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1. Introduction

I t is well known that the CEV model is one of very popular models in finance. The dynamic of this model
is described by the following Itô stochastic differential equation

Xt = X0 +
∫ t

0
(a− bXs)ds +

∫ t

0
σXα

s dBs, 0 ≤ t ≤ T, (1)

where X0, a, b, σ are positive constants, α ∈ ( 1
2 , 1) and B = (Bt)0≤t≤T is a standard Brownian motion.

The solution (Xt)0≤t≤T to the model (1) is a Markov process without memory. However, in the last
few decades, there are many observations showing that an asset price or an interest rate is not always
a Markov process since it has long-range aftereffects. Many studies have pointed out that the dynamics
driven by fractional Brownian motion are a suitable choice to model such objects, see [2] and the references
therein. Hence, it is important to take into account the effect of fractional noise to the model (1). We recall
that a fractional Brownian motion (fBm) of Hurst parameter H ∈ (0, 1) is a centered Gaussian process
BH = (BH

t )0≤t≤T with covariance function

RH(t, s) := E
[

BH
t BH

s

]
=

1
2

(
t2H + s2H − |t− s|2H

)
.

For H > 1/2, BH
t admits the so-called Volterra representation (see [3] pp. 277-279)

BH
t =

∫ t

0
K(t, s)dWs, (2)

where (Wt)t≥0 is a standard Brownian motion,

K(t, s) := cH s
1
2−H

∫ t

s
(u− s)H− 3

2 uH− 1
2 du, s ≤ t

and cH =

√
H(2H−1)

β(2−2H,H− 1
2 )

, where β is the Beta function.
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In this paper, we consider the mixed-fractional CEV model that is defined as the stochastic differential
equations of the form

Xt = X0 +
∫ t

0
(a− bXs)ds +

∫ t

0
σXα

s dBs +
∫ t

0
σHXα

s dBH
s , 0 ≤ t ≤ T, (3)

where the initial condition X0 and a, b, σ, σH are positive constants, 1
2 < α < 1, and BH

t is fBm with H > 1
2 . The

stochastic integral with respect to B is the Itô integral. Meanwhile, the stochastic integral with respect to BH is
interpreted as a pathwise Stieltjes integral, which has been frequently used in the studies related to fBm. We
refer readers to Zähle’s paper [4] for a detailed presentation of this integral.

Recently, the applications in finance of the mixed-fractional CEV model have been extensively discussed,
see [5] and references therein. In the present paper, our aim is to study the tail distribution of solutions to (3).
This problem is important because the probability distribution function is one of the most natural features for
any random variable. In fact, in the last decade, the tail distribution estimates for various random variables
have been investigated by many authors, see e.g. [1,6,7] and references therein. In the present paper, we will
focus on providing explicit estimates for the probability distribution of Xt, see Theorem 1 below.

The volatility coefficient of the model (3) violates the Lipschitz continuous condition which is traditionally
imposed in the study of stochastic differential equations. This causes some mathematical difficulties which
make the study of the model (3) particularly interesting. In order to be able to handle such difficulties, our
tools are the techniques of Malliavin calculus and a result established recently in [1].

The rest of the paper is organized as follows: In §2, we recall some fundamental concepts of Malliavin
calculus. The main results of the paper are stated and proved in §3.

2. Preliminaries

This paper is strongly based on techniques of Malliavin calculus. For the reader’s convenience, let us
recall some elements of Malliavin calculus. We refer to [3] for a more complete treatment of this topic. We
assume that two-dimensional Browian motion w = (B, W) is defined in a complete probability space (Ω,F , P)
and the σ-field F is generated by w. Let us denote by H the Hilbert space L2([0, T];R2), and for any function
h =

(
hB, hW) ∈ H we set

w(h) =
∫ T

0
hB(t)dBt +

∫ T

0
hW(t)dWt.

