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Abstract: In this paper, we use the φ6-model expansion method to construct the traveling wave solutions
for the reaction-diffusion equation. The method of φ6-model expansion enables the explicit retrieval of a
wide variety of solution types, such as bright, singular, periodic, and combined singular soliton solutions.
Kink-type solitons, also known as topological solitons in the context of water waves, are another type
of solution that can be explicitly retrieved. This study’s results might enhance the equation’s nonlinear
dynamical properties. The method proposes a practical and efficient method for solving a sizable class of
nonlinear partial differential equations. The dynamical features of the data are explained and highlighted
using exciting graphs.
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1. Introduction

The study of surfaces in geometry (see [1–5]) and a variety of mechanical issues are where partial
differential equations (PDEs) first showed up. The study of various issues brought on by partial differential
equations attracted the attention of eminent mathematicians worldwide in the late 19th century. This work
was primarily motivated by the fact that partial differential equations commonly appear in the mathematical
analysis of a wide range of problems in science and engineering and describe many fundamental natural laws
[6]. It is now incredibly beneficial to look for precise answers to nonlinear evolution equations and partial
differential equations NLEEs using various techniques. There are numerous effective techniques, such as the
inverse scattering transform approach [7], the Homoclinic technique [8], the sinh-Gordon function method [9],
the generalized exponential rational function method [10], the auxiliary equation method [11], An alternative
method [12], the Bernoulli sub-equation function method [13,14], the sub-equation analytical method [15], the
modified sub-equation method [16], the auto-Backlund transformation method [17] and so on.

This study focuses on the reaction-diffusion equation, and the equation has been investigated via many
direct methods. Among these are; The sine-Gordon expansion method [18], the rational (G′/G)-expansion
method [19], the (G′/G)-expansion method [20], the projective Riccati equation method [21]. The
reaction-diffusion model is studied in this research using the newly developed φ6–model expansion method
[22–25]), which results in the restoration of optical solitary wave solutions.

The plan for this work is provided below. In §2, a presentation of the φ6-model expansion method will
be provided. Next, the reaction-diffusion model will be developed using the φ6 approach in §3 to provide
new traveling wave solutions to the reaction-diffusion equation. Moreover, the associated 3D, 2D, and density
graphs clearly illustrate the physical structure of the traveling wave solution. Finally, in §4, conclusions are
reached.

2. The φ6-model expansion technique

According to [22–25], the steps involves for the φ6-model expansion technique are given as:
Step-1: Assuming the nonlinear evolution equation (NLEE) for W = W(x, t) is in the form.

H(W, Wx, Wt, Wxx, Wxt, ...) = 0, (1)
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here H is a polynomial of W(x, t) which involves highest order partial derivatives and its nonlinear terms.
Step-2: By using the wave transformation

W(x, t) = W(ζ), ζ = x − vt, (2)

where v represents wave speed and Eq. (1) can be converted into the nonlinear ordinary differential equation
shown below.

Ω(W, W
′
, WW

′
, W

′′
, ...) = 0, (3)

where the derivatives with respect to ζ are shown by prime.
Step-3: Suppose that the formal solution to Eq. (3) exists:

W (ζ) =
2M

∑
j=0

αjQj(ζ), (4)

M can be gotten using the balancing rule, αj(j = 0, 1, 2, . . . , M) are to be determined constants and Q(ζ)

satisfies the auxiliary NLODE;{
Q′2(ζ) = h0 + h2Q2(ζ) + h4Q4(ζ) + h6Q6(ζ),

Q
′′
(ζ) = h2Q(ζ) + 2h4Q3(ζ) + 3h6Q5(ζ),

(5)

here hj(j = 0, 2, 4, 6) are real constants that will be found later.
Step-4: It is known that the solution to Eq. (5) is given as;

Q(ζ) =
P(ζ)√

f P2(ζ) + g
, (6)

P(ζ) is the Jacobi elliptic equation solution, provided that 0 < f P2(ζ) + g

P′2(ζ) = l0 + l2P2(ζ) + l4P4(ζ), (7)

where lj(j = 0, 2, 4) are unknown constants to be determined, g and f are given by f = h4(l2−h2)
(l2−h2)2+3l0l4−2l2(l2−h2)

,

g = 3l0h4
(l2−h2)2+3l0l4−2l2(l2−h2)

,
(8)

under the restricted condition

h2
4(l2 − h2)[9l0l4 − (l2 − h2)(2l2 + h2)] + 3h6[−l2

2 + h2
2 + 3l0l4]2 = 0. (9)

Step-5: The Jacobi elliptic solutions of Eq. (7) can be calculated when 0 < m < 1, the exact solutions of Eq. (1)
can be derived by substituting Eq. (6) and Eq. (7) into Eq. (4).

