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1. Introduction

W e consider solving equation
F(x) = 0, (1)

where F : D ⊂ X −→ Y is continuously Fréchet differentiable, X, Y are Banach spaces, and D is a nonempty
convex set.

Iterative methods are used to generate a sequence converging to a solution x∗ of Equation (1) under
certain conditions [1–12]. Recently a surge has been noticed in the development of efficient iterative methods
with frozen derivatives. The convergence order is obtained using Taylor expansions and conditions on high
order derivatives not appearing on the method. These conditions limit the applicability of the methods. For
example, let X = Y = R, D =

[
− 1

2 , 3
2

]
. Define f on D by

f (t) =

{
t3 log t2 + t5 − t4 if t 6= 0,

0 if t = 0.

Then, we have t∗ = 1, and

f ′(t) = 3t2 log t2 + 5t4 − 4t3 + 2t2,

f ′′(t) = 6t log t2 + 20t3 − 12t2 + 10t,

f ′′′(t) = 6 log t2 + 60t2 − 24t + 22.

Obviously f ′′′(t) is not bounded on D. So, the convergence of these methods is not guaranteed by the analysis
in these papers. Moreover, no comparable error estimates are given [6,8,10,11] on the distances involved or
uniqueness of the solution results. That is why we develop a general technique that can be used on iterative
methods, and address these problems by using only the first derivative which only appears on these methods.
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We demonstrate this technique on the 3(i− 1), convergence order method defined for all n = 0, 1, 2, . . . ,
by 

y(1)n = xn − F′ (xn)
−1 F (xn)

y(2)n = xn − 2
(

F′ (xn) + F′
(

y(1)n

))−1
F (xn)

...

y(i)n = xn+1 = y(i−1)
n − αF

(
y(i−1)

n

) (2)

i = 3, 4, , . . . , k, where k a fixed natural number and α =
(

3F′
(

y(1)n

)
− F′ (xn)

)−1 (
F′ (xn) + F′

(
y(1)n

))
F′ (xn)

−1 .
The efficiency, convergence order and comparisons with other methods using similar information was

given in [6,8,10,11] when X = Y = Rk. The convergence was shown using the seventh derivative. We include
computable error bounds on ‖xn − x∗‖ and uniqueness results that are not given in [6,8,10,11]. Our technique
is so general that it can be used to extend the usage of other methods [1–12]. The method was developed in
[10], where the comparisons to other methods were well stretched.

The motivation of this paper is not to do the same, but to introduce a technique that expands the
applicability of this and other methods using high order derivatives not appearing in these methods. The first
derivative has only been used in the convergence hypotheses. Notice that this is the only derivative appearing
in the method. We also provide a computable radius of convergence which is not given in [10]. This way we
locate a set of initial points for the convergence of the method. The numerical examples are chosen to show
how the radii theoretically predicted are computed. In particular, the last example shows that earlier results
cannot be used to show convergence of the method. Our results significantly extends the applicability of
these methods and provide a new way of looking at iterative methods. The article contains local convergence
analysis in Section 2 and the numerical examples in Section 3.

2. Convergence analysis

Let w0 : T −→ T be a continuous and nondecreasing function, where T = [0, ∞) and the equation

ω0(t)− 1 = 0 (3)

has a least positive solution ρ0. Set T0 = [0, ρ0) and ω, ω1 : T0 −→ T be continuous and nondecreasing
functions.

Define functions g1 and ḡ1 on interval T0 by

g1 (t) =

∫ 1
0 ω ((1− θ) t) dθ

1−ω0 (t)

and
ḡ1(t) = g1(t)− 1.

Suppose that the equation
ḡ1(t) = 0 (4)

has a least solution r1 ∈ (0, ρ0) and the equation

p(t)− 1 = 0 (5)

has a least solution ρp ∈ (0, ρ0), where p(t) = 1
2 (ω0(t) + ω0(g1(t)t)). Set ρ1 = min{ρ0, ρp} and T1 = [0, ρ1).