Let S be the class of smooth and cylindrical random variables of the form

F = f (w(h1), . . . , w(hn)),

where n ≥ 1, h1, . . . , hn ∈ H, and f is an infinitely differentiable function such that together with all its partial
derivatives have at most polynomial growth order. The derivative operator of the random variable F is defined
as

DB
t F =

n

∑
j=1

∂ f
∂xj

(w(h1), . . . , w(hn))hB
j (t),

DW
t F =

n

∑
j=1

∂ f
∂xj

(w(h1), . . . , w(hn))hW
j (t),

where t ∈ [0, T]. In this way, we interpret DF as a random variable with values in the Hilbert space H. The
derivative is a closable operator on L2(Ω) with values in L2(Ω; H). We denote by D1,2 the Hilbert spaced
defined as the completion of S with respect to the scalar product

〈F, G〉1,2 = E[FG] + E
[∫ T

0
DB

t FDB
t Gdt +

∫ T

0
DW

t FDW
t Gdt

]
.

A random variable F is said to be Malliavin differentiable if it belongs to D1,2. We have the following general
estimate for tail probabilities.
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Lemma 1. Let Z be a centered random variable in D1,2. Assume there exists a non-random constant L such that∫ T

0

(
E
[

DB
r Z|Fr

])2
dr +

∫ T

0

(
E
[

DW
r Z|Fr

])2
dr ≤ L2 a.s. (4)

Then following estimate for tail probabilities holds

P (Z ≥ x) ≤ e−
x2

2L2 , x > 0. (5)

Proof. The proof is similar to that of Lemma 2.2 in [1]. By Clark-Ocone formula we have

Z =
∫ T

0
E
[

DB
r Z|Fr

]
dBr +

∫ T

0
E
[

DW
r Z|Fr

]
dWr.

Hence, for any λ ∈ R, we obtain

EeλZ =E exp
(

λ
∫ T

0
E
[

DB
r Z|Fr

]
dBr + λ

∫ T

0
E
[

DW
r Z|Fr

]
dWr

)
=E exp

(
λ
∫ T

0
E
[

DB
r Z|Fr

]
dBr −

λ2

2

∫ T

0

(
E
[

DB
r Z|Fr

])2
dr +

λ2

2

∫ T

0

(
E
[

DB
r Z|Fr

])2
dr
)

× E exp
(

λ
∫ T

0
E
[

DW
r Z|Fr

]
dBr −

λ2

2

∫ T

0

(
E
[

DW
r Z|Fr

])2
dr +

λ2

2

∫ T

0

(
E
[

DW
r Z|Fr

])2
dr
)

≤e
λ2
2 M2

ENT ,

where (Nt)t∈[0,T] is a stochastic process defined by

Nt := exp
(

λ
∫ t

0
E
[

DB
r Z|Fr

]
dBr + λ

∫ t

0
E
[

DW
r Z|Fr

]
dWr −

λ2

2

∫ t

0

((
E
[

DB
r Z|Fr

])2
+
(

E
[

DB
r Z|Fr

])2
)

dr
)

.

By using Itô formula, we obtain

NT = 1 + λ
∫ T

0
NrE

[
DB

r Z|Fr

]
dBr + λ

∫ T

0
NrE

[
DW

r Z|Fr

]
dWr,

which implies that ENT = 1. Thus we get

EeλZ ≤ e
λ2
2 L2

ENT = e
λ2
2 L2

.

This, together with Markov’s inequality, gives us

P (Z ≥ x) = P
(

eλZ ≥ eλx
)
≤ e

λ2
2 L2−λx, λ > 0, x ∈ R.

When x > 0, we choose λ = x/L2, and we get

P (Z ≥ x) ≤ e−
x2

2L2 , x > 0.

So we can finish the proof of Lemma.

3. The main results

We first show that the equation (3) has a unique solution. Following the method used in [8], we consider
the following equation

dVt = (1− α)

(
aV

−α
1−α

t − bVt −
ασ2

2Vt

)
dt + σ(1− α)dBt + σH(1− α)dBH

t , t ≥ 0, (6)

the initial value V0 := X1−α
0 > 0. We put



Open J. Math. Sci. 2021, 5, 371-379 374

g(x) = (1− α)

(
ax

−α
1−α − bx− ασ2

2x

)
, x > 0,

and rewrite the Equation (6) as follows

Vt = V0 +
∫ t

0
g(Vs)ds + σ(1− α)Bt + σH(1− α)BH

t , t ≥ 0.

