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Abstract: This article proposes a new unit distribution based on the power-logarithmic scheme. The
corresponding cumulative distribution function is defined by a special ratio of power and logarithmic
functions that is dependent on one parameter. We show that this function benefits from great flexibility
characterized by a large selection of convex and concave shapes. The other key functions are determined
and studied. In particular, we show that the probability density function may take on different decreasing
or U shapes, and the hazard rate function has a wide panel of U shapes. These functional capabilities are
rare for a one-parameter unit distribution. In addition, we prove certain stochastic order results, provide
the expression of the quantile function via the Lambert function, some interesting distributional results, and
give simple expressions for the ordinary moments, mean, variance, skewness, kurtosis, moment generating
function and incomplete moments. Subsequently, a basic statistical approach is described, to show how the
new distribution can be applied in a data analysis scenario. Finally, complementary mathematical findings
are presented, yielding new integrals linked to the Euler constant via some well-known moments properties.
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1. Introduction

D ealing with the complexities of bounded variables measuring certain characteristics of phenomenon
is common in many areas of applied science. In particular, in psychology, economics, and biology,

variables like proportions of a particular attribute, scores on various aptitude tests, multiple indices, and
rates set on the interval (0, 1) are often encountered. Continuous probability distributions with support of
(0, 1), known as unit distributions, are required for an adequat modeling of these variables. The most widely
used two-parameter unit distribution is the beta distribution (see [1]). When fitting data with a physical
maximum, the beta distribution works great, but has some limitations in the other cases. The recent rise in the
number of research papers devoted to the development of new unit interval distributions demonstrates their
growing importance. Table 1 provides a quick overview of other unit distributions that have been proposed as
alternatives to the beta distribution.

These distributions are dependent on one or more parameters. Their key functions have specific
characteristics that are desirable in some statistical modeling context dealing with data over the interval (0, 1).
The majority of the recent distributions in Table 1 are created using a suitable variable transformation of a
positive support baseline distribution. The main popular transformations are ratio-polynomial or exponential
functions, such as l(x) = x/(1 + x), l(x) = 1/(1 + x), or l(x) = e−x. Some other unit distributions are based
on original analytical definitions, such as the Power (Po) distribution defined with the following cumulative
distribution function (cdf):

F̊α(x) = xα, x ∈ (0, 1), (1)

F̊α(x) = 0 for x ≤ 0 and F̊α(x) = 1 for x ≥ 1, with α > 0, or the unit power-logarithmic (UPL) distribution
defined with the following probability density function (pdf):

f †
α (x) =

1
log(1 + α)

xα − 1
log(x)

, x ∈ (0, 1), (2)

and f †
α (x) = 0 for x 6∈ (0, 1), with α ∈ (−1, 0) ∪ (0,+∞).
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Table 1. Some referenced unit distributions

Common name Reference
Johnson SB [2]
Topp-Leone [3]
unit gamma [4]

Kumaraswamy [5]
standard two-sided power [6]

log-Lindley [7]
unit Weibull [8,9]

unit Birnbaum-Saunders [10]
unit Gompertz [11]
log-xgamma [12]

unit inverse Gaussian [13]
logit slash [14]

unit generalized half normal [15]
2nd degree unit Lindley [16]

unit Johnson SU [17]
log-weighted exponential [18]

unit Rayleigh [19]
unit modified Burr-III [20]

arcsecant hyperbolic normal [21]
unit Burr-XII [22]

unit power-logarithmic [23]
transmuted unit Rayleigh [24]

trapezoidal beta [25]
unit half-normal distribution [26]

For the case of α > 0, the UPL distribution was introduced and studied in-depth in [23]. For α > 0, the
properties of this distribution are as follows: (a) its pdf is defined as an original power-logarithmic scheme
which is inspired by the famous Box-Cox transformation, (b) this function is increasing and can be highly
asymmetric on the left, with various types of angular and J forms, which is a relatively uncommon property
for a one-parameter unit distribution, (c) it has solid results in stochastic orders showing some relationship
with the Po distribution, (d) its hazard rate function (hrf) is increasing, (e) simple expressions exist for a variety
of moments-related quantities, such as ordinary moments, moment generating function, incomplete moments,
logarithmic and logarithmically weighted moments, (f) the behavior of the moments skewness and kurtosis of
the distribution is very manageable, and (g) it has a wide range of applications and can be used to build new
statistical models as a generator. Despite these originalities, the main drawback of the UPL distribution is that
the cdf is only defined with special integral functions; it has not a simple analytical expression. In particular, it
is an obstacle for the in-depth quantile analysis of the distribution.