Moreover, define functions g2 and ḡ2 on T0 by

g2 (t) = g1 (t) +
(ω0 (g1 (t) t) + ω0 (t))

∫ 1
0 ω1 (θ (t)) dθ

2 (1−ω0 (t)) (1− p (t))

and
ḡ2(t) = g2(t)− 1.

Suppose that the equation
ḡ2(t) = 0 (6)
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has a least solution r2 ∈ (0, ρ1) and the equation

q(t) = 0 (7)

has a least solution ρq ∈ (0, ρ1), where q(t) = 1
2 (ω0(t) + 3ω0(g1(t)t). Set ρ2 = min{r2, ρq}.

Define functions h and ψ on T2 = [0, ρ2) by

h(t) =
(

1 +
ω1(g2(t)t)
2(1− q(t))

)
(ω0(t) + ω0(g2(t)t))

and

ψ(t) = g1(g2(t)t) +
h(t)

(1−ω0(g2(t)t))(1−ω0(t))
.

Suppose that the equation
ψ(t)− 1 = 0 (8)

has a least solution r3 ∈ (0, ρ2).
We shall show that r is a radius of convergence, where

r = min{r1, r2, r3}. (9)

It follows that for each t ∈ [0, r)
0 ≤ ω0(t) < 1, (10)

0 ≤ p(t) < 1, (11)

0 ≤ q(t) < 1, (12)

0 ≤ g1(t) < 1, (13)

0 ≤ g2(t) < 1, (14)

and
0 ≤ ψ(t) < 1. (15)

Let U(x, β), Ū(x, β) denote the open and closed balls, respectively in X with center x ∈ X and of radius β > 0.
The following hypotheses (A) shall be used:

(A1) F : D ⊂ X −→ Y is Fréchet continuously differentiable; there exists x∗ ∈ D such that F(x∗) = 0 and
F′(x∗)−1 ∈ L(Y, X).

(A2) There exists a continuous and nondecreasing function ω0 : T −→ T such that for each x ∈ D,∥∥∥F′ (x∗)
−1 (F′ (x)− F′ (x∗)

)∥∥∥ ≤ ω0 (‖x− x∗‖) .

Set D0 = D ∩U(x∗, ρ0).
(A3) There exist continuous and nondecreasing functions ω : T0 −→ T, ω1 : T0 −→ T such that for each

x, y ∈ D0 ∥∥∥F′(x∗)−1(F′(y)− F′(x))
∥∥∥ ≤ ω(‖y− x‖)

and ∥∥∥F′(x∗)−1F′(x)
∥∥∥ ≤ ω1 (‖x− x∗‖) .

(A4) Ū(x∗, r) ⊂ D.
(A5) There exists r∗ ≥ r such that ∫ 1

0
ω0(θr∗)dθ < 1.

Set D1 = D ∩ Ū(x∗, r∗).

In the next theorem, the local convergence of method (2) is given using the hypotheses (A) and the
preceding notation.
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Theorem 1. Suppose the hypotheses (A) hold. Then, for any starting point x0 ∈ U(x∗, r) − {x∗}, sequence {xn}
generated by method (2) is well defined in U(x∗, r), remains in U(x∗, r) and converges to x∗. Moreover, the following
items hold for all i = 3, 4, . . . , k, n = 0, 1, 2, . . . ,∥∥∥y(1)n − x∗

∥∥∥ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (16)

∥∥∥y(2)n − x∗
∥∥∥ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (17)

∥∥∥y(i)n − x∗
∥∥∥ ≤ ψ (‖xn − x∗‖)

(∥∥∥y(i−1)
n − x∗

∥∥∥)
≤ ψi−2 (‖x0 − x∗‖) gi−2

2 (‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖ (18)

and
‖xn+1 − x∗‖ ≤

∥∥∥y(k)n − x∗
∥∥∥ ≤ c‖xn − x∗‖, (19)

where c = (ψ(‖x0 − x∗‖)g2(‖x0 − x∗‖))k ∈ [0, 1). Furthermore, x∗ is the only solution of equation F(x) = 0 in the
set D1 given in (A5).

