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Abstract: Let S be a dominating set of a graph G. The set S is called a pendant dominating set of G if the
induced subgraph of S contains a minimum of one node of degree one. The minimum cardinality of the
pendant dominating set in G is referred to as the pendant domination number of G, indicated by γpe(G).
This article analyzes the effect of γpe(G) when an arbitrary node or edge is removed.
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1. Introduction

C onsider a connected graph with a finite number of nodes. Then, the concept of pendant domination was
defined in motivation to the idea of isolated domination in graphs. The parameter pendant domination

lies between dominating and connected sets in a graph since a γ− set requires no backup for the nodes. In
contrast, a connected dominating set requires backup for every node in the set. However, in the concept of
pendant domination, at least the node should have a backup. This article analyzes the effect of γpe(G) when
an arbitrary node or edge is removed.

The analysis of the impact of eliminating a point or an edge on any graph-theoretic variable has a
significant idea in the field of networks. That is, analyzing the removal of a point is more vital as a significant
thought in a network’s topological plan is fault tolerance, which means the performance of the network’s
ability to provide service despite defective components. In the presence of a fault, the activity of the network
can be determined by calculating the impact that eliminating an edge or a point from its underlying graph
G has on the fault-tolerance criterion. For more details of applications on vertex and edge removal, we refer
[1–3]. Hence the changes on γ(G) when G is changed by eliminating a point or eliminating or expansion of an
edge were studied by so many researchers.

The analysis of effect of domination parameter is given in Chapter 5 of Haynes et al., [4]. In this article we
begin a similar study corresponding to the pendant domination number of a graph.

Let the graph G be any nontrivial simple graph with n nodes and m edges. The open neighborhood of a
nodes v is indicated by N(v) and is the set having all the nodes incident to v. The closed neighborhood of the
nodes v is indicated by N[v] and is the set having all set nodes incident to the node v along with the node v.
The least degree of a vertex in a graph is indicated by δ(G) and highest of the degree of a graph is indicated by
∆(G). If δ(G) = ∆(G), then G is referred as a regular graph. If degree of the node v is 0, then v is referred as an
isolated node of G and the degree of the node u is 1, then u is called a pendant node. For basic terminologies of
graph and domination, see [5,6]. An edge e = uv is contiguous to a node of degree one is referred as a pendant
edge.

The following definition and results are required for our study;

Definition 1. A dominating set S of G is referred as a pendant dominating set if the graph induced by S having
minimum one node of degree one. The least cardinality of a pendant dominating set in G is referred as the
pendant domination number of G, indicated by γpe(G) [7].

Open J. Math. Sci. 2022, 6, 187-191; doi:10.30538/oms2022.0187 https://pisrt.org/psr-press/journals/oms

https://pisrt.org/psr-press/journals/oms
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oms


Open J. Math. Sci. 2022, 6, 187-191 188

Theorem 1. [7] If Pn is a path graph with n nodes and n ≥ 2. Then

γpe(Pn) =


n
3 + 1, if n ≡ 0(mod3);
⌈ n

3 ⌉, if n ≡ 1(mod3);
⌈ n

3 ⌉+ 1, if n ≡ 2(mod3).

Theorem 2. [7] If Cn is a cycle graph with n nodes and n ≥ 3. Then

γpe(Cn) =


n
3 + 1, if n ≡ 0(mod3);
⌈ n

3 ⌉, if n ≡ 1(mod3);
⌈ n

3 ⌉+ 1, if n ≡ 2(mod3).

2. Vertex removal

We observe that the pendant domination parameter value of a graph G may increase or decrease or remain
same when a point is removal from G. For example, in a complete graph Km (m > 2) or complete bipartite
graph Km,n, removal of any one point it does not affect the value of γpe. In a sunlet graph the removal of a node
of degree one it decreases the value of γpe by one. In barbell graph v1, v2 are the adjacent nodes connected two
copies of complete graphs. The removal of the nodes v1 in barbell graph increases the value of γpe by 2. Hence
we can define the point set V(G) of G into three subsets,

V0
pe = {v ∈ V : γpe(G − v) = γpe(G)},

V−
pe = {v ∈ V : γpe(G − v) < γpe(G)},

V+
pe = {v ∈ V : γpe(G − v) > γpe(G)}.

