.488824 0.43 0.48615 0.12 0.486736 0.0012
1.0 0.421024 0.422366 0.32 0.420628 0.094 0.421182 0.037
5.0 3.69× 10−3 3.66× 10−3 1.03 3.69× 10−3 0.10 3.69× 10−3 0.08

From Equations (9) and (10), the well known curves for both Bessel functions are reproduced with
accuracy.

We can now plot the function given by Equation (5). All plots in this paper were made by using the
software Mathematica, version 12.1.
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In Figure 1, three approximation functions for K0(x), each with a different number of terms, n, are
compared with the well known behavior of K0(x) without any approximation.

Figure 1. Comparison between the Bessel function K0(x) and its expansion (5) for different values of n.

We can easily see that the result is not so good for x . 0.1.
Some particular values for K0(x) are given in Table 2, for the interval 0.1 ≤ x ≤ 5.0 where the relative

error |εr| is defined by

|εr| =

∣∣∣K0(x)− K0(x)
∣∣
approx

∣∣∣
K0

.

Notice that the maximum value of |εr|, in this interval, corresponding to the cases n = 15 and n = 20, is
of the order of 1%.

For the expansion of K0(x) up to n = 8, we have a relative error of ' 4% for x = 0.1 (See Table 2).
However, we get an error of 10% or more when x ≤ 0.0741. For n = 15, the error is ' 1% or less, when
0.0676 ≤ x ≤ 7, and an error of 10% or more when x ≤ 0.0376. Finally, for n = 20, we have an error of 1% or
less when 0.0505 ≤ x ≤ 7.8 and an error of 10% or more when x ≤ 0.0274.

Table 3. Values for K1(x) and K2(x) obtained from Equations (9) and (10) up to n = 8. The error here is the
difference between the value found and the expected value

x K1(x) K2(x)
0.05 19.892 ± 0.0176934 799.514 ± 0.0125116
0.1 9.84899 ± 0.00485623 199.507 ± 0.00260945
0.5 1.65683 ± 0.000392678 7.55012 ± 0.000066483
1.0 0.601256 ± 0.000650892 1.62492 ± 0.0000855086
5.0 0.00413672 ± 0.0000921043 0.0053286 ± 0.0000196572
10.0 0.000080361 ± 0.0000617122 0.000021682 ± 1.72217×10−7

In order to understand why the expansion for K1(x) and K2(x) have a great fit even for small values of
x but K0(x) shows a much larger error for the same small x values we have to look carefully at Equation (5).
The problem is that the first term of Equation (5) is the division K1(x)/x. Therefore, for very small values of x,
the error in the series predictions for K1(x) is amplified.

In Table 3, some values of K1(x) and K2(x) are shown with the respective absolute error, for the interval
0.05 ≤ x ≤ 10.

So, while the absolute errors in K1(0.05) and K2(0.05) are of the order of 10−2, the error found for K0(0.05),
given by Equation (5), is ' 0.35, which is an order of magnitude greater than the error just in K1(0.05). The
situation tends to become worse when x → 0.

4. Comparison with other series

Let us now compare our approximation for K0(x) with others found in the literature. The first one is given
in Watson’s book [2]:

K0(x) = − ln
( x

2

)
I0(x) +

∞

∑
m=0

( x
2
)2m

(m!)2 ψ(m + 1), (11)
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in which ψ(n) = −γ +
n−1

∑
k=1

k−1 (n ≥ 2), where γ is the Euler constant.

The second approximation is given by Equation 9.6.54 of [4]

K0(x) = −
{

ln
( x

2

)
+ γ

}
I0(x) + 2

∞

∑
k=1

I2k(x)
k

. (12)

The next two are valid only for specific domains. Equation 9.8.5 of [4], for example, is valid for the interval
0 < x ≤ 2:

K0(x) = − ln(x/2)I0(x)− 0.57721566 + 0.42278420(x/2)2 + 0.23069756(x/2)4 + 0.03488590(x/2)6