Lemma 2. We have

M := sup
x>0

g′(x) =
aα(2α− 1)
2(1− α)

x
−1

1−α
0 − b(1− α), (7)

where x0 ∈ (0, ∞) such that x
1

1−α−2
0 = a

(1−α)2σ2 .

Proof. We have

g′(x) = −aαx
−1

1−α − b(1− α) +
α(1− α)σ2

2x2

and

g′′(x) = x
−1

1−α−1
(

aα

1− α
− α(1− α)σ2x

1
1−α−2

)
.

We note that 1
2 < α < 1 and so 1

1−α − 2 > 0. Hence, it is easy to see that g′′(x0) = 0 and sup
x>0

g′(x) = g′(x0). We

thus obtain the relation (7).

Proposition 1. The Equation (6) admits a unique positive solution. Moreover, Vt > 0 a.s. for any t ≥ 0.

Proof. We observe that the function g(x) = (1 − α)
(

ax
−α

1−α − bx− ασ2

2x

)
is Lipschitz continuous on the

neighborhood of V0 > 0. Hence, there exists a local solution Vt on the interval [0, τ], where τ is the stopping
time such that τ = inf {t > 0 : Vt = 0} . Assume that τ < ∞.

For all t ∈ [0, τ), we have

0 = Vτ = Vt +
∫ τ

t
g(Vs)ds + σ(1− α)(Bτ − Bt) + σH(1− α)

(
BH

τ − BH
t

)
. (8)

We note that
g(x)x

α
1−α = (1− α)

(
a− bx

1
1−α − α

2
σ2x

2α−1
1−α

)
.

Because 1
2 < α < 1 we have 1

1−α > 0 and 2α−1
1−α > 0. Therefore,

lim
x→0+

g(x)x
α

1−α = a(1− α) > 0.

Hence, there exists ε > 0 such that

g(x) >
a(1− α)

2x
α

1−α
, ∀x ∈ (0, ε).

Since Vt is continuous, and Vτ = 0, there exists t0 such that Vt ∈ (0, ε), ∀t ∈ [t0, τ) which implies that

g(Vt) >
a(1− α)

2V
α

1−α
t

, ∀t ∈ [t0, τ). (9)

Recall that the paths of Brownian motion are β-Hölder continuous for any β < 1
2 and the paths of fBm are

β-Hölder continuous for any β < H. So, fixed β < 1
2 then there exists a finite random variable Cβ(ω) such that∣∣∣σ(1− α)(Bτ − Bt) + σH(1− α)

(
BH

τ − BH
t

)∣∣∣ ≤ Cβ(ω) |τ − t|β .
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This, combined with (8), gives us

0 < Vt = −
∫ τ

t
g(Vs)ds− σ(1− α)(Bτ − Bt)− σH(1− α)

(
BH

τ − BH
t

)
<
∣∣∣σ(1− α)(Bτ − Bt) + σH(1− α)

(
BH

τ − BH
t

)∣∣∣
< Cβ(ω) (τ − t)β , ∀t ∈ [t0, τ),

and
0 ≤

∫ τ

t
g(Vs)ds < Cβ(ω)(τ − t)β, ∀t ∈ [t0, τ).

As a consequence, it follows from (9) that

Cβ(ω)(τ − t)β >
∫ τ

t
g(Vs)ds >

∫ τ

t

a(1− α)

2V
α

1−α
s

ds >
∫ τ

t

a(1− α)

2
[
Cβ(ω)(τ − s)β

] α
1−α

ds, ∀t ∈ [t0, τ).