Proof. We shall use mathematical induction to show that the iterates {xn} exist, remain in u ∈ U(x∗, r) and
satisfy (16)-(19). Letting u ∈ U(x∗, r)− {x∗} and using (A1) and (A2) and (9), we get in turn∥∥∥F′ (x∗)

−1 (F′(u)− F′(x∗)
)∥∥∥ ≤ ω0 (‖u− x∗‖) ≤ ω0(r) < 1. (20)

So the Banach Lemma on invertible operators [2,8] with (20) imply that F′(u)−1 ∈ L(Y, X), and∥∥∥F′(u)−1F′(x∗)
∥∥∥ ≤ 1

1−ω0(‖u− x∗‖)
. (21)

In particular, for u = x0, y(1)0 exists. Then, by (9), (13), (A3) and (21) we have in turn that∥∥∥y(1)0 − x∗
∥∥∥ =

∥∥∥x0 − x∗ − F′(x0)
−1F(x0)

∥∥∥
=

∥∥∥∥F′(x0)
−1
∫ 1

0
(F′(x∗ + θ(x0 − x∗))− F′(x0))dθ(x0 − x∗)

∥∥∥∥
≤

∫ 1
0 ω((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖

1−ω0(‖x0 − x∗‖)
≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (22)

so (16) holds for n = 0 and y(1)0 ∈ U(x∗, r). We also have

∥∥∥(2F′(x∗))−1
(

F′(x0) + F′(y(1)0 )− 2F′(x∗)
)∥∥∥

≤ 1
2

(∥∥∥F′(x∗)−1(F′(x0)− F′(x∗))
∥∥∥+ ∥∥∥F′(x∗)−1

(
F′(y(1)0 )− F′(x∗)

)∥∥∥)
≤ 1

2

[
ω0‖x0 − x∗‖+ ω0

∥∥∥y(1)0 − x∗
∥∥∥]

≤ p‖x0 − x∗‖ ≤ p(r) < 1, (23)

so
(

F′(x0) + F′
(

y(1)0

))−1
∈ L(Y, X),

∥∥∥∥(F′(x0) + F′
(

y(1)0

))−1
F′(x∗)

∥∥∥∥ ≤ 1
2 (1− p (‖x0 − x∗‖))

, (24)
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and y(2)0 exists. Then, we can write in turn by method (2)

y(2)0 − x∗ = x0 − x∗ − F′ (x0)
−1 F (x0) + F′ (x0)

−1 F (x0)− 2
(

F′ (x0) + F′
(

y(1)0

))−1
F (x0)

= y(1)0 − x∗ +
(

F′ (x0)
−1 − 2

(
F′ (x0) + F′

(
y(1)0

))−1
)

F (x0)

= y(1)0 − x∗ + F′ (x0)
−1
(

F′
(

y(1)0

)
− F′ (x0)

) (
F′
(

y(1)0

)
+ F′ (x0)

)−1
F (x0) . (25)

Then, by (9), (14), (21)-(25), we obtain in turn that

∥∥∥y(2)0 − x∗
∥∥∥ ≤

g1 (‖x0 − x∗‖) +

(
ω0 (‖x0 − x∗‖) + ω0

(∥∥∥y(1)0 − x∗
∥∥∥)) ∫ 1

0 ω1 (θ‖x0 − x∗‖) dθ

2 (1−ω0 (‖x0 − x∗‖)) (1− p (‖x0 − x∗‖))

 ‖x0 − x∗‖

≤ g2 (‖x0 − x∗‖) ‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (26)

so (17) holds for n = 0 and y(2)0 ∈ U(x∗, r). By (9), (11), (21) and (22), we have in turn that∥∥∥(2F′ (x∗)
)−1

(
3F′
(

y(1)0

)
− F′ (x0)− 2F′ (x∗)

)∥∥∥
≤ 1

2

(
3
∥∥∥F′ (x∗)

−1
(

F′
(

y(1)0

)
− F′ (x∗)

)∥∥∥+ ∥∥∥F′ (x∗)
−1 (F′ (x0)− F′ (x∗)

)∥∥∥)
≤ 1

2

(
3ω0

(∥∥∥y(1)0 − x∗
∥∥∥)+ ω0 (‖x0 − x∗‖)

)
≤ q (‖x0 − x∗‖) ≤ q (r) < 1, (27)

so 3
(

F′
(

y(1)0

)
− F′ (x0)

