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Abstract: A continuous two-step block method with two hybrid points for the numerical solution of first
order ordinary differential equations is proposed. The approximate solution in form of power series and
its first ordered derivative are respectively interpolated at the point x = 0 and collocated at equally spaced
points in the interval of consideration. The application of the method involves using the main scheme derived
together with the additional schemes simultaneously to obtain the solution to the problem at the grid points.
The analysis of the method and the results obtained from the examples considered show that the method is
consistent, zero-stable, convergent and of high accuracy.
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1. Introduction

O rdinary Differential Equations (ODEs) are important models derived from real-life problems and other
natural phenomena. In particular, many problems in engineering, biology, physics and other social

sciences have been modelled resulting in ordinary differential equations, [1–3].
The main focus of this paper is to consider an accurate approximate method for the solution of general

first order initial value problem of the form

y′ = f (x, y), y(x0) = y0 : x ∈ [a, b], (1)

where f (x, y) is continuous and satisfies the existence and uniqueness of solution theorem, [4].
Predictor-corrector methods for solving ordinary differential equations of the form (1) proposed by [5] has
some demerits which necessitated the introduction of hybrid block methods. Hybrid methods were initially
introduced to overcome zero-stability barrier that occurred in block methods, Dahlquist (1956). Apart from
the ability to change step size, the benefit of the hybrid block methods is utilizing data off-step points which
contributes to the accuracy of the methods, [6]. The standard collocation method at some selected points
introduced by [7] was discrete in nature. However, [8] was able to show that the traditional multistep methods
including the hybrid ones can be made continuous. This was done through the idea of multistep collocation
scheme against the discrete schemes. Through this, better approximation at all interior points and absolute
error estimates were obtained.

According to [9], the continuous linear multi-step method has greater advantage over the discrete method
in that it gives better error estimation, provides a simplified form of coefficient for further analytical work at
different points and guarantees easy appropriation of solutions at all interior points within the interval of
integration. [10–12] proposed methods which were implemented in predictor-corrector mode and adopted
Taylor series expansion to supply the starting value. Generally, the major setback of the predictor-corrector
method is the high cost of implementation, as subroutines are very complicated to write because of the
special techniques required to supply starting values, [13]. Therefore, the need to address this setback by
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proposing a method that melts the properties of both the block method and the predictor-corrector method
cannot be over-emphasised. To solve Eq. (1), numerical methods are developed by types of Ordinary
Differential Equations (ODEs) such as non-linear, linear, either stiff or non-stiff ODEs. It should be noted that
by using inappropriate method for a model may lead to slow convergence or wrong solution, [14,15] observed
that Methods such as Adomian decomposition method, variational iteration method, Chebyshev’s wavelet
method, classical fourth-order Runge-Kutta method, homotopy perturbation method have some setbacks
ranging from small convergence/implementation regions to inefficiency in terms of accuracy.

We therefore, present a self-starting continuous two-step hybrid block method with faster rate of
convergence and better accuracy for the numerical integration of initial value problems of first order ordinary
differential equations. In doing this, the collocation points were evenly selected in the interval of consideration.

2. Derivation of the method

We seek a k-step multistep method of the form

k

∑
j=0

αjyn+j = h[
k

∑
j=0

β j fn+j + βvi fn+vi], (2)

where αj and β j are continuous coefficients and vi are hybrid points.
We assume an approximate solution to Eq. (1) to be a continuous solution of the form

y(x) =
r+s−1

∑
j=0

ajxj. (3)

We construct a k-step continuous hybrid multistep method with xj : j = 0(1)5, r = 1, s = 5 and k = 2.
Therefore, from (3) we have

5

∑
j=0

ajx
j
n+i = yn+i , (4)

and
5

∑
j=0

jajx
j−1
n+i = fn+i. (5)

Interpolating (4) at x = xn such that i = 0 and collocating (5) at x = xn+i for i = 0, 1
2 , 1, 3

2 , 2, we have the
following six equations

a0 + a1xn + a2x2
n + a3x3

n + a4x4
n + a5x5

n = yn, (6)

a1 + 2a2xn + 3a3x2
n + 4a4x3

n + 5a5x4
n = fn, (7)

a1 + 2a2xn+ 1
2
+ 3a3x2

n+ 1
2
+ 4a4x3

n+ 1
2
+ 5a5x4

n+ 1
2
= fn+ 1

2
, (8)

a1 + 2a2xn+1 + 3a3x2
n+1 + 4a4x3

n+1 + 5a5x4
n+1 = fn+1, (9)

a1 + 2a2xn+ 3
2
+ 3a3x2

n+ 3
2
+ 4a4x3

n+ 3
2
+ 5a5x4

n+ 3
2
= fn+ 3

2
, (10)

and
a1 + 2a2xn+2 + 3a3x2

n+2 + 4a4x3
n+2 + 5a5x4

n+2 = fn+2. (11)

We write Eqs. (6) to (11) in matrix form to have



1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 3

4
1
2

5
16

0 1 2 3 4 5
0 1 3 27

4
27
2

405
16

0 1 4 12 32 80





a0

a1

a2

a3

a4

a5


=



yn

fn

fn+ 1
2

fn+1

fn+ 3
2

fn+2


. (12)
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Solving (12) by Gaussian elimination method, we obtain the continuous variables ai’s and the parameters αj
and β j as the following functions of t.