Function m → 1 m → 0 Function m → 1 m → 0
sn(ζ, m) tanh(ζ) sin(ζ) ds(ζ, m) csch(ζ) csc(ζ)
cn(ζ, m) sech(ζ) cos(ζ) sc(ζ, m) sinh(ζ) tan(ζ)
dn(ζ, m) sech(ζ) 1 sd(ζ, m) sinh(ζ) sin(ζ)
ns(ζ, m) coth(ζ) csc(ζ) nc(ζ, m) cosh(ζ) sec(ζ)
cs(ζ, m) csch(ζ) cot(ζ) cd(ζ, m) 1 cos(ζ)

3. Application to the reaction-diffusion equation

The φ6-model expansion method, which was explained in the previous part, we take into account the
reaction-diffusion equation’s following form.

Wtt + dW + nW3 + βWxx = 0, (10)
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here real constants β , d and n are the real constants, Eq. (10) is reduced to the following ODE using the
traveling wave transformation W(x, t) = W(ζ) = G(x − vt):

(v2 + β)W
′′
+ nW3 + dW = 0, (11)

where M + 2 = 3M, therefore, M = 1 is obtained as a result of the balance principle between W
′′

and W3; so,
the solution form can be expressed as

W(ζ) = α0 + α1Q(ζ) + α2Q2(ζ), (12)

where α0, α1 and α2 are constants to be determined.
We obtain the following algebraic equations by substituting Eq. (12) along with Eq. (5) into Eq. (11) and

setting the coefficients of all powers of Qj(ζ), j = 0, 1, . . . , 6 to be equal to zero;

Q0(ζ) : α0d + 2α2βh0 + 2α2h0v2 + α3
0n = 0,

Q1(ζ) : α1d + α1βh2 + α1h2v2 + 3α2
0α1n = 0,

Q2(ζ) : α2d + 4α2βh2 + 4α2h2v2 + 3α0α2
1n + 3α2

0α2n = 0,

Q3(ζ) : 2α1βh4 + 2α1h4v2 + α3
1n + 6α0α2α1n = 0,

Q4(ζ) : 6α2βh4 + 6α2h4v2 + 3α0α2
2n + 3α2

1α2n = 0,

Q5(ζ) : 3α1βh6 + 3α1h6v2 + 3α1α2
2n = 0,

Q6(ζ) : 8α2βh6 + 8α2h6v2 + α3
2n = 0.

(13)

The following solutions are obtained after solving the above system of equations:α0 = 0, α1 =
i
√

2
√

h4
√

β+v2
√

n , α2 = 0,

d = h2
(
−v2)− βh2, h6 = 0.

(14)

The following solutions of Eq. (10) can be obtained with the help of Eqs. (6), (12) and (14) along with the Jacobi
elliptic functions in the table above.

1. If l0 = 1, l2 = −(1 + m2), l4 = m2, 0 < m < 1, then P(ζ) = sn(ζ, m) or P(ζ) = cd(ζ, m), and we have

W1,0 (x, t) = α1

 sn(ζ, m)√
f (sn(ζ, m))2 + g

 , (15)

or

W1,1 (x, t) = α1

 cd(ζ, m)√
f (cd(ζ, m))2 + g

 , (16)

such that ζ = x − vt and f and g in Eq. (8) are given by

f =
h4

(
h2 + m2 + 1

)
−h2

2 + m4 − m2 + 1
,

g = − 3h4

−h2
2 + m4 − m2 + 1

,

under the restriction condition

h2
4

(
−h2 − m2 − 1

) (
9m2 −

(
−h2 − m2 − 1

) (
h2 + 2

(
−m2 − 1

)))
= 0.