Therefore, it holds that

Cβ(ω)(τ − t)β >
a(1− α)

2
[
Cβ(ω)

] α
1−α

(τ − t)1− αβ
1−α , ∀t ∈ [t0, τ), (10)

or equivalently

2
[
Cβ(ω)

] 1
1−α

1
a(1− α)

> (τ − t)1− β
1−α , ∀t ∈ [t0, τ).

We choose β such that 1
2 > β > 1− α then 1− β

1−α < 0. We get a contradiction beacause the right hand side of
(10) tends to ∞ as t→ τ. We conclude that τ = ∞. Thus, the Equation (6) exists global solution with V0 > 0.

The uniqueness of the solutions can be verified as follows. Let Vt and V∗t be two solutions of (6) with the
same initial condition V0. We have

Vt −V∗t =
∫ t

0
[g(Vs)− g(V∗s )] ds, 0 ≤ t ≤ T,

and hence,

(Vt −V∗t )
2 = 2

∫ t

0
(Vs −V∗s ) [g(Vs)− g(V∗s )] ds, t ≥ 0.

By using Lagrange’s theorem, there exists a random variable θ lying between 0 and 1 such that

(Vt −V∗t )
2 = 2

∫ t

0
g′ (Vs + θ(V∗s −Vs)) (Vs −V∗s )

2 ds, t ≥ 0.

By Lemma 2, we deduce

(Vt −V∗t )
2 ≤ 2M

∫ t

0
(Vs −V∗s )

2 ds ≤ ε + 2M
∫ t

0
(Vs −V∗s )

2 ds, ∀ε > 0.

We use Gronwall’s lemma to get

(Vt −V∗t )
2 ≤ εe2Mt ≤ εe2MT , ∀t ≥ 0, ∀ε > 0.

The right hand converges to 0 as ε→ 0, hence, Vt = V∗t , ∀t ∈ [0, T]. The proof of Proposition is complete.

Proposition 2. The Equation (3) has a unique solution given by Xt = V
1

1−α
t , 0 ≤ t ≤ T, where Vt is the solution of

(6).

Proof. The proof is similar to that of Theorem 2.1 in [8]. So we omit it.
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Next, we will prove the solution Vt of (6) is Malliavin differentiable. By Volterra expression of fBm, we
can rewrite (6) by the following equation

Vt = V0 +
∫ t

0
g(Vs)ds + σ(1− α)Bt + σH(1− α)

∫ t

0
K(t, s)dWs. (11)

Proposition 3. Let (Vt)0≤t≤T be the solution of the Equation (6). Then, for each t ∈ (0, T], the random variable Vt is
Malliavin differentiable. Moreover, we have

DB
s Vt = σ(1− α) exp

(∫ t

s
g′(Vr)dr

)
I[0,t](s)

DW
s Vt = σH(1− α)

∫ t

s
K1(v, s) exp

(∫ t

v
g′(Vr)dr

)
dvI[0,t](s)

where K1(v, s) = ∂
∂v K(v, s) = cH(v− s)H− 3

2 vH− 1
2 r

1
2−H .

Proof. Fix t ∈ (0, T]. Let us compute the directional derivative 〈DBVt, h〉L2[0,T] with h ∈ L2[0, T] :

〈DBVt, h〉L2[0,T] =
dVε

t
dε
|ε=0,

where Vε
t solves the following equation

Vε
t = V0 +

∫ t

0
g (Vε

s ) ds + σ(1− α)

(
Bt + ε

∫ t

0
hsds

)
+ σH(1− α)dBH

t , t ∈ [0, T], ε ∈ (0, 1).

By using Lagrange’s theorem, we get

Vε
t −Vt =

∫ t

0
g′ (Vs + ξs(Vε

s −Vs)) (Vε
s −Vs)ds + σ(1− α)ε

∫ t

0
hsds (12)

for some random variables ξs lying between 0 and 1. The solution of (12) is given by

Vε
t −Vt = σ(1− α)ε

∫ t

0
hs

(
exp

∫ t

s
g′ (Vr + ξr(Vε

r −Vr)) dr
)

ds, t ∈ [0, T],

which implies that
Vε

t −Vt

ε
= σ(1− α)

∫ t

0
hs

(
exp

∫ t

s
g′ (Vr + ξr(Vε

r −Vr)) dr
)

ds.