)−1
∈ L (Y, X) ,

∥∥∥∥3
(

F′
(

y(1)0

)
− F′ (x0)

)−1
F′ (x∗)

∥∥∥∥ ≤ 1
2 (1− q (‖x0 − x∗‖))

(28)

and y(3)0 exists. Then, we can write in turn that

y(3)0 − x∗ = y(2)0 − x∗ − F′
(

y(2)0

)−1
F
(

y(2)0

)
+

(
F′
(

y(2)0

)−1
− α

)
F
(

y(2)0

)
. (29)

But
F′
(

y(2)0

)−1
− α = F′

(
y(2)0

)−1
γF′ (x0)

−1 ,

where
γ = F′ (x0)− F′

(
y(2)0

) (
3F′
(

y(1)0

)
− F′ (x0)

)−1 (
F′ (x0) + F′

(
y(1)0

))
and

δ :=
(

3F′
(

y(1)0

)
− F′ (x0)

)−1 (
3F′
(

y(1)0

)
− F′ (x0) + F′ (x0)− 3F′

(
y(1)0

)
+ F′ (x0) + F′

(
y(1)0

))
=
(

3F′
(

y(1)0

)
− F′ (x0)

)−1 [(
3F′
(

y(1)0

)
− F′ (x0)

)
+ 2F′ (x0)− F′

(
y(2)0

)]
=I + 2

(
3F′
(

y(1)0

)
− F′ (x0)

)−1 (
F′ (x0)− F′

(
y(1)0

))
.

Hence, we have γ = F′ (x0)− F′
(

y(2)0

)
− 2F′

(
y(2)0

) (
3F′
(

y(1)0

)
− F′ (x0)

)−1 (
F′ (x0)− F′

(
y(1)0

))
, so

∥∥∥F′ (x∗)
−1 γ

∥∥∥ ≤ω0 (‖x0 − x∗‖) + ω0

(∥∥∥y(2)0 − x∗
∥∥∥)+ ω1

(∥∥∥y(2)0 − x∗
∥∥∥) (ω0 (‖x0 − x∗‖) + ω0

(∥∥∥y(2)0 − x∗
∥∥∥))

2 (1− q (‖x0 − x∗‖))
≤h (‖x0 − x∗‖) . (30)
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In view of (9), (15), (21), (22), (29) and (30), we get in turn that∥∥∥y(3)0 − x∗
∥∥∥ ≤ ∥∥∥∥y(2)0 − x∗ − F′

(
y(2)0

)−1
F
(

y(2)0

)∥∥∥∥+ ∥∥∥∥(F′
(

y(2)0

)−1
− α

)
F′ (x∗)

∥∥∥∥ ∥∥∥F′ (x∗)
−1 F

(
y(2)0

)∥∥∥
≤
(

g1

(∥∥∥y(2)0

)
− x∗

∥∥∥)+ h (‖x0 − x∗‖)(
1−ω0

(∥∥∥y(2)0 − x∗
∥∥∥)) (1−ω0 (‖x0 − x∗‖))

∥∥∥y(2)0 − x∗
∥∥∥

≤ψ (‖x0 − x∗‖)
∥∥∥y(2)0 − x∗

∥∥∥ ≤ ∥∥∥y(2)0 − x∗
∥∥∥ < r, (31)

so (12) hold for n = 0, i = 3 and y(3)0 ∈ U(x∗, r). By replacing x0, y(1)0 , . . . y(m)
0 , x1 by xk, y(1)k , . . . y(m)

k , xk+1, in the
preceding estimates, we complete the induction for (16)-(19). Then, in view of the estimate

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ ≤ ck+1‖x0 − x∗‖, (32)

concluding that limk−→∞ xk = x∗, and xk+1 ∈ U(x∗, r).
Finally, let x∗∗ ∈ D1 with F(x∗∗) = 0. Setting Q =

∫ 1
0 F′(x∗∗ + θ(x∗ − x∗∗))dθ and using (A2), (9) and

(A5), we get ∥∥∥F′ (x∗)
−1 (Q− F′ (x∗)

)∥∥∥ ≤ ∫ 1

0
ω0 (θ ‖x∗ − x∗∗)‖ dθ ≤

∫ 1

0
ω0 (θr∗∗) dθ < 1,

so Q−1 ∈ L(Y, X). Consequently, from 0 = F(x∗∗)− F(x∗) = Q(x∗∗ − x∗), we obtain x∗∗ = x∗.