If m → 1, then the kink soliton is obtained

W1,2 (x, t) = − i
√

2
√

h4
√

β + v2 tanh(tv − x)
√

n
√

h4(3−(h2+2) tanh2(tv−x))
h2

2−1

, (17)
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such that
h2

4 (−h2 − 2) (9 − (−h2 − 2) (h2 − 4)) = 0.

If m → 0, then the periodic solution is obtained

(a) |W1,2| (b) |W1,2| (c) |W1,2|

Figure 1. The numerical simulations corresponding to |W1,2| given by Eq. (17), for m = 1 ; (a) is the 3D graphic,
(b) is the 2D-contour graphic while (c) is the 2D graphic for β = 0.1, v = 0.6, n = 0.5, h4 = 0.3, h2 = 0.1.

W1,3 (x, t) = − i
√

2
√

h4
√

β + v2 sin(tv − x)

√
n

√
h4

(
3

h2
2−1

− sin2(tv−x)
h2−1

) , (18)

such that
h2

4 (−h2 − 1) (− (−h2 − 1) (h2 − 2)) = 0.

2. If l0 = 1 − m2, l2 = 2m2 − 1, l4 = −m2, 0 < m < 1, then P(ζ) = cn(ζ, m) therefore

(a) |W1,3| (b) |W1,3| (c) |W1,3|

Figure 2. The numerical simulations corresponding to |W1,3| given by Eq. (18), for m = 1 ; (a) is the 3D graphic,
(b) is the 2D-contour graphic while (c) is the 2D graphic for β = 0.2, v = 0.12, n = 0.15, h4 = 0.03, h2 = 0.1.

W2,1 (x, t) = α1

 cn(ζ, m)√
f (cn(ζ, m))2 + g

 , (19)

where f and g are determined by

f =
h4

(
h2 − 2m2 + 1

)
−h2

2 + m4 − m2 + 1
,

g =
3h4

(
m2 − 1

)
−h2

2 + m4 − m2 + 1
,

under the constraint condition

h2
4

(
−h2 + 2m2 − 1

) (
−

(
−h2 + 2m2 − 1

) (
h2 + 2

(
2m2 − 1

))
− 9

(
1 − m2

)
m2

)
= 0
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If m → 1, then the bright soliton is retrieved

W2,2 (x, t) =
i
√

2
√

h4
√

β + v2sech(tv − x)
√

n

√
− h4sech2(tv−x)

h2+1

(20)

provided that
h2

4 (1 − h2) (− (1 − h2) (h2 + 2)) = 0.

If m → 0, then the periodic solution is obtained

W2,3 (x, t) =
i
√

2
√

h4
√

β + v2 cos(tv − x)

√
n

√
h4

(
3

h2
2−1

− cos2(tv−x)
h2−1

) , (21)

such that
h2

4 (−h2 − 1) (− (−h2 − 1) (h2 − 2)) = 0.

3. If l0 = m2 − 1, l2 = 2 − m2, l4 = −1, 0 < m < 1, then P(ζ) = dn(ζ, m) which gives

(a) |W2,3| (b) |W2,3| (c) |W2,3|

Figure 3. The numerical simulations corresponding to |W2,3| given by Eq. (21), for m = 1 ; (a) is the 3D graphic,
(b) is the 2D-contour graphic while (c) is the 2D graphic for β = 0.3, v = 1.2, n = 1.2, h4 = 0.4, h2 = 0.3.

W3,1 (x, t) = α1

 dn(ζ, m)√
f (dn(ζ, m))2 + g

 , (22)

where f and g are determined by

f =
h4

(
h2 + m2 − 2

)
−h2

2 + m4 − m2 + 1
,

g = −
3h4

(
m2 − 1

)
−h2

2 + m4 − m2 + 1
,

under the restriction condition

h2
4

(
−h2 − m2 + 2

) (
−

(
−h2 − m2 + 2

) (
h2 + 2

(
2 − m2

))
− 9

(
m2 − 1

))
= 0

If m → 0, then the rational solution is obtained

W3,3 (x, t) =
i
√

2
√

h4
√

β + v2√
− (h2−2)h4

h2
2−1

− 3h4
h2

2−1

√
n

, (23)

such that
h2

4 (2 − h2) (9 − (2 − h2) (h2 + 4)) = 0.
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4. If l0 = m2, l2 = −
(
1 + m2), l4 = 1, 0 < m < 1, then P(ζ) = ns(ζ, m) or P(ζ) = dc(ζ, m) then