α0(t) = 1,

β0(t) = t − 25
12

t2 +
35
18

t3 − 5
6

t4 +
2

15
t5,

β 1
2
(t) = 4t2 − 52

9
t3 + 3t4 − 8

15
t5,

β1(t) = −3t2 +
57
9

t3 − 4t4 +
4
5

t5,

β 3
2
(t) =

4
3

t2 − 28
9

t3 +
1
2

t4 − 8
15

t5,

and
β2(t) = −1

4
t2 +

11
18

t3 − 7
4

t4 +
2

15
t5.

Eq. (2) is re-written as

y(x) = α0yn + h

[
2

∑
j=0

β j(x) fn+j + βvi(x) fn+vi

]
. (13)

We evaluate β j(t) at t = 0, 1
2 , 1, 3

2 , 2 and substitute the values obtained into (13) to obtain the hybrid block
methods as

yn+ 1
2
− yn = h[

251
1440

fn +
323
720

fn+ 1
2
− 11

60
fn+1 +

53
720

fn+ 3
2
− 19

1440
fn+2], (14)

yn+1 − yn = h[
29

180
fn +

31
45

fn+ 1
2
+

2
15

fn+1 +
1

45
fn+ 3

2
− 1

180
fn+2], (15)

yn+ 3
2
− yn = h[

27
160

fn +
51
80

fn+ 1
2
+

9
20

fn+1 +
21
80

fn+ 3
2
− 3

160
fn+2], (16)

and
yn+2 − yn = h[

7
45

fn +
32
45

fn+ 1
2
+

4
15

fn+1 +
32
45

fn+ 3
2
+

7
45

fn+2]. (17)

3. Analysis of the scheme

The analysis of the derived scheme which includes the order and error constant, consistency, zero stability
and convergence is presented here.

3.1. Orders and error constants

Consider the linear operator, L associated with the hybrid block method (2) which is defined as

L[y(xn) : h] =
k

∑
j=0

[
αjy(xn + jh)− h(β jy′(xn + jh) + βviy′(xn + vih))

]
, (18)

where y(x) is an arbitrary test function that is continuously differentiable in the interval [a, b]. Expanding
y(xn + jh), y′(xn + jh) and y′(xn + vih) in Taylor series about xn and collecting the coefficients of h(q) : q =

0, 1, 2, 3, ... to get

L[y(xn) : h] = c0y(xn) + c1hy′(xn) + c2h2y′′(xn) + ... + cqhqy(q)(xn) + ... (19)

where cq are vectors. From Eq. (19), if we can obtain that

c0 = c1 = c2 = ... = cq = 0 : cq+1 ̸= 0

then the hybrid block method (2) is said to be of order q and its error constant is cq+1, [16,17].



Open J. Math. Sci. 2022, 6, 281-288 284

Now, expanding Eq. (14) in Taylor’s series around y(x = xn+ 1
2
) and collecting like terms in hqy(q)(xn) :

q = 0, 1, 2, 3, .. we obtain

L[y(xn+ 1
2
) : h] = y(xn)− y(xn) +

(
1
2
− 251

1440
− 323

720
+

11
60

− 53
720

+
19

1440

)
hy′(xn)

+

(
1
8
− 323

1440
+

11
60

− 159
1440

+
19

720

)
h2y′′(xn) +

(
1

48
− 323

5760
+

11
120

− 477
5760

+
19
720

)
h3y′′′(xn)

+

(
1

384
− 323

34560
+

11
360

− 1431
34560

+
19

1080

)
h4yiv(xn) +

(
1

3840
− 323

276480
+

11
1440

− 4293
276480

+
19

2160

)
h5yv(xn)

+

(
1

46080
− 323

2764800
+

11
7200

− 12879
2764800

+
19

5400

)
h6yvi(xn) + ... (20)

Eq. (20) is simplified further to obtain

L[y(xn+ 1
2
) : h] = c0y(xn) + c1y′(xn) + c2y′′(xn) + ... + cqy(q)(xn) + cq+1y(q+1)(xn) + ... (21)

In Eq. (21),

c0 = c1 = c2 = c3 = c4 = c5 = 0 : c6 =
3h6

10240
.