In this article, we contribute to the development of the power-logarithmic scheme to develop a new
one-parameter unit distribution with interesting features. More precisely, we apply the power-logarithmic
scheme to construct a valid cdf, instead of a power-logarithmic pdf as in the UPL distribution. As a result,
the proposed distribution stands from the others by satisfying the following combined properties: (a) it is
based on a single positive parameter, (b) its cdf presents various convex and concave shapes, (b) its pdf can be
decreasing or U shaped, which is a relatively uncommon property for a unit distribution, (c) it has proven to
be effective in stochastic orders, showing some relationship with the Po distribution, (d) it has a manageable
quantile function (qf) based on the well-known Lambert function (principal branch), (e) its hrf has various
types of U shapes, (f) simple expressions exist for a variety of moments-related quantities, such as ordinary
moments, moment generating function, and incomplete moments, (g) the behavior of the moments skewness
and kurtosis of the distribution is understable, and (h) it can perform better than the UPL and Po distributions
in the context of data fitting. All these aspects are developed through mathematical, numerical and graphical
investigations. We thus put the basics on a new one-parameter unit distribution that could serve in the future
for various statistical objectives. As complementary results, we use the new distribution to determine some
integrals linked to the Euler constant, which seem to not have received attention in the literature.
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The following is the plan of the rest of the article. The new unit distribution is defined in Section 2, with
analytical and graphical studies of its key functions. Section 3 is dedicated to some properties, such as diverse
first order stochastic dominance, quantile analysis, and distributional results. A moment analysis is performed
in Section 4. Section 5 provides some statistical perspectives of the new distribution. Complementary integral
result are given in Section 6. Section 7 brings the article to a close.

2. The new power-logarithmic distribution

2.1. Presentation

The power and logarithmic functions are the main components of the proposed distribution. The
following result is the key for its mathematical definition.

Proposition 1. Let α > 0. Then, the following ratio function has the properties of a continuous cdf:

Fα(x) =


xα − 1

α log(x)
for x ∈ (0, 1),

0 for x ≤ 0,

1 for x ≥ 1.

Proof. By using standard asymptotic arguments, we have

Fα(x) ∼
x→0
− 1

α log(x)
→ 0,

Fα(x) =
eα log(x) − 1

α log(x)
∼

x→1

α log(x)
α log(x)

= 1.

The function Fα(x) is continuous for any x ∈ R. For any x ∈ (0, 1), we have

F′α(x) =
αxα log(x) + 1− xα

αx(log(x))2 .

Owing to the following logarithmic inequality: log(1 + y) > y/(1 + y), with y ∈ (−1, 0), since y = xα − 1 ∈
(−1, 0) for x ∈ (0, 1), we obtain α log(x) = log(xα) > 1− 1/xα which entails that αxα log(x) + 1− xα > 0 for
x ∈ (0, 1). Since the denominator is obviously positive too, we have F′α(x) > 0 for any x ∈ (0, 1), implying that
Fα(x) is strictly increasing on this interval. Therefore, Fα(x) is increasing for x ∈ R. The proof of Proposition 1
is now complete.

Thus, the cdf described in Proposition 1 defines a unit distribution, that we call the ratio
power-logarithmic (RPL) distribution. When the parameter needs to be accurate, we refer to it as RPL(α)
distribution. Even though it has a relationship with the UPL distribution, it is new to our knowledge in the
literature. Indeed, one can remark that Fα(x) is related to the pdf of the UPL distribution by the following
equation:

Fα(x) =
log(1 + α)

α
f †
α (x), x ∈ (0, 1), (3)

where f †
α (x) is defined by Equation (2). In this way, the power-logarithmic scheme of the UPL distribution is

transposed to define the cdf of the RPL distribution for new perspectives.
The first notable properties of the cdf Fα(x) are developed below.

Proposition 2. The cdf Fα(x) is decreasing with respect to α, and, for any x ∈ (0, 1), Fα(x) =
α→0

1 and Fα(x) =
α→+∞

0.

Proof. For x ∈ (0, 1), we have

∂

∂α
Fα(x) =

αxα log(x) + 1− xα

α2 log(x)
=

x log(x)
α

F′α(x).
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Therefore, since F′α(x) > 0 and x log(x)/α < 0, we have ∂Fα(x)/∂α < 0, and Fα(x) is strictly decreasing
with respect to α for x ∈ (0, 1), and just decreasing for x ∈ R. Furthermore, by using standard asymptotic
arguments, we have

Fα(x) =
eα log(x) − 1

α log(x)
∼

α→0

α log(x)
α log(x)

= 1,

and, more directly,

Fα(x) ∼
α→+∞

− 1
α log(x)

=
α→+∞

0.

The stated results are obtained.

These properties are illustrated in Figure 1.
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Figure 1. Plots for the cdf Fα(x) for various values of α

The various convex and concave shapes of Fα(x) demonstrate the great modeling capacities of the RPL
distribution.

2.2. Probability density function

From the cdf, we easily derive the pdf of the RPL distribution as

fα(x) = F′α(x) =
αxα log(x) + 1− xα

αx(log(x))2 , x ∈ (0, 1),

and fα(x) = 0 for x 6∈ (0, 1). Hence, for any random variable X with the RPL distribution and S ⊆ R, the
probability that X belongs to S is given as P(X ∈ S) =

∫
S fα(x)dx and the expectation of a transformation of

X, say `(X) where `(x) denotes a certain function, is obtained as E(`(X)) =
∫ +∞
−∞ `(x) fα(x)dx. The analytical

behavior of the pdf fα(x) is central in the understanding of the modeling capacities of the RPL distribution. At
the boundaries, the following results hold:

fα(x) ∼
x→0

1
αx(log(x))2 → +∞,

fα(x) ∼
x→1

α

2
.