W4,0 (x, t) = α1

 ns(ζ, m)√
f (ns(ζ, m))2 + g

 , (24)

or

W4,1 (x, t) = α1

 dc(ζ, m)√
f (dc(ζ, m))2 + g

 , (25)

where f and g are given by

f =
h4

(
h2 + m2 + 1

)
−h2

2 + m4 − m2 + 1
,

g = − 3h4m2

−h2
2 + m4 − m2 + 1

,

under the constraint condition

h2
4

(
−h2 − m2 − 1

) (
9m2 −

(
−h2 − m2 − 1

) (
h2 + 2

(
−m2 − 1

)))
= 0.

If m → 1, then the dark singular solution is obtained

W4,2 (x, t) = − i
√

2
√

h4
√

β + v2 coth(tv − x)
√

n
√
− h4((h2+2)csch2(tv−x)+h2−1)

h2
2−1

(26)

such that
h2

4 (−h2 − 2) (9 − (−h2 − 2) (h2 − 4)) = 0

If m → 0, then the periodic solution is obtained

(a) |W4,2| (b) |W4,2| (c) |W4,2|

Figure 4. The numerical simulations corresponding to |W4,2| given by Eq. (26), for m = 1 ; (a) is the 3D graphic,
(b) is the 2D-contour graphic while (c) is the 2D graphic for β = 3.5, v = 1.001, n = 2.1, h4 = 0.6, h2 = 0.1.

W4,3 (x, t) = − i
√

2
√

h4
√

β + v2 csc(tv − x)
√

n
√
− h4 csc2(tv−x)

h2−1

, (27)

such that
h2

4 (−h2 − 1) (− (−h2 − 1) (h2 − 2)) = 0.

5. If l0 = −m2, l2 = 2m2 − 1, l4 = 1 − m2, 0 < m < 1, then P(ζ) = nc(ζ, m) and we have

W5,1 (x, t) = α1

 nc(ζ, m)√
f (nc(ζ, m))2 + g

 , (28)
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where f and g are given by

f =
h4

(
h2 − 2m2 + 1

)
−h2

2 + m4 − m2 + 1
,

g =
3h4m2

−h2
2 + m4 − m2 + 1

,

under the constraint condition

h2
4

(
−h2 + 2m2 − 1

) (
−

(
−h2 + 2m2 − 1

) (
h2 + 2

(
2m2 − 1

))
− 9

(
1 − m2

)
m2

)
= 0.

If m → 1, then the singular solitary wave solution is obtained

W5,2 (x, t) =
i
√

2
√

h4
√

β + v2 cosh(tv − x)

√
n

√
h4

(
− cosh2(tv−x)

h2+1 − 3
h2

2−1

) , (29)

such that
h2

4 (1 − h2) (− (1 − h2) (h2 + 2)) = 0.

If m → 0, then the periodic solution is obtained

(a) |W5,2| (b) |W5,2| (c) |W5,2|

Figure 5. The numerical simulations corresponding to |W5,2| given by Eq. (29), for m = 1 ; (a) is the 3D graphic,
(b) is the 2D-contour graphic while (c) is the 2D graphic for β = 0.9, v = 0.75, n = 0.2, h4 = 1.8, h2 = 0.3.

W5,3 (x, t) =
i
√

2
√

h4
√

β + v2 sec(tv − x)
√

n
√
− h4 sec2(tv−x)

h2−1

, (30)

such that
h2

4 (−h2 − 1) (− (−h2 − 1) (h2 − 2)) = 0.

6. If l0 = −1, l2 = 2 − m2, l4 = −
(
1 − m2), 0 < m < 1, then P(ζ) = nd(ζ, m) and we have

W6 (x, t) = α1

 nd(ζ, m)√
f (nd(ζ, m))2 + g

 , (31)

where f and g are given by

f =
h4

(
h2 + m2 − 2

)
−h2

2 + m4 − m2 + 1
,

g =
3h4

−h2
2 + m4 − m2 + 1

,
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under the constraint condition

h2
4

(
−h2 − m2 + 2

) (
−

(
−h2 − m2 + 2

) (
h2 + 2

(
2 − m2

))
− 9

(
m2 − 1

))
= 0.