We recall that g′(x) ≤ M < ∞, ∀x > 0. Hence, by the dominated convergence theorem, we obtain

lim
ε→0+

Vε
t −Vt

ε
= σ(1− α)

∫ t

0
hs exp

(∫ t

s
g′(Vr)dr

)
ds

= σ(1− α)
∫ T

0
hs exp

(∫ t

s
g′(Vr)dr

)
I[0,t]ds

=
〈

h, σ(1− α) exp
(∫ t

s
g′(Vr)dr

)
I[0,t]

〉
L2[0,T]

, t ∈ [0, T],

where the limit holds in L2(Ω). According to the results of Sugita [9], we can conclude that Vt is Malliavin
differentiable with respect to B and its derivative is given by

DB
s Vt =σ(1− α) exp

(∫ t

s
g′(Vr)dr

)
I[0,t](s).

In a same way, we compute the directional derivative 〈DWVt, h〉 = dVθ
t

dε |θ=0, where Vθ
t satisfies

Vθ
t = V0 +

∫ t

0
g
(

Vθ
s

)
ds + σ(1− α)Bt + σH(1− α)

∫ t

0
K(t, s)d

(
Ws + θ

∫ s

0
hudu

)
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= V0 +
∫ t

0
g
(

Vθ
s

)
ds + σ(1− α)Bt + σH(1− α)

∫ t

0
K(t, s) (dWs + θhsds) , t ∈ [0, T], θ ∈ [0, 1).

Using Lagrange’s theorem again, we have

Vθ
t −Vt =

∫ t

0
g′
(

Vs + ζs

(
Vθ

s −Vs

)) (
Vθ

s −Vs

)
ds + σH(1− α)θ

∫ t

0
K(t, s)hsds, (13)

where ζs is a random variable between 0 and 1. The solution of (13) is represented by

Vθ
t −Vt = θσH(1− α)

∫ t

0

(∫ s

0
K1(s, u)hudu

)
exp

(∫ t

s
g′
(

Vr + ζr

(
Vθ

r −Vr

))
dr
)

ds.

Hence,

lim
θ→0+

Vθ
t −Vt

θ
= σH(1− α)

∫ t

0

(∫ s

0
K1(s, u)hudu

)
exp

(∫ t

s
g′ (Vr) dr

)
ds.

=
〈

hs, σH(1− α)
∫ t

s
K1(v, s) exp

(∫ t

v
g′(Vr)dr

)
dvI[0,t](s)

〉
L2[0,T]

.

Thus Vt is Malliavin differentiable with respect to W and we have

DW
s Vt = σH(1− α)

∫ t

s
K1(v, s) exp

(∫ t

v
g′(Vr)dr

)
dvI[0,t](s).

The proof of Proposition is complete.

We now are in a position to state and prove the main result of this paper.

Theorem 1. Let (Xt)0≤t≤T be the unique solution of the Equation (3). Then, for each t ∈ (0, T], the tail distribution of
Xt satisfies

P(Xt ≥ x) ≤ exp

−
(

x1−α − µ1−α
t

)2

2
(

σ2(1−α)2

2M (e2Mt − 1) + σ2
H (1− α)2 e2Mtt2H

)
 , x > µt,

where µt := E[Xt] and M is defined by (7).

Proof. Recalling Proposition 3 we get

0 ≤ DB
r Vt ≤ σ(1− α)eM(t−r),

0 ≤ DW
r Vt = σH(1− α)

∫ t

r
K1(v, r)e

(∫ t
v g′(Vr)dr

)
dv

≤ σH(1− α)

(
K(t, r) + M

∫ t

r
K(v, r)eM(t−v)dv

)
, 0 ≤ r ≤ t ≤ T.