Since the derivative of fα(x) is complicated, we perform a graphical analysis in Figure 2 to identify the
possible functional shapes.
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Figure 2. Plots for the pdf fα(x) for various values of α

From Figure 2, we see that the pdf of the RPL distribution can be decreasing for the small values of α, or
U shapes.

2.3. Other key functions

We now examine the main reliability functions of the RPL distribution. First, the survival function of the
RPL distribution is obtained as

Sα(x) = 1− Fα(x) =
α log(x) + 1− xα

α log(x)
, x ∈ (0, 1),

Sα(x) = 1 for x ≤ 0 and Sα(x) = 0 for x ≥ 1. From the survival function, we derive the cumulative hrf by

Hα(x) = − log[Sα(x)] = − log[xα − 1− α log(x)] + log(α) + log[− log(x)], x ∈ (0, 1),

and Hα(x) = 0 for x 6∈ (0, 1). The hrf of the RPL distribution is calculated using Hα(x) as

hα(x) = H′α(x) =
αxα log(x) + 1− xα

x log(x)[α log(x) + 1− xα]
, x ∈ (0, 1),

hα(x) = 0 for x 6∈ (0, 1). The analytical behavior of hα(x) is important for understanding the statistical
characteristics of the RPL distribution, especially for data fitting. We may refer to [27] and [28] for the details.
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Figure 3. Plots for the hrf hα(x) for various values of α
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A brief study of hα(x) is now provided. At the boundaries, the following results hold:

hα(x) ∼
x→0

1
αx(log(x))2 → +∞, hα(x) ∼

x→1

1
1− x

→ +∞.

The precise analytical behavior of hα(x) is difficult to analyse; its derivative is very sophisticated. As a result,
we conduct a graphical analysis to comprehend its shape behavior. Figure 3 depicts some curves of hα(x) for
various values of α. It is clear from Figure 3 that the hrf of the RPL distribution is exclusively U shaped.

3. Some properties

Some properties satisfied by the RPL distribution are now derived.

3.1. First order stochastic dominance

The first order stochastic dominance of the RPL distribution is discussed in the next proposition.

Proposition 3. The following first order stochastic dominance results hold:

1) when α2 ≥ α1, the RPL(α2) distribution first order stochastically dominates the RPL(α1) distribution,
2) the Po(α) distribution first order stochastically dominates the RPL(α) distribution.

Proof. Let us prove the two results in turns.

1) Owing to Proposition 2, Fα(x) is decreasing with respect to α. Hence, for α2 ≥ α1, we have
Fα2(x) ≤ Fα1(x), meaning that the RPL(α2) distribution first order stochastically dominates the RPL(α1)

distribution.
2) By applying the following logarithmic inequality: log(1 + y) < y for y > 0, with y = x−α − 1 > 0 for

x ∈ (0, 1), we have

Fα(x) = xα x−α − 1
log(1 + (x−α − 1))

> xα.

Hence, for any x ∈ R, we have Fα(x) ≥ F̊α(x), where F̊α(x) is given by Equation (1), meaning that the
Po(α) distribution first order stochastically dominates the RPL(α) distribution.

Proposition 3 is demonstrated.

3.2. Quantile analysis

The quantile analysis of the RPL distribution is the focus of this section. The result below gives the
expression of the qf.

Proposition 4. The qf of the RPL distribution is expressed as

Qα(u) =
[
−uW0

(
− 1

u
e−1/u

)]1/α

, u ∈ (0, 1),

where W0(x) denotes the principal branch of the Lambert function.

Proof. By its definition, the qf is Qα(u) = F−1
α (u) and hence satisfies the following equation: Fα(y) = u

according to y. With step by step development, we obtain
u = Fα(y) ⇔ u = yα−1

α log(y) ⇔ log(yα) = yα

u −
1
u ⇔ yα = eyα/ue−1/u ⇔ − yα

u e−yα/u = − 1
u e−1/u ⇔ − yα

u =

W0

(
− 1

u e−1/u
)
⇔ y =

[
−uW0

(
− 1

u e−1/u
)]1/α

.
The stated expression is obtained.

The next proposition is about the behavior of the qf with respect to the parameter α.

Proposition 5. The qf Qα(u) is strictly increasing with respect to α for u ∈ (0, 1), and

Qα(u) =
α→0

0, Qα(u) =
α→+∞

1.
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Proof. First, since Qα(u) ∈ (0, 1) for any u ∈ (0, 1), we have

∂

∂α
Qα(u) =

∂

∂α
e(1/α) log[−uW0(−e−1/u/u)]

= − 1
α2 log

[
−uW0

(
− 1

u
e−1/u

)]
e(1/α) log[−uW0(−e−1/u/u)]

= − 1
α

log(Qα(u))Qα(u) > 0.

Therefore, Qα(u) is a strictly increasing function with respect to α for u ∈ (0, 1). The values of the limits are
derived from the following expression: Qα(u) = v1/α with v = −uW0

(
−e−1/u/u

)
∈ (0, 1) independent of α;

we have Qα(u) =
α→0

0 and Qα(u) =
α→+∞

v0 = 1. Proposition 5 is proved.