7. If l0 = 1, l2 = 2 − m2, l4 = 1 − m2,0 < m < 1, then P(ζ) = sc(ζ, m), and we have

W7,1 (x, t) = α1

 sc(ζ, m)√
f (sc(ζ, m))2 + g

 , (32)

where f and g are given by

f =
h4

(
h2 + m2 − 2

)
−h2

2 + m4 − m2 + 1
,

g = − 3h4

−h2
2 + m4 − m2 + 1

,

under the constraint condition

h2
4

(
−h2 − m2 + 2

) (
9
(

1 − m2
)
−

(
−h2 − m2 + 2

) (
h2 + 2

(
2 − m2

)))
= 0.

If m → 1, then the soliton solution is retrieved

W7,2 (x, t) = − i
√

2
√

h4
√

β + v2 sinh(tv − x)

√
n

√
h4

(
3

h2
2−1

− sinh2(tv−x)
h2+1

) , (33)

such that
h2

4 (1 − h2) (− (1 − h2) (h2 + 2)) = 0.

If m → 0, then the periodic wave solution is obtained

(a) |W7,2| (b) |W7,2| (c) |W7,2|

Figure 6. The numerical simulations corresponding to |W7,2| given by Eq. (33), for m = 1 ; (a) is the 3D graphic,
(b) is the 2D-contour graphic while (c) is the 2D graphic for β = 0.1, v = 0.9, n = 0.2, h4 = 0.24, h2 = 0.1.

W7,3 (x, t) = − i
√

2
√

h4
√

β + v2 tan(tv − x)
√

n
√

h4(3−(h2−2) tan2(tv−x))
h2

2−1

, (34)

such that
h2

4 (2 − h2) (9 − (2 − h2) (h2 + 4)) = 0.

8. If l0 = 1, l2 = 2m2 − 1, l4 = −m2 (1 − m2), 0 < m < 1, then P(ζ) = sd(ζ, m) and we have

W8 (x, t) = α1

 sd(ζ, m)√
f (sd(ζ, m))2 + g

 , (35)
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(a) |W7,3| (b) |W7,3| (c) |W7,3|

Figure 7. The numerical simulations corresponding to |W7,3| given by Eq. (34), for m = 1 ; (a) is the 3D graphic,
(b) is the 2D-contour graphic while (c) is the 2D graphic for β = 0.5, v = 1.8, n = 0.3, h4 = 0.06, h2 = 0.1.

where f and g are given by

f =
h4

(
h2 − 2m2 + 1

)
−h2

2 + m4 − m2 + 1
,

g = − 3h4

−h2
2 + m4 − m2 + 1

,

under the constraint condition

h2
4

(
−h2 + 2m2 − 1

) (
−

(
−h2 + 2m2 − 1

) (
h2 + 2

(
2m2 − 1

))
− 9

(
1 − m2

)
m2

)
= 0.

9. If l0 = 1 − m2, l2 = 2 − m2, l4 = 1, 0 < m < 1, then P(ζ) = cs(ζ, m) and we have

W9,1 (x, t) = α1

 cs(ζ, m)√
f (cs(ζ, m))2 + g

 , (36)

where f and g are given by

f =
h4

(
h2 + m2 − 2

)
−h2

2 + m4 − m2 + 1
,

g =
3h4

(
m2 − 1

)
−h2

2 + m4 − m2 + 1
,

under the constraint condition

h2
4

(
−h2 − m2 + 2

) (
9
(

1 − m2
)
−

(
−h2 − m2 + 2

) (
h2 + 2

(
2 − m2

)))
= 0.

If m → 1, then the singular soliton solution is obtained

W9,2 (x, t) = − i
√

2
√

h4
√

β + v2csch(tv − x)
√

n

√
− h4csch2(tv−x)

h2+1

, (37)

such that
h2

4 (1 − h2) (− (1 − h2) (h2 + 2)) = 0.