+0.00262698(x/2)8 + 0.00010750(x/2)10 + 0.00000740(x/2)12 + ε, (13)

with |ε| < 1× 10−8.
Starting from equation 5.39 of Bowman’s book [5], we get Equation 9.8.6 of [4], which is valid for the

interval 2 ≤ x < ∞:

x
1
2 exK0(x) = 1.25331414− 0.07832358(2/x) + 0.02189568(2/x)2 − 0.01062446(2/x)3

+0.00587872(2/x)4 − 0.00251540(2/x)5 + 0.00053208(2/x)6 + ε, (14)

where |ε| < 1.9× 10−7.
In order to check the accuracy of our result, Equation (5) or (6), let’s first compare it graphically with

Equations (13) and (14), which are the two approximations with the lowest errors. The comparison is made in
Figures 2 and 3, respectively for the intervals 0 < x ≤ 2 and 2 ≤ x < 10.

Figure 2. Plot of Equations (13) and (5), up to O(x20).

Figure 3. Plot of Equations (14) and (5), up to O(x20).

5. Improving the polynomial approximation

In spit of the qualitative agreement graphically obtained, the error values displayed in Table 2 show
that the approximation given by Equation (5) or (6) is far from being the best choice. This unexpected result
motivates us now to try to improve the approximations given by Equations (13) and (14). This was done by
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fitting the Bessel function K0(x) by a similar polynomials using the Software Mathematica. For this, we still
maintain the two distinct regions 0 < x ≤ 2 and 2 ≤ x < ∞.

Using Equation (13) as a starting point, and keeping the polynomial order, we find, for 0 < x ≤ 2, the
following new expression:

K0(x) = − ln(x/2)I0(x)− 0.5772156648942439 + 0.42278433434244916(x/2)2

+0.23069609660563425(x/2)4 + 0.03489207637875737(x/2)6

+0.002615030023757213(x/2)8 + 0.00011811080908871537(x/2)10

+3.889449474816304× 10−6(x/2)12. (15)

From Equation (14), at the same interval 2 ≤ x < ∞, we get the following result:

x
1
2 exK0(x) = 1.2533127470318168− 0.07830516193156768(2/x) + 0.021807436132174653(2/x)2

−0.010428688609726261(2/x)3 + 0.005672414173632901(2/x)4

−0.0024265259192435785(2/x)5 + 0.0005249625381161658(2/x)6. (16)

In Table 4, we compare the relative errors of Equations (15) and (16) with those of the Equations (13)
and (14) which generalize them.

Table 4. This Table shows the approximations’ errors, taking into account those of Abramowitz’s Handbook,
Equations (13) and (14), and comparing them, respectively, to the analogous new polynomial approximation we
propose, given by Equations (15) and (16).

x |εr| (%) of Equation (13) |εr| (%) of Equation (15) |εr| (%) of Equation (14) |εr| (%) of Equation (16)

0.05 1.54698× 10−7 2.19076× 10−10 – –
0.1 1.88413× 10−7 2.25679× 10−10 – –
0.5 9.43814× 10−8 6.78598× 10−10 – –
1.0 8.17407× 10−7 4.93335× 10−10 – –
2.0 6.36598× 10−6 3.03931× 10−8 2.86954× 10−7 2.43697× 10−14

5.0 – – 1.2982× 10−6 2.55901× 10−11

10.0 – – 2.15433× 10−6 1.39165× 10−7

15.0 – – 4.37274× 10−6 3.94849× 10−6

20.0 – – 9.60195× 10−6 1.10755× 10−5

An inspection of Table 4 shows first that, in the range 0 < x ≤ 2, our result is almost 103 times more
accurate than that of Equation (13). For the second range, the relative errors associated to our new results are
much better than the other. In particular, the error is 107 times smaller for x = 2, 105, when x = 5, and of the
same order of magnitude elsewhere.

6. Conclusion

We got a series representation for the Bessel function K0(x) in terms of confluent hypergeometric
functions, and two polynomial approximations for the same function. It is shown that expressions based
on a certain number of terms (n = 8, 15 and 20) of the infinite series are not more accurate than few other
approximations found in the literature. However, the two new polynomial approximations proposed are
orders of magnitude more accurate than the standard approximation found in the Abramowitz and Stegun’s
Handbook.
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