Remark 1. There is a graph such that the sets V0
pe, V−

pe and V+
pe are nonempty. For example for the graph G

given in Figure 1, we have V0
pe = {4}, V−

pe = {7} and V+
pe = {3}.

Figure 1. A graph for which V0
pe, V−

pe and V+
pe are nonempty.

Theorem 3. If G ∼= Pn and n ≥ 3, then we have

(i) If n ≡ 0(mod3) or n ≡ 1(mod3), then

vi ∈


Vo

pe, if i = 1 or n;

V+
pe , if i ≡ 2 or 3(mod3).
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(ii) If n ≡ 2(mod3), then

vi ∈



V−
pe , if i = 1 or n;

V+
pe , if i ≡ 0(mod3);

V0
pe, if i ≡ 2(mod3).

Proof. Case (i) n ≡ 0 or 1 (mod 3).
If n = 3k or n = 3k + 1, for k > 0. Then by Theorem 1, γpe(Pn) = k + 1. Here, we can be easily identified

that deleting of any one pendant nodes vi, where i = 1 or i = n in Pn the value of γpe is unalter. If we removal
of any one internal nodes vi, where i ≡ 1 or 2 or 3(mod 3), then the path Pn splits into two paths Pr1 and Pr2

such that either r1 ≡ 0(mod 3) and r2 ≡ 2(mod 3) or r1 ≡ 1(mod 3) and r2 ≡ 1(mod3). It can easily verified that
γpe(Pr1) + γpe(Pr2) = k + 2 = γpe(Pn) + 1. Thus γpe(Pn − v) = γpe(Pn) + 1 and therefore v ∈ V+

pe , ∀ v ∈ V(Pn).
Case (ii) n ≡ 2(mod 3).

If n = 3k+ 2 for some k > 0. Then by Theorem 1 γpe(Pn) = k+ 2. If we removal of any one pendant nodes
v1 or vn in Pn, then the value of γpe(Pn) is decreases by one i.e., γpe(Pn − v) = γpe(Pn−1) = k + 1 < γpe(Pn).
Thus, vi ∈ V−

pe .
If we removal of any one internal nodes vi where i ≡ 0(mod3), then the path spilt into two paths P3k1−1

and P3k2+2 for some positive integers k1 and k2 such that k1 + k2 = k. Now γpe(Pn − vi) = γpe(P3k1−1) +

γpe(P3k2+2) = (k1 + 1) + (k2 + 2) = γpe(Pn) + 1. Therefore vi ∈ V+
pe . If i ≡ 1 or 2(mod3) then removal of any

one internal nodes in Pn the path splits into two paths P3k1 and P3k2+1, where k1, k2 > 0 and k1 + k2 = k. Now
γpe(Pn − vi) = γpe(P3k1) + γpe(P3k2+1) = (k1 + 1) + (k2 + 1) = (k + 2) = γpe(Pn). Therefore vi ∈ V0

pe.

Theorem 4. If Cn is a cycle with n ≥ 4 nodes, then

V(Cn) ∈


V−

pe , if n ≡ 2(mod3);

Vo
pe, otherwise.

Proof. If n = 3k + 2 for some K > 0. Then by Theorem 2 γpe(Cn) = k + 2. If we removal of a nodes in Cn,
then γpe(Cn − v) = γpe(P3k+1) = k + 1 < k + 2 = γpe(Cn). Therefore, V = V−

pe . Now, if n = 3k, then again by
Theorem 2, γpe(Cn) = k + 1 and for any nodes v in Cn, γpe(Cn − v) = γpe(P3k−1) = k + 1 = γpe(Cn) and so,
V = Vo

pe. In a same method we can directly verified that V = Vo
pe when n = 3k + 1.