If m → 0, then the periodic wave solution is obtained

W9,3 (x, t) = − i
√

2
√

h4
√

β + v2 cot(tv − x)
√

n
√

h4(−(h2−2) csc2(tv−x)+h2+1)
h2

2−1

, (38)
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such that
h2

4 (2 − h2) (9 − (2 − h2) (h2 + 4)) = 0.

10. If l0 = −m2 (1 − m2), l2 = 2m2 − 1, l4 = 1, 0 < m < 1, then P(ζ) = ds(ζ, m) and we have

W10 (x, t) = α1

 ds(ζ, m)√
f (ds(ζ, m))2 + g

 , (39)

where f and g are given by

f =
h4

(
h2 − 2m2 + 1

)
−h2

2 + m4 − m2 + 1
,

g = −
3h4m2 (m2 − 1

)
−h2

2 + m4 − m2 + 1
,

under the constraint condition

h2
4

(
−h2 + 2m2 − 1

) (
−

(
−h2 + 2m2 − 1

) (
h2 + 2

(
2m2 − 1

))
− 9

(
1 − m2

)
m2

)
= 0.

11. If l0 = 1−m2

4 , l2 = 1+m2

2 , l4 = 1−m2

4 , 0 < m < 1, then P(ζ) = nc(ζ, m)± sc(ζ, m) or P(ζ) = cn(ζ,m)
1±sn(ζ,m)

and we
have

W11,0 (x, t) = α1

 nc(ζ, m)± sc(ζ, m)√
f (nc(ζ, m)± sc(ζ, m))2 + g

 , (40)

or

W11,1 (x, t) = α1


cn(ζ,m)

1±sn(ζ,m)√
f
(

cn(ζ,m)
1±sn(ζ,m)

)2
+ g

 , (41)

where f and g are given by

f = −
8h4

(
−2h2 + m2 + 1

)
−16h2

2 + m4 + 14m2 + 1
,

g =
12h4

(
m2 − 1

)
−16h2

2 + m4 + 14m2 + 1
,

under the constraint condition

h2
4

(
1
2

(
m2 + 1

)
− h2

)(
9

16

(
1 − m2

)2
−

(
1
2

(
m2 + 1

)
− h2

)(
h2 + m2 + 1

))
= 0.

If m → 1, then the exponential solution is obtained

W11,2 (x, t) =
i
√

2
√

h4
√

β + v2ex−tv

√
n
√
− h4e2x−2tv

h2+1

, (42)

such that
h2

4 (1 − h2) (− (1 − h2) (h2 + 2)) = 0.

If m → 0, then the combined periodic wave solutions are retrieved

W11,3 (x, t) =
i
√

h4
√

β + v2(sec(tv − x)− tan(tv − x))
√

2
√

n
√

h4(4h2(sin(tv−x)−1)+sin(tv−x)+5)
(16h2

2−1)(sin(tv−x)+1)

, (43)
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or

W11,4 (x, t) = − i
√

h4
√

β + v2 cos(tv − x)

√
2
√

n(sin(tv − x)− 1)

√
h4

(
2(1−2h2) cos2(tv−x)

(sin(tv−x)−1)2
+3

)
16h2

2−1

, (44)

are obtained, such that

h2
4

(
1
2
− h2

)(
9

16
−

(
1
2
− h2

)
(h2 + 1)

)
= 0.

(a) |W11,4| (b) |W11,4| (c) |W11,4|

Figure 8. The numerical simulations corresponding to |W11,4| given by Eq. (44), for m = 1 ; (a) is the 3D graphic,
(b) is the 2D-contour graphic while (c) is the 2D graphic for β = 2.9, v = 0.968, n = 0.4, h4 = 0.3, h2 = 0.1.

4. Conclusion

The reaction-diffusion equation is examined in this study. Using the φ6-model expansion technique,
bright, kink, periodic, and combined periodic soliton solutions are retrieved. Furthermore, singular soliton
solutions are seen favorably. The soliton solutions at any given time are shown in Figures 1 − 8, which is
important for the movement of energy from one location to another. It is the internal dynamics of the traveling
wave for various parameter values. We might conclude that the traveling wave behavior varies for different
values of each. The study’s findings are hoped to boost the equation’s nonlinear dynamical features. The
method suggests a promising and efficient strategy for solving a large class of nonlinear partial differential
equations.
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