It is worth noting that the Lambert function is implemented in the majority of mathematical software,
allowing the study of Qα(u). With the help of the library lamW of the R software (see [29]), Figure 4 depicts
some curves of Qα(u) for several values of α.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Qα(u)

α = 0.05

α = 0.1

α = 0.5

α = 1.5

α = 3

α = 8

α = 10

Figure 4. Plots for the qf Qα(u) for various values of α

We notice a large panel of convex and concave shapes, revealing a certain level of quantile flexibility.
In addition, a clear hierarchy of the curves can be seen for increasing values of α, ilustrating the results in
Proposition 5.
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Figure 5. Plots for the median Med according to α
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On the other hand, Proposition 5 implies that the median defined by Med= Qα(1/2) is an increasing
function with respect to α. This fact is illustrated in Figure 5.

A more in-depth quantile analysis of the RPL distribution, including the expressions of the quantile
density function, hazard quantile function, quantile asymmetry and plateness measures, is possible thanks
to Proposition 4. In survival studies, [30] and [31] demonstrate the importance of these quantities.

3.3. Distributional results

Let X be a random variable with the RPL(α) distribution. Then the following results in distribution hold.

• The random variable Y = Xα has the RPL(1) distribution.
• The cdf of the random variable Y = bX with b > 0 is determined by

Ḟα,b(x) =
(x/b)α − 1

α(log(x)− log(b))
, x ∈ (0, b),

Ḟα,b(x) = 0 for x ≤ 0, and Ḟα,b(x) = 1 for x ≥ b. It characterizes a tuning upper bound two-parameter
version of the RPL distribution.

• The cdf of the random variable Y = b/X with b > 0 is determined by

F̈α,b(x) = 1− (b/x)α − 1
α(log(b)− log(x))

, x > b,

and F̈α,b(x) = 0 for x ≤ b. It refers to a special version of the RPL distribution with a tuning lower bound.
• The cdf of the random variable Y = (1− X)1/τ with τ > 0 is expressed as

F̃α,τ(x) = 1− (1− xτ)α − 1
α log(1− xτ)

, x ∈ (0, 1),

F̃α,τ(x) = 0 for x ≤ 0, and F̃α,τ(x) = 1 for x ≥ 1. The related distribution can be considered as the RPL
distribution of the second kind, proposing a new alternative unit distribution.

• The cdf of the random variable Y = − log(X) is given as

F∗α (x) = 1− 1− e−αx

αx
, x > 0,

and F∗α (x) = 0 for x ≤ 0. To our knowledge, it defines a one-parameter lifetime distribution that is not
listed in the literature. It can be viewed as a new modified exponential distribution.

• The cdf of the random variable Y = [− log(X)]1/τ with τ > 0 is determined by

F~
α,τ(x) = 1− 1− e−αxτ

αxτ
, x > 0,

and F~
α,τ(x) = 0 for x ≤ 0. It describes a two-parameter lifetime distribution that is not mentioned in the

literature. It can be thought of as a modern version of the Weibull distribution.
• The cdf of the random variable Y = − log(1− Xα)/λ with λ > 0 is specified by

F	λ (x) = − e−λx

log(1− e−λx)
, x > 0,

and F	λ (x) = 0 for x ≤ 0. It describes a one-parameter lifetime distribution that is not mentioned in the
literature. It can be thought of as a modern version of the exponential distribution.

• The following is a generalization of the above distribution. The cdf of the random variable Y =

[− log(1− Xα)/λ]1/τ with λ > 0 and τ > 0 is specified by

F�λ,τ(x) = − e−λxτ

log(1− e−λxτ )
, x > 0,

and F�λ,τ(x) = 0 for x ≤ 0. It describes a two-parameter lifetime distribution that has never been
described before in the literature. It can be viewed a modernized version of the Weibull distribution.
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• The cdf of the random variable Y = 1/X− 1 is given as

F̆α(x) = 1− 1− (x + 1)−α

α log(x + 1)
, x > 0,

and F̆α(x) = 0 for x ≤ 0. It describes a one-parameter lifetime distribution that is not discussed in the
literature. It can be thought of as a new modified Lomax distribution.

• The cdf of the random variable Y = [(1/c)(1/X− 1)]1/τ with τ > 0 and c > 0 is obtained as

F�α,τ,c(x) = 1− 1− (cxτ + 1)−α

α log(cxτ + 1)
, x > 0,

and F�α,τ,c(x) = 0 for x ≤ 0. It describes a three-parameter lifetime distribution that has not been studied
before. It is a new power Lomax distribution with some modifications.

• The cdf of the random variable Y = sup(X1, . . . , Xn), where X1, . . . , Xn denote a random sample of size
n derived from X, is given as

Fsup
α (x) =

(
xα − 1

α log(x)

)n
, x ∈ (0, 1),

Fsup
α (x) = 0 for x ≤ 0 and Fsup

α (x) = 1 for x ≥ 1. In the context of order statistics theory, the related
distribution is useful. From an analytical point of view, the cdf remains valid for any real number n > 0.