Remark 1. 1. In view of (11) and the estimate∥∥∥F′ (x∗)−1 F′ (x)
∥∥∥ =

∥∥∥F′ (x∗)−1 (F′ (x)− F′ (x∗)
)
+ I
∥∥∥

≤ 1 +
∥∥∥F′ (x∗)−1 (F′ (x)− F′ (x∗)

)∥∥∥
≤ 1 + L0 ‖x− x∗‖ ,

the condition (14) can be dropped and M can be replaced by M(t) = 1 + L0t or M(t) = M = 2, since
t ∈ [0, 1

L0
).

2. The results obtained here can be used for operators F satisfying autonomous differential equations [2] of
the form

F′(x) = P(F(x))

where P is a continuous operator. Then, since F′(x∗) = P(F(x∗)) = P(0), we can apply the results
without actually knowing x∗. For example, let F(x) = ex − 1. Then, we can choose: P(x) = x + 1.

3. Let ω0(t) = L0t, and ω(t) = Lt. In [2,3] we showed that rA = 2
2L0+L is the convergence radius of

Newton’s method:
xn+1 = xn − F′ (xn)

−1 F(xn) for each n = 0, 1, 2, · · · (33)

under the conditions (12) and (13). It follows from the definition of r in (9) that the convergence radius r
of the method (2) cannot be larger than the convergence radius rA of the second order Newton’s method
(33). As already noted in [2,3] rA is at least as large as the convergence radius given by Rheinboldt [9]

rR =
2

3L
, (34)

where L1 is the Lipschitz constant on D. The same value for rR was given by Traub [10]. In particular, for
L0 < L1 we have that

rR < rA

and
rR
rA
→ 1

3
as

L0

L1
→ 0.

That is the radius of convergence rA is at most three times larger than Rheinboldt’s.
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4. It is worth noticing that method (2) is not changing when we use the conditions of Theorem 1 instead
of the stronger conditions used in [6,8,11]. Moreover, we can compute the computational order of
convergence (COC) defined by

ξ =
ln
(
‖xn+1−x∗‖
‖xn−x∗‖

)
ln
(
‖xn−x∗‖
‖xn−1−x∗‖

) ,

or the approximate computational order of convergence

ξ1 =
ln
(
‖xn+1−xn‖
‖xn−xn−1‖

)
ln
(
‖xn−xn−1‖
‖xn−1−xn−2‖

) .

This way we obtain in practice the order of convergence in a way that avoids the bounds involving
estimates using estimates higher than the first Fréchet derivative of operator F. Note also that the
computation of ξ1 does not require the usage of the solution x∗.

3. Numerical Examples

Example 1. Consider the kinematic system
F′1(x) = ex,

F′2(y) = (e− 1)y + 1,

F′3(z) = 1.

with F1(0) = F2(0) = F3(0) = 0. Letting F = (F1, F2, F3), X = Y = R3, D = Ū(0, 1), p = (0, 0, 0)T , and
defining the function F on D for w = (x, y, z)T by

F(w) =

(
ex − 1,

e− 1
2

y2 + y, z
)T

,

we get

F′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 ,

so ω0(t) = (e− 1)t, ω(t) = e
1

e−1 t, and ω1(t) = e
1

e−1 . Then, the radii are r1 = 0.382692, r2 = 0.196552, and
r3 = 0.126761.

Example 2. Considering X = Y = C[0, 1], D = U(0, 1) and F : D −→ Y defined by

F(φ)(x) = ϕ(x)− 5
∫ 1

0
xθφ(θ)3dθ, (35)

we have that

F′(φ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθφ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, so ω0(t) = 7.5t, ω(t) = 15t and ω1(t) = 2. Then, the radii are r1 = 0.066667, r2 =

0.0361715, and r3 = 0.0251157.