In a similar manner, we obtained from Eqs. (15), (16) and (17) by evaluating respectively at y(x = xn+1),
y(x = xn+ 3

2
) and y(x = xn+2)

c0 = c1 = c2 = c3 = c4 = c5 = 0 : c6 =
h6

5760
,

c0 = c1 = c2 = c3 = c4 = c5 = 0 : c6 =
3h6

10240
,

c0 = c1 = c2 = c3 = c4 = c5 = c6 = 0 : c7 = − h7

15120
.

Therefore, the orders of our scheme are obtained as (5, 5, 5, 6)T and error constants as(
3

10240
,

1
5760

,
3

10240
, − 1

15120

)T

3.2. Consistency

A linear multistep method is said to be consistent if it has an order of convergence, q ≥ 1 [18]. The derived
hybrid block method is consistent since the orders are all greater than

3.3. Zero stability

A linear multistep method of the form (2) is said to be zero stable if no roots of the first characteristic
polynomial ρ(R) has modulus greater than one, and if every root of modulus one is simple, [18,19], Eqs (114)
to (17) are put in block form as

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




yn+ 1
2

yn+1

yn+ 3
2

yn+2

 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1




yn+2

yn+ 3
2

yn+1

yn

+ h


323
720 − 11

60
53

720 − 19
1440

31
45

2
15

1
45 − 1

180
51
80

9
20

21
80 − 3

160
32
45

4
5

32
45

7
45




fn+ 1
2

fn+1

fn+ 3
2

fn+2



+ h


0 0 0 7

45
0 0 0 27

160
0 0 0 29

180
0 0 0 251

1440




fn+2

fn+ 3
2

fn+1

fn

 (22)
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Normalizing Eq. (22) by multiplying with the inverse of A0 and the first characteristic polynomial of the hybrid
block method is obtained as

ρ(R) = det[RA0 − A1] (23)

where A0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and A1 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

. Therefore,

ρ(R) = det

R


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1


 = det


R 0 0 −1
0 R 0 −1
0 0 R −1
0 0 0 R − 1


Implies, ρ(R) = R4 − R3. Since ρ(R) = 0, so R4 − R3 = 0. Therefore, the roots of the first characteristics
polynomial are R1 = R2 = R3 = 0 and R4 = 1 and ρ(R) satisfies the condition |R| ≤ 1 and |R| = 1 is simple,
then our block hybrid scheme given by Eqs. (14) - (17) is zero stable.

Figure 1. Stability region of the two-step with three hybrid points method

3.4. Convergence

The convergence of the hybrid two-step method is considered in the light of its basic properties, that is the
consistency and zero-stability; in conjunction with the fundamental theorem of Dahlquist for linear multi-step
method which states that "the necessary and sufficient condition for a multi-step method to be convergent is
for it to be consistent and zero-stable", [4]. Then the hybrid block method discussed is convergent since it is
consistent and zero-stable.

3.5. Numerical Implementation of the Scheme

In this section, we test the effectiveness and validity of our derived scheme by applying it to some first
order differential equations. Unlike the predictor-corrector method which requires that the starting values
yn+j, j = 0, 1, 2, ... be generated first, the proposed method is self starting thereby reducing the amount of
work in the computation. For error calculation, the error formula is given by

E(xn) = |y(x)− y(xn)| . (24)

In (18), y(x) is the exact solution for the problem considered and y(xn) is the approximate solution obtained
using derived methods.

All computations and programs are carried out with the aid of Maple 13 software.

Example 1 ([19]). Consider the following nonlinear Ordinary Differential Equation

y′ = −2xy2, y(0) = 1 : 0 ≤ x ≤ 1. (25)

The exact solution is y(x) = (x2 + 1)−1.
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Table 1 shows the comparison between our method and the Euler method with.

Table 1. Numerical results for Example 1: Comparison between the absolute errors in our method and Euler
method

x Exact solution Euler method error Our method error
0.0 1.00000 1.00000 0.000000 1.00000 0.000000
0.1 0.99010 1.00000 9.900e-3 0.99010 0.000000
0.2 0.96154 0.98000 1.846e-2 0.96153 1.000e-5
0.3 0.91743 0.94158 2.415e-2 0.91744 1.000e-5
0.4 0.86207 0.88839 2.632e-2 0.86207 0.000000
0.5 0.80000 0.82525 2.525e-2 0.80000 0.000000
0.6 0.73529 0.75715 2.186e-2 0.73529 0.000000
0.7 0.67114 0.68835 1.721e-2 0.67113 1.000e-5
0.8 0.60976 0.62202 1.226e-2 0.60976 0.000000
0.9 0.55249 0.56011 7.620e-3 0.55250 1.000e-5
1.0 0.50000 0.50364 3.640e-3 0.50000 0.000000

Example 2 ([19]). Consider the following linear Ordinary Differential Equation

y′ = x + y, y(0) = 1 : 0 ≤ x ≤ 1. (26)

The exact solution is y(x) = 2ex − x − 1.
Table 2 shows the comparison between our method; third order Adams-Moulton (A-M) method and

fourth order Milne-Simpson (M-S) method. Applying the Adams-Moulton and Milne-Simpson methods, the
starting value y1 was determined using Taylor series method of appropriate order.