• The cdf of the random variable Y = inf(X1, . . . , Xn), where X1, . . . , Xn denote a random sample of size n
derived from X, is given as

Finf
α (x) = 1−

(
1− xα − 1

α log(x)

)n
, x ∈ (0, 1),

Finf
α (x) = 0 for x ≤ 0 and Finf

α (x) = 1 for x ≥ 1. The related distribution is useful once again in the
context of order statistics theory. Also, the cdf holds true for any real number n > 0.

• Last but not least, for a random variable U with the uniform distribution on (0, 1), the random variable
Y = Qα(U) has the RPL(α) distribution. This result allows the generation of values from the RPL
distribution based on generated values from the uniform distribution on (0, 1). Simulation works
involving the RPL distribution are thus possible with standard methods.

Most of the distributions presented above can be the subject of independent research, with a focus on specific
applications.

4. Moments analysis

The ordinary moments of the RPL distribution are expressed in the result below.

Proposition 6. Let X be a random variable with the RPL(α) distribution and r be a positive integer. Then, the rth
ordinary moment of X is obtained as

mα(r) = E(Xr) = 1− r
α

log
(

1 +
α

r

)
.

The case r = 0 is not covered by this formula, but we can set mα(0) = E(X0) = 1.

Proof. Through the integral definition of the rth ordinary moment, we have

mα(r) =
∫ +∞

−∞
xr fα(x)dx =

1
α

∫ 1

0
xr−1 αxα log(x) + 1− xα

(log(x))2 dx.

Let us now introduce the following function of α:

Ψr(α) =
∫ 1

0
xr−1 αxα log(x) + 1− xα

(log(x))2 dx,
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with Ψr(α) = 0 for α = 0. By applying the Leibnitz integral rule, we get

∂

∂α
Ψr(α) =

∂

∂α

∫ 1

0
xr−1 αxα log(x) + 1− xα

(log(x))2 dx =
∫ 1

0
xr−1 1

(log(x))2
∂

∂α
(αxα log(x) + 1− xα)dx

=
∫ 1

0
xr−1 1

(log(x))2 × αxα(log(x))2dx = α
∫ 1

0
xr+α−1dx =

α

r + α
= 1− r

r + α
.

Upon integrating with respect to α, we obtain Ψr(α) = α− r log(r + α) + c, where c denotes a generic constant
at this step. Since Ψr(0) = 0, we have c = r log(r). Therefore

Ψr(α) = α− r log(r + α) + r log(r) = α− r log
(

1 +
α

r

)
.

Hence
mα(r) =

1
α

Ψr(α) = 1− r
α

log
(

1 +
α

r

)
,

ending the proof of Proposition 6.

Alternative approach

Another approach consists of using the alternative formula: mα(r) = r
∫ +∞

0 xr−1Sα(x)dx, and Equation
(3) as follows:

mα(r) = r
∫ +∞

0
xr−1Sα(x)dx

= r
∫ 1

0
xr−1dx− r

∫ 1

0
xr−1Fα(x)dx

= 1− r
log(1 + α)

α

∫ 1

0
xr−1 f †

α (x)dx

= 1− r
log(1 + α)

α
E(Yr−1),

where Y denotes a random variable with the UPL distribution. By virtue of [23, Proposition 3.1], we have
E(Yr−1) = log (1 + α/r) / log(1 + α), implying the desired result.

Some properties of the ordinary moments are expressed in the next result.

Proposition 7. The following properties of the ordinary moments hold:

1) mα(r) is a strictly increasing function with respect to α,
2) mα(r) is a strictly decreasing function with respect to r.

Proof. 1) Since log(1 + y) > y/(1 + y) for y > 0, by taking y = α/r > 0, we have

∂

∂α
mα(r) =

r
α2(α + r)

[
(α + r) log

(
1 +

α

r

)
− α
]
> 0,

implying that mα(r) is a strictly increasing function with respect to α.
2) With the same justification, we have

∂

∂r
mα(r) =

1
α(α + r)

[
α− (α + r) log

(
1 +

α

r

)]
< 0,

entailing that mα(r) is a strictly decreasing function with respect to r. Or, since the support of X is (0, 1),
it is clear that Wr = Xr is a decreasing sequence of random variables, implying the decreasingness of
mα(r).

This ends the proof of Proposition 7.

We now illustrate the findings of Proposition 7 in Figure 6, by plotting mr(α) for various values of r and
α.
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Figure 6. Plots for the moments mα(r) for various values of α and r

From this figure, we clearly see that mα(r) is a strictly increasing function with respect to α, and a strictly
decreasing function with respect to r.

Based on Proposition 6, the mean of X is given as

mα = mα(1) = E(X) = 1− 1
α

log (1 + α)

and the variance of X is obtained as

σ2
α = V(X) = mα(2)−mα(1)2 = 1− 2

α
log
(

1 +
α

2

)
−m2

α

=
1
α2

[
2α log(1 + α)− log(1 + α)2 − 2α log

(
1 +

α

2

)]
.