3. Edge removal

In this section, we analyze the impact of edge removal in the γpe(G) domination number of the graph G.
As in the previous scenario of nodes removal, we can observe that the pendant domination number γpe(G) of
a graph G may increment or diminish or stay same when an edge is deleting from G. Hence we can segment
the edge set E(G) of G into 3 subsets E+

pe, E−
pe and E0

pe as below,

E−
pe = {(u, v) ∈ E : γpe(G − uv) ≤ γpe(G)},

E0
pe = {(u, v) ∈ E : γpe(G − uv) = γpe(G)},

E+
pe = {(u, v) ∈ E : γpe(G − uv) ≥ γpe(G)}.

Theorem 5. Let Pn be a path graph with n ≥ 3 nodes, then we have

(i) If n ≡ 0 (mod 3), then

(vi, vi+1) ∈



E−
pe, if i = n − 1;

E+
pe, if i ≡ 0(mod3);

Eo
pe, if i ≡ 1(mod3).
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(ii) If n ≡ 1 (mod 3), then

(vi, vi+1) ∈


E0

pe, if i ≡ 2(mod3) or i = 1 or n − 1;

E+
pe, if i ≡ 0 or 1(mod3).

(ii) If n ≡ 2(mod3), then

(vi, vi+1) ∈


E−

pe, if i = 1 or n − 1;

E0
pe, otherwise.

Proof. Case (i) n ≡ 0(mod 3)
If n is a non-negative integer, then n = 3k. Then by Theorem 1, γpe(Pn) = k + 1. Here, we can easily

confirmed that removal of an edge e = (vi, vi+1), where i = 1 or i = n − 1 then the value of γpe is decreased
by one. Therefore e ∈ E−

pe. Now removal of an edge e ∈ (vi, vi+1), where i ≡ 0(mod3) then, the path splits
in to two paths P3k1−1 and P3k2+2 for some positive integers k1 and k2 such that k1 + k2 = k. Now γpe(Pn −
e) = γpe(P3k1−1) + γpe(P3k1+2) = (k1 + 1) + (k2 + 2) = γpe + 2. Therefore e ∈ E+

pe. If we remove the edge
e ∈ (vi, vi+1), where i ≡ 1(mod3) then, the path splits into two paths P3k1 and P3k2+1 for some k1, k2 > 0 such
that k1 + k2 = k − 1. Therefore γpe(Pn − e) = γpe(P3k1) + γpe(P3k2+1) = (k1 + 1) + (k2 + 1) = k + 1 = γpe(Pn).
Thus e ∈ E0

pe.
Case (ii) n ≡ 1(mod 3)

If n = 3k + 1 for non negative integer k. Then by Theorem 1, γpe(Pn) = k + 1. Now, removal of an
edge e ∈ (vi, vi+1) where i ≡ 0 or 1(mod3) then the path splits into two paths P3k1−1 or P3k1 and P3k2 or P3k2−1
for some positive integer k1 and k2 such that k1 + k2 = k. Now γpe(Pn − e) = γpe(P3k1−1) + γpe(P3k2) =

(k1 + 1) + (k2 + 1) = γpe(Pn) + 1. Thus e ∈ E+
pe. If we removal the edge e ∈ (vi, vi+1), where i = 1 or i = n − 1

or i ≡ 2(mod3) then, the value of γpe(Pn) is unaltered. Therefore e ∈ E0
pe.