Table 2. Numerical results for Example 2: Comparison between the absolute errors in our method and other
methods in literature

x Exact solution Error in our method Error in A-M Error in M-S
0.0 1.0000000 0.0000000 0.0000000 0.0000000
0.1 1.1103418 0.0000000 8.5.000e-6 2.0000e-7
0.2 1.2428055 0.0000000 3.0000e-7 2.0000e-7
0.3 1.3997176 1.0000e-7 1.1200e-5 1.0000e-7
0.4 1.5836494 0.0000000 2.4300e-5 5.0000e-7
0.5 1.7974425 0.0000000 4.0200e-5 5.0000e-7

Example 3. Consider the nonlinear Ordinary Differential Equation

y′ =
1
2
(1 − y), y(0) =

1
2

, x ∈ [0, 1]. (27)

The exact solution is y(x) = 1 − 1
2 e−

1
2 x.

Table 3. Numerical results for Example 3: Comparison between the absolute errors in our method and other
methods in literature

x Error in our method Error in OSBM3H Error in OSHBM Error in CM3HAM
0.0 0.000000000 0.000000000 0.000000000 0.000000000
0.1 3.01260E-17 1.99840E-15 1.71400E-14 6.78013E-13
0.2 5.49357E-17 3.88578E-15 3.26000E-14 6.35936E-13
0.3 5.83702E-17 5.44009E-15 4.65300E-14 6.38045E-13
0.4 5.89498E-17 6.99441E-15 5.90200E-14 1.18994E-12
0.5 7.20996E-17 8.21565E-15 7.01800E-14 1.12410E-12
0.6 8.43851E-17 9.54792E-15 8.01100E-14 1.09901E-12
0.7 8.85311E-17 1.05471E-14 8.89100E-14 1.54798E-12
0.8 9.33604E-17 1.13243E-14 9.66500E-14 1.46805E-12
0.9 2.67745E-16 1.22125E-14 1.03420E-13 1.41909E-12
1.0 2.98500E-16 1.28786E-14 1.09310E-13 1.78202E-12
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Example 4. Consider the nonlinear Ordinary Differential Equation

y′ = −10(y − 1)2, y(0) = 2, x ∈ [0, 0.1]. (28)

The exact solution is y(x) = 1 + (1 + 10x)−1.
Table 4 shows the comparison between our method; Block Method with One Hybrid Point (BM1HP) by

[22], One-Sixth Hybrid Block Method (OSHBM) derived by using the Chebyshev polynomials by [21] and
One-Step Block Method with Three Hybrid (OSBM3H) points by [6].

Table 4. Numerical results for Example 4: Comparison between the absolute errors in our method and other
methods in literature

x Error in our method Error in OSBM3H Error in BM1HP Error in OSHBM
0.0 0.0000000 0.0000000 0.0000000 0.0000000
0.01 1.61332E-14 1.61332E-10 2.82900E-7 1.55825E-6
0.02 2.14045E-14 2.14045E-10 4.04578E-7 2.39975E-6
0.03 2.22905E-14 2.22905E-10 4.47254E-7 2.83045E-6
0.04 2.14208E-14 2.14208E-10 4.50903E-7 3.02094E-6
0.05 1.99082E-14 1.99082E-10 4.35625E-7 3.06956E-6
0.06 1.82326E-14 1.82326E-10 4.11764E-7 3.03457E-6
0.07 1.65980E-14 1.65980E-10 3.84699E-7 2.95115E-6
0.08 1.50853E-14 1.50853E-10 3.57218E-7 2.84088E-6
0.09 1.37194E-13 1.37194E-10 3.30725E-7 2.71713E-6
0.10 1.25003E-13 1.25003E-10 3.05879E-7 2.58816E-6

4. Conclusion

A two-step block method with two hybrid points for the numerical solution of first order ordinary
differential equations has been proposed and discussed. The method was derived through interpolation of
the assumed power series solution at the point x = xn and collocation of its first ordered derivative at equally
spaced points in the interval of consideration. The consistency, zero-stability and applicability of the proposed
method were considered and well discussed. The analysis of the method showed that it is convergent since
consistency and zero-stability properties are satisfied. Numerical results as presented in Tables 1-4 show that
the method performs better than most of the existing methods in literature. Furthermore, the method produces
results that are very close to the exact solutions for all the problems considered.
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