Also, the skewness and kurtosis coefficients of X are given as

γα =
mα(3)− 3mασ2

α −m3
α

σ3
α

, βα =
mα(4)− 4mα(3)mα + 6mα(2)m2

α − 3m4
α

σ4
α

,

respectively. In our context, γα is a measure of relative symmetry, and βα is a measure of the relative
peakedness of the RPL distribution. Figure 7 presents the curves for γα and βα with respect to α.
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Figure 7. Plots for (a) γα and (b) βα with respect to α
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From this figure, one can remark that γα is a strictly decreasing function with respect to α, and can be
negative or positive, meaning that the RPL distribution can be left or right skewed, respectively. Also, we note
that βα is a non-monotonic function with a “skewed V” shape. In addition, it can be inferior, equal or superior
to 3, meaning that the RPL distribution may be platykurtic, mesokurtic, or leptokurtic, respectively.

We now discuss the moment generating function of the RPL distribution.

Proposition 8. Let X be a random variable with the RPL(α) distribution and t ∈ R. Then, the moment generating
function of X is obtained as

Mα(t) = et − t
α

+∞

∑
k=0

tk

k!
log
(

1 +
α

k + 1

)
.

Proof. By using the Taylor series of the exponential function combined with Proposition 6, we get

Mα(t) = E(etX) = 1 +
+∞

∑
k=1

tk

k!
mα(k) = 1 +

+∞

∑
k=1

tk

k!

[
1− k

α
log
(

1 +
α

k

)]
= 1 +

+∞

∑
k=1

tk

k!
− 1

α

+∞

∑
k=1

tk

(k− 1)!
log
(

1 +
α

k

)
= et − t

α

+∞

∑
k=0

tk

k!
log
(

1 +
α

k + 1

)
.

The desired formula is obtained.

As a consequence of Proposition 8, we have

Mα(r, t) = E(XretX) =
∂r

∂tr Mα(t) = et − 1
α

+∞

∑
k=r−1

k + 1
(k− r + 1)!

tk−r+1 log
(

1 +
α

k + 1

)
.

This formula can be applied for any chosen value of t. The following relationship can be used to obtain the rth
ordinary moment: mα(r) = Mα(r, 0).

The incomplete moments of the RPL distribution are now expressed.

Proposition 9. Let X be a random variable with the RPL(α) distribution, r be a positive integer, and Xt be the truncated
version of X at a threshold t with t ∈ [0, 1]. Then, the rth incomplete moment of X at t is obtained as the rth ordinary
moment of Xt, that is

mα(r, t) = E(Xr
t ) = trFα(t)−

r
α
{Ei[(α + r) log(t)]− Ei[r log(t)]} ,

where Ei(x) is the exponential integral defined by

Ei(x) =
∫ x

−∞

et

t
dt, x ∈ R∗.

Proof. We proceed as for the proof of Proposition 6. We have

mα(r, t) =
∫ t

−∞
xr fα(x)dx =

1
α

∫ t

0
xr−1 αxα log(x) + 1− xα

(log(x))2 dx.

Now, let us consider the following function:

Ψr(α, t) =
∫ t

0
xr−1 αxα log(x) + 1− xα

(log(x))2 dx,

with Ψr(α, t) = 0 for α = 0. By applying the Leibnitz integral rule, we get

∂

∂α
Ψr(α, t) =

∂

∂α

∫ t

0
xr−1 αxα log(x) + 1− xα

(log(x))2 dx =
∫ t

0
xr−1 1

(log(x))2
∂

∂α
(αxα log(x) + 1− xα)dx

=
∫ t

0
xr−1 1

(log(x))2 × αxα(log(x))2dx = α
∫ t

0
xr+α−1dx =

α

r + α
tr+α.



Open J. Math. Sci. 2021, 5, 218-235 230

Now, by an integration with respect to α and suitable changes of variables, we obtain

∫ α

0

u
r + u

tr+udu = tr
∫ α

0
tudu− r

∫ α

0

tr+u

r + u
du

= tr tα − 1
log(t)

− r
∫ α+r

r

tv

v
dv = tr tα − 1

log(t)
− r

∫ (α+r) log(t)

r log(t)

ew

w
dw

= αtrFα(t)− r {Ei[(α + r) log(t)]− Ei[r log(t)]} .

Therefore, Ψr(α, t) = αtrFα(t) − r {Ei[(α + r) log(t)]− Ei[r log(t)]} + c, where c denotes a certain constant
satisfying Ψr(0, t) = 0, that is, c = 0. Therefore

Ψr(α, t) = αtrFα(t)− r {Ei[(α + r) log(t)]− Ei[r log(t)]} .

Hence
mα(r, t) =

1
α

Ψr(α, t) = trFα(t)−
r
α
{Ei[(α + r) log(t)]− Ei[r log(t)]} ,

ending the proof of Proposition 9.

From Proposition 9, we refind the rth ordinary moment of X by the limit technique; since

trFα(t) =
t→1

1, Ei[(α + r) log(t)]− Ei[r log(t)] =
t→1

log
(

1 +
α

r

)
,

we obtain

mα(r) =
t→1

mα(r, t) = 1− r
α

log
(

1 +
α

r

)
.

We mention that the incomplete moments are used in a variety of essential probability functions,
including the residual life function and its ordinary moments, the respected residual life function and its
ordinary moments, the Lorenz, Zenga and Bonferroni curves, and so on. On this topic, we may refer to [32].