Because the function v→ K(v, r) is non-decreasing, this implies

DW
r Vt ≤ σH(1− α)

(
K(t, r) + MK(t, r)

∫ t

r
eM(t−v)dv

)
= σH(1− α)K(t, r)eM(t−r), 0 ≤ r ≤ t ≤ T.

We have ∫ T

0

(
E
[

DB
r Vt|Fs

])2
dr =

∫ t

0

(
E
[

DB
r Vt|Fs

])2
dr

≤
∫ t

0

(
σ(1− α)eM(t−r)

)2
dr

=
σ2(1− α)2

2M

(
e2Mt − 1

)
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and ∫ T

0

(
E
[

DW
r Vt|Fr

])2
dr =

∫ t

0

(
E
[

DW
r Vt|Fr

])2
dr

≤
∫ t

0

(
σH (1− α)K(t, r)eM(t−r)

)2
dr

= σ2
H(1− α)2

∫ t

0
K2(t, r)e2M(t−r)dr

≤ σ2
H (1− α)2 e2Mt

∫ t

0
K2(t, r)dr, 0 ≤ r ≤ t ≤ T.

Since
∫ t

0 K2(t, s)ds = E|BH
t |2 = t2H we have

∫ T

0

(
E
[

DW
r Vt|Fr

])2
dr ≤ σ2

H(1− α)2e2Mtt2H .

Fixed t ∈ (0, T], put F = Vt − E[Vt] then EF = 0 and DB
s F = DB

s Vt, DW
s F = DW

s Vt. We obtain the following
estimate∫ T

0

(
E
[

DB
s F|Fs

])2
ds +

∫ T

0

(
E
[

DW
s F|Fs

])2
ds =

∫ T

0

(
E
[

DB
s Vt|Fs

])2
ds +

∫ T

0

(
E
[

DW
s Vt|Fs

])2
ds

≤ σ2(1− α)2

2M

(
e2Mt − 1

)
+ σ2

H(1− α)2e2Mtt2H .

We observe that, by Lyapunov’s inequality, E
[

X1−α
t

]
≤ (E [Xt])

1−α = µ1−α
t . Hence, by applying Lemma 1 to

F, we obtain

P(Xt ≥ x) = P
(

Vt ≥ x1−α
)

= P
(

Vt − E [Vt] ≥ x1−α − E [Vt]
)

= P
(

F ≥ x1−α − E
[

X1−α
t

])
≤ P

(
F ≥ x1−α − µ1−α

t

)
≤ exp

−
(

x1−α − E
[

X1−α
t

])2

2
(

σ2(1−α)2

2M (e2Mt − 1) + σ2
H(1− α)2e2Mtt2H

)
 , x > µt.

The proof of Theorem is complete.

Remark 1. In [5], Araneda obtained an analytical expression for the transition probability density function
of solutions to the Equation (3). However, the stochastic integral with respect to BH considered there is
interpreted as a Wick-Itô integral. This integral is different from the pathwise Stieltjes integral using in our
work (the relation between two integrals can be found in §5.6 of [10]). In particular, unlike the Wick-Itô
integral, the pathwise Stieltjes integral has non-zero expectation. We therefore think that it is not easy to extend
the method developed in [5] to the setting of pathwise Stieltjes integrals. That is why we have to employ a
different method to investigate the tail distributions as in Theorem 1.

Remark 2. The transition probability density and tail distribution can be used to compute the price of
options. In the setting of the mixed-fractional CEV model using pathwise Stieltjes integrals, to the best of
our knowledge, the option pricing formula is still an open problem. Solving this problem is beyond the scope
of the present paper. However, if such a formula exists then the tail distribution estimates obtained in Theorem
1 will be useful to provide an upper bound for the price of options.

4. Conclusion

In this paper, we used the techniques of Malliavin calculus to estimate the tail distribution of the
mixed-frational CEV model. Our contribution is that we are able to obtain an explicit estimate for the tail
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distributions. Our work provides one more fundamental property of CEV models. In this sense, we partly
enrich the knowledge of CEV models.
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