Case (iii) n ≡ 2(mod 3)
Let n = 3k + 2 for non negative integer k. Then by Theorem 1, γpe(Pn) = k + 2. Now, removal of an edge

e ∈ (vi, vi+1), where i = 1 or i = n − 1 then it is simple to verify that the value of γpe is decreased by one.
Therefore e ∈ E−

pe. If we remove the edge e ∈ (vj, vj+1) where j ≡ 0 (mod3) or j ≡ 1 (mod3) or j ≡ 2 (mod3) then
the path splits into two paths Pl1 and Pl2 such that either l1 ≡ −1(mod3) and l2 ≡ 1(mod3) or l1 ≡ 0 (mod3)
and l2 ≡ 0(mod3). It can be easily verified that γpe(Pl1) + γpe(Pl2) = γpe(Pn). Thus γpe(Pn − e) = γpe(Pn) and
therefore e ∈ E0

pe.

Theorem 6. Let Cn be a cycle with n ≥ 4 nodes, then we have

E(Cn) =


E0

pe, if n ≡ 1(mod3);

E−
pe, Otherwise.

Proof. If n = 3k + 1, then by Theorem 2, γpe(Cn) = k + 1 and consequently γpe(Cn − e) = γpe(P3k−1) = k + 1.
So e ∈ E0

pe. Now, suppose n = 3k then by Theorem 2, γpe(Cn) = k + 1 and for any edge e in Cn then
γpe(Cn − e) = γpe(P3k−2) = k. So e ∈ E−

pe. Now similar way we can directly verify if n = 3k + 2.

Theorem 7. If G is a graph having exactly one node of degree zero and x ∈ V+
pe and y ∈ V−

pe , then there is no edge
between x and y.

Proof. Assume that x ∈ V+
pe , y ∈ V−

pe and (xy) ∈ E(G). Now let S′ be a pendant dominating set of G − y. If S′

contains x, then S′ is a pendant dominating set of G which contradicts the cardinality of γpe(G). On the other
hand, if S′ does not having the node x, then S′ ∪ {y} will be a pendant dominating set but does not contain x.
This is an inconsistency to the condition (ii) of Theorem 3 and hence the required result follows.

Theorem 8. If G is a graph without a node of degree zero, γpe(G) ̸= γpe(G − v), for each node v in V(G), then
V = V−

pe .
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Proof. Suppose γpe(G) ̸= γpe(G − v) ∀v ∈ V. Then, clearly Vo
pe = ∅. Now let us claim that V+

pe = ∅. Assume
v is a node in V+

pe . As a result of the condition (i) of Theorem 3, that v is in each γpe− set S of G. Let u be the
neighbor of v in V − S. As the node u does not belong to the set S, again by condition (i) of Theorem 3, we
have u /∈ V+

pe . Also since u and v are incident nodes, by Theorem 3, u /∈ V−
pe . Since (v ∈ V+

pe). Hence u ∈ V0
pe.

This contradiction completes the proof.

4. Edge addition

When an arbitrary edge is added then the pendant domination number remains unchanged. For an
example in complete graph if we add an arbitrary edge to any one nodes of complete graph then the value of
γpe does not alter.

UEA =⇒ {γpe(G + e) = γpe(G) ∀e ∈ E(G)}.

Theorem 9. Let G be graph and G ∈ UEA iff V−
pe = ∅.

Proof. Let G ∈ UEA and suppose a node x in G belongs to the set V−
pe . Thus, γpe(G − x) < γpe(G). Let S be a

γpe− set of G − x. Then adding edge xy for any y ∈ S gives γpe(G + xy) < γpe(G). This is a contradiction to
the condition G ∈ UEA.

Conversely, suppose G has no nodes in V−
pe and γpe(G + uv) = γpe(G)− 1 for some couple of nonadjacent

nodes u and v. Then any minimum pendant dominating set S of G + uv should contain either u or v, say v.
Hence S dominates G − u. Thus u ∈ V−

pe , a contradiction.

5. Conclusion

Nowadays, the study of domination-related parameters is an important area in graph theory, and many
scholars are working in this area. Moreover, the theory of pendant domination is a required graph theory field
with many practical applications. In this article, we investigated the impact of the evacuation of a node or an
edge on any graph.
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