5. Statistical perspective

Let us now consider the setting of the RPL(α) distribution, assuming that the parameter α is unknown.
Mathematically, the maximum likelihood estimate (MLE) of α is obtained as α̂ = argmaxα∈(0,+∞) Lα, where

Lα =
n

∏
i=1

fα(xi) =
n

∏
i=1

αxα
i log(xi) + 1− xα

i
αxi(log(xi))2 ,

and x1, . . . , xn denote n values of a certain variable with support in (0, 1), representing data which are ideally
the realizations of a random variable with the RPL(α) distribution. Therefore, for any β > 0, the MLE α̂ is such
that Lβ ≤ Lα̂. Many and well-known convergence properties underpin the random estimator of α̂. We may
refer to the general theory in [33] for more information on this matter.

We intend to demonstrate that the RPL distribution can provide better results than the comparable
one-parameter UPL and Po distributions for some types of data and with the use of MLEs. We recall that
the functions in Equations (2) and (1) specified these two last distributions, respectively. For comparison,
we use established statistical criteria, such as the Akaike information criterion (AIC), corrected Akaike
information criterion (AICc) and Bayesian information criterion (BIC), defined by AIC = −2 log Lα̂ + 2k,
AICc = AIC + 2k(k + 1)/(n − k − 1) and BIC = −2 log Lα̂ + k log(n), respectively, where k is the number
of parameters to be estimated. For the considered distributions, since there is only one parameter, we take
k = 1. The distribution with the smallest AIC, AICc, or BIC is considered to have the best fit of the data.

Here, we generate four different data sets presenting U or J shapes. More precisely, each data set contains
200 values which are realisations of the following random variable: X = 1/(1 + Y), where Y is a random
variable with the Pareto distribution specified by the following pdf: f [υ,θ(x) = θυθ x−(θ+1), x ≥ υ, and f [υ,θ(x) =
0 for x < υ, where υ > 0 and θ > 0. For the jth data set, called Data set j, we consider the following parameters:
υ = 2−(j+2) and θ = (j + 2)−1/2 with j = 1, 2, 3, 4.

The considered criteria for the three distributions are given in Table 2, for each data set. In all the
calculations, the R software is used, and all the codes are available upon author request.
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Table 2. Criteria related to the RPL, UPL and Po distributions for Data sets 1, 2, 3 and 4

Data set 1 MLE α̂ AIC AICc BIC

RPL 4.612479 -36.65037 -36.63017 -33.35205

UPL 2.148819 -26.77903 -26.75883 -23.48071

Po 1.374657 -16.26337 -16.24317 -12.96506

Data set 2

RPL 6.653810 -105.23541 -105.21521 -101.93710

UPL 6.294888 -57.57819 -57.55799 -54.27987

Po 1.344703 -13.93269 -13.91249 -10.63437

Data set 3

RPL 11.298643 -225.40800 -225.38780 -222.10968

UPL 16.288507 -174.03556 -174.01536 -170.73724

Po 1.696079 -45.16569 -45.14549 -41.86737

Data set 4

RPL 16.280371 -301.34203 -301.32183 -298.04371

UPL 34.643019 -229.43869 -229.41849 -226.14037

Po 1.471506 -24.34491 -24.32471 -21.04659

In this table, the smallest values of AIC, AICc, and BIC are obtained for the RPL distribution; it can be
considered as the best.
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Figure 8. Examples of data fitting via the three considered distributions
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In the setting of the RPL distribution, based on the MLE α̂, the estimated pdf is given by f̂ (x) = fα̂(x). We
can define the estimated pdfs of the UPL and Po distributions in a similar manner. Figure 8 shows how these
estimated pdfs fit the histogram of the data.

From this figure, we see that the RPL distribution has well captured the U or J shapes of the histograms,
and especially the data to the left corresponding to x ∈ (0, 0.1), which is not the case of the two competitors.

6. Complement: around the Euler constant

The next result provides a new parametric integral result which can be proven by using the RPL
distribution, among other techniques.

Proposition 10. Let α > 0. Then the following equality holds:

∫ 1

0

log(1− x)
x(log(x))2 [xα(1− α log(x))− 1]dx =αγ + log[Γ(α + 1)],

where γ is the Euler constant and Γ(x) is the standard gamma function.

Proof. We will prove this result by using the moments of the RPL distribution. For any random variable X
following the RPL distribution and any positive integer k, it comes from Proposition 6 that

1
k
E(Xk) =

1
k
− 1

α
log
(

1 +
α

k

)
.

It follows from this relation, the Lebesgue dominated convergence theorem and the series expansion of the
logarithmic function that

+∞

∑
k=1

[
1
k
− 1

α
log
(

1 +
α

k

)]
=

+∞

∑
k=1

1
k
E(Xk) = E

(
+∞

∑
k=1

Xk

k

)
= E (− log(1− X))

=
∫ +∞

−∞
[− log(1− x)] fα(x)dx

=
∫ 1

0
[− log(1− x)]

αxα log(x) + 1− xα

αx(log(x))2 dx

=
∫ 1

0

log(1− x)
x(log(x))2

xα − αxα log(x)− 1
α

dx, (4)

implying that

∫ 1

0

log(1− x)
x(log(x))2 [xα(1− α log(x))− 1]dx = α

+∞

∑
k=1

[
1
k
− 1

α
log
(

1 +
α

k

)]
. (5)

Now, the two following results on the Euler constant and gamma function established by Euler are valid:

γ =
+∞

∑
k=1

[
1
k
− log

(
1 +

1
k

)]
, Γ(x + 1) =

+∞

∏
k=1

(1 + 1/k)x

1 + x/k
.