Example 3. By the academic example of the introduction, we have ω0(t) = ω(t) = 96.6629073t and ω1(t) = 2.
Then, the radii are r1 = 0.00689682, r2 = 0.00338133, and r3 = 0.00217133.

Example 4. Let X = Y = C[0, 1], D = Ū(x∗, 1) and consider the nonlinear integral equation of the mixed
Hammerstein-type [1,2,6–9,12] defined by

x(s) =
∫ 1

0
G(s, t)

(
x(t)3/2 +

x(t)2

2

)
dt,
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where the kernel G is the Green’s function defined on the interval [0, 1]× [0, 1] by

G(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

The solution x∗(s) = 0 is the same as the solution of Equation (1), where F : C[0, 1] −→ C[0, 1]) is defined by

F(x)(s) = x(s)−
∫ 1

0
G(s, t)

(
x(t)3/2 +

x(t)2

2

)
dt.

Notice that ∥∥∥∥∫ 1

0
G(s, t)dt

∥∥∥∥ ≤ 1
8

.

Then, we have that

F′(x)y(s) = y(s)−
∫ 1

0
G(s, t)

(
3
2

x(t)1/2 + x(t)
)

dt,

so since F′(x∗(s)) = I, ∥∥∥F′(x∗)−1(F′(x)− F′(y))
∥∥∥ ≤ 1

8

(
3
2
‖x− y‖1/2 + ‖x− y‖

)
.

Then, we get that ω0(t) = ω(t) = 1
8 (

3
2 t1/2 + t), ω1(t) = 1 + w0(t). The radii are r1 = 2.6303 r2 = 1.20504

r3 = 1.302. So we obtain r = 1.

Acknowledgments: The author is really grateful to the editor and the anonymous reviewers for their constructive
comments. He would also like to thank Kokou Essiomle, Tchilabalo E. Patchali and Essodina Takouda for their help
during the preparation of the manuscript.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.

Conflicts of Interest: "The author declares no conflict of interest".

References

[1] Amat, S., Hernández, M. A., & Romero, N. (2012). Semilocal convergence of a sixth order iterative method for
quadratic equations. Applied Numerical Mathematics, 62(7), 833-841.

[2] Argyros, I. K. (2007). Computational Theory of Iterative Methods, Series: Studies in Computational Mathematics, 15,
Editors: Chui C.K. and Wuytack L. Elsevier Publ. Company, New York.

[3] Argyros, I. K., Magreñán, A. A. (2017). Iterative Method and their Dynamics with Applications. CRC Press, New York,
USA.

[4] Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2017). Stable high-order iterative methods for solving nonlinear
models. Applied Mathematics and Computation, 303, 70-88.

[5] Behl, R., Bhalla, S., Magreñán, A. A., & Kumar, S. (2020). An efficient high order iterative scheme for large nonlinear
systems with dynamics. Computational and Applied Mathematics, 113249. https://doi.org/10.1016/j.cam.2020.113249.

[6] Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). A modified Newton-Jarratt’s composition. Numerical
Algorithms, 55(1), 87-99.

[7] Magreñán, A. A. (2014). Different anomalies in a Jarratt family of iterative root-finding methods. Applied Mathematics
and Computation, 233, 29-38.

[8] Noor, M. A., & Wassem, M. (2009). Some iterative methods for solving a system of nonlinear equations. Applied
Mathematics and Computation, 57, 101–106.

[9] Rheinboldt, W. C. (1977). An adaptive continuation process for solving systems of nonlinear equations. In:
Mathematical Models and Numerical Methods (A. N. Tikhonov et al., eds.) pub. 3, (1977), 129-142 Banach Center, Warsaw
Poland.

[10] Traub, J. F. (1964). Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs.
[11] Sharma, J. R., & Arora, H. (2017). Improved Newton-like methods for solving systems of nonlinear equations. SeMA

Journal, 74(2), 147-163.
[12] Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton’s method with accelerated third-order convergence.

Applied Mathematics Letters, 13(8), 87-93.



Open J. Math. Sci. 2021, 5, 209-217 217

© 2021 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Convergence analysis
	Numerical Examples