Therefore

+∞

∑
k=1

[
1
k
− 1

α
log
(

1 +
α

k

)]
=

+∞

∑
k=1

[
1
k
− log

(
1 +

1
k

)]
+

+∞

∑
k=1

[
log
(

1 +
1
k

)
− 1

α
log
(

1 +
α

k

)]

= γ +
1
α

log

(
+∞

∏
k=1

(1 + 1/k)α

1 + α/k

)
= γ +

1
α

log[Γ(α + 1)]. (6)

By putting Equations (5) and (6) together, the desired result is obtained.
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A new integral expression of the Euler constant comes from Proposition 10; by taking α = 1, we get

γ =
∫ 1

0

log(1− x)
x(log(x))2 [x(1− log(x))− 1]dx.

As far as we know, this integral form of the Euler constant is not listed in the literature, at least under this
form. In particular, it dont appear in the indispensable book of [34]. Some relationships with existing integrals
are formulated below.

• The result [34, 4.283(7)] states that

γ =
∫ 1

0

1
x log(x)(1− log(x))

[x(1− log(x))− 1]dx.

Hence we have γ =
∫ 1

0 u(x) [x(1− log(x))− 1] /(x log(x))dx with u(x) = 1/(1− log(x)) and, thanks to
Proposition 10, this is also valid for the function: u(x) = log(1− x)/ log(x).

• The result [34, 4.314(3)] states that∫ 1

0

log(1 + x)
x(log(x))2 [x(1− log(x))− 1]dx = log

(π

4

)
.

Thus, in comparison to the integral in Proposition 10, only the term log(1 + x) has been changed to
log(1− x), with a surprising consequence. The following integral can be deduced by summation:

∫ 1

0

log(1− x2)

x(log(x))2 [x(1− log(x))− 1]dx = γ + log
(π

4

)
.

Further analysis reveals that a primitive of the main integrated term in Proposition 10 can be expressed as

∫ log(1− x)
x(log(x))2 [x(1− log(x))− 1]dx = Li(x)− (x− 1) log(1− x)

log(x)
+ c,

where Li(x) = Ei(log(x)) and c denotes a generic constant.
The next result is derived to Proposition 10, and also appears in [35].

Proposition 11. Let α > 0. Then the following equality holds:

∫ 1

0

1
(1− x) log(x)

[α log(x) + 1− xα]dx = αγ + log[Γ(α + 1)].

Proof. We follow the spirit of the proof of Proposition 10, with the same notations. By using Equations (6) and
(4), applying an integration by part and using Sα(x) ∼

x→1
α(1− x)/2, we get

γ +
1
α

log[Γ(α + 1)] =
+∞

∑
k=1

[
1
k
− 1

α
log
(

1 +
α

k

)]
= E (− log(1− X)) =

∫ 1

0
[− log(1− x)] fα(x)dx

= [− log(1− x)](−Sα(x)) |1x=0 +
∫ 1

0

1
1− x

Sα(x)dx

= 0 +
∫ 1

0

1
1− x

α log(x) + 1− xα

α log(x)
dx,

implying that

∫ 1

0

1
(1− x) log(x)

[α log(x) + 1− xα]dx = αγ + log[Γ(α + 1)].

The desired outcome is achieved.

In [35], the proof is completely different; it is based on a parametric derivative-sum-integral technique.
The above findings may be used for a variety of purposes, beyond the scope of the article.
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7. Concluding remarks

7.1. Conclusion

This article has presented a new unit distribution whose cdf is constructed from a one-parameter
power-logarithmic scheme. It is called the ratio power-logarithmic (RPL) distribution. We have highlighted
the great flexibility of the corresponding cdf, characterized by a large selection of convex and concave shapes.
The other key functions are determined and studied. In particular, we have shown that the pdf may take on
different decreasing or U shapes, and the hrf has a wide panel of U shapes. These functional capabilities are
rare enough to motivate the interest of the RPL distribution. Furthermore, we established certain stochastic
order results, and provided the qf expression via the Lambert function, some interesting distributional results,
and simple expressions for various moments. Then, in the framework of the data analysis, a simple statistical
approach to the new distribution has been defined. Finally, complementary mathematical results have been
demonstrated using specific moments properties of the RPL distribution, giving new integrals connected with
the Euler constant.

7.2. Future research prospects

Based on the current work, the future research prospects are numerous, including the development of the
RPL generated family of distributions defined with the following cdf:

FG
α (x) = Fα(G(x)) =

(G(x))α − 1
α log(G(x))

, x ∈ R,

where G(x) denotes any generic cdf of a continuous distribution, the construction of regression models based
on unit distributions (quantile regression, mean regression. . . ), and multivariate extensions. Each of these
topics has theoretical and practical potential to meet modern statistical needs. However, they require further
development, which we have deferred for the time being.
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