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1. Introduction

I n this paper, we are interested in diffusion processes which have important applications in several
domains such as biology, economy and finance. Thus from this research we draw our attention to

discretize a Dirichlet form by computing its trace form through the scaling function θ as well as the speed
measure µ associated to Feller ’s one-dimensional diffusions operators d

dµ
d
dθ on an open interval Ω.

In order to compute traces of Feller’s Dirichlet forms on a countable set concerning a functional Tr, we
shall apply the methods developed in [1,2] for the transient case. Hence in this situation, we have to determine
the extended Dirichlet spaces Dext via Feller’s classification of the boundaries. At to end of this paper, we will
apply the obtained theoretical results to the Feller’s Dirichlet form associated with the 1-order Bessel operator.

We arranged this paper as follows. In §2, we briefly review Feller’s one-dimensional diffusions and basic
notations to construct the Dirichlet form associated with Feller’s operators. Then, in §3, we compute traces of
Dirichlet form explicitly concerning discrete measures supported by countable sets F. Finally, examples in §4
such as 1-order Bessel processes on a weighted graph (N, ω) illustrate the detailed results. We emphasis that a
Bessel process on the half-line is also the radial component of the standard Brownian motion in the Euclidean
space Rn (we refer to [3] for more details).

2. Preliminaries

Let Ω be an open interval of the real line R. We set E (θ) a Dirichlet form with domain D(θ) in H = L2(Ω, µ)

defined by

E (θ)[ f ] :=
∫

Ω
(

d f
dθ

(x))2 dθ(x).

Let a positive Radon measure ν with support F ⊂ Ω that charges no sets having zero capacity. We consider
Haux = L2(F, ν) and assume that trace operator

Tr : dom(Tr) ⊆ D(θ) ∩ L2(F, ν) → L2(F, ν), f 7→ f|F ,

is closed. We shall designate by Ě the trace form of E (θ) w.r.t Tr (or w.r.t the measure ν) and by Ď its domain.

2.1. Feller’s Dirichlet forms

In this section we will introduce a Dirichlet form associated with the Feller’s operator on some subsets of
R.

Let Ω = (0, ∞) and we consider a continuous strictly increasing function θ : Ω → R. Let

ACloc(Ω) := { f : Ω → R, locally absolutely continuous on Ω} ,
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and
ACθ(Ω) := { f : Ω → R, absolutely continuous w.r.t dθ on Ω}.

Assume that θ ∈ ACloc(Ω) such that

θ(x) =
∫ x

c
γ−1(t)dt, ∀ x ∈ Ω, c > 0,

where γ > 0 and γ−1 = 1
γ ∈ L1

loc(Ω). Obviously θ(dx) = γ−1(x)dx. Moreover, the scaling function θ can be
also regarded as a scaling measure on Borel subsets J of R given by

θ(J) :=
∫

J
γ−1(x) dx.

Giving a speed measure µ with full support Ω as

µ(dx) = γ(x) dx,

with γ > 0 and γ ∈ L1
loc(Ω). We denote by

D(θ) :=
{

f : Ω → R : f ∈ ACθ(Ω),
∫

Ω

(d f
dθ

(x)
)2 dθ < ∞

}
,

where
d f
dθ

is the Radon-Nikodym derivative of d f w.r.t dθ.

We define a Dirichlet form E with a densely defined domain D in L2(Ω, µ) by

D := D(θ) ∩ L2(Ω, µ), E [ f ] :=
∫

Ω

(d f
dθ

(x)
)2 dθ for all f ∈ D. (1)

Lemma 1. Each function from D is continuous and a.e. differentiable on Ω.

Proof. As each function f ∈ D is absolutely continuous w.r.t dθ, it is a composition of continuous functions,
hence continuous. Since θ is strictly increasing then by Lebesgue’s theorem it is a.e. differentiable. Besides
every locally absolutely continuous function is a.e. differentiable. Hence f is a.e. differentiable.

Using Lemma 1 together with the fact that 1
γ ∈ L1

loc(Ω), we get

d f
dθ

(x) =
d f
dx

.
dx
dθ

(x) =
d f
dx

.γ(x).

Hence
D(θ) =

{
f : Ω → R : f ∈ ACθ(Ω),

∫
Ω
(

d f
dx

(x))2 γ(x)dx < ∞
}

, (2)

and

D := D(θ) ∩ L2(Ω, µ), E [ f ] :=
∫

Ω
(

d f
dx

(x))2 γ(x)dx for all f ∈ D. (3)

We claim that E is a regular strongly local Dirichlet form in L2(Ω, µ) [4]. According to the first Kato’s
representation Theorem [5] we can associate to E a positive self-adjoint operator L which is defined by (we
refer to [6, §2] and [1, Chapter 1])

dom(L) =
{

f ∈ D :
d f
dx

∈ ACloc(Ω), lim
x→0+

d f
dθ

(x) = 0, ∆µ,θ f = − d
dµ

(
d f
dθ

)
∈ L2(Ω, µ)

}
L f =∆µ,θ f for all f ∈ dom(L).

Correspondingly the Feller’s canonical operator ∆µ,θ is defined as (see [4, p. 63-64])

∆µ,θ f := − d
dµ

(
d f
dθ

)
= − 1

γ

d
dx

.
(

γ
d f
dx

)
= −

(
d2 f
dx2 +

γ′

γ

d f
dx

)
.
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2.2. Feller’s classification of the boundaries

We let

λ1 =
∫ c

0

( ∫ c

x
γ(y) dy

)
1

γ(x)
dx and λ2 =

∫ c

0

( ∫ x

c

1
γ(y)

dy
)

γ(x)dx, (4)

for some c > 0.
The left boundary 0 can be classified as follows: ( see [7, p. 151-152])

(a) regular if λ1 < ∞, λ2 < ∞,
(b) exit if λ1 < ∞, λ2 = ∞,
(c) entrance if λ1 = ∞, λ2 < ∞,
(d) natural if λ1 = ∞, λ2 = ∞.

Analogously to the right boundary ∞.

Definition 1 ([4]). (a) We say that the boundary 0 (resp. ∞) is approachable whenever

θ(0) > −∞ (resp. θ(∞) < ∞).

(b) We say that the boundary 0 (resp. ∞) is regular if

it is approachable and
∫ c

0
γ(y) dy < ∞, ( resp.

∫ ∞

c
γ(y) dy < ∞), ∀ c > 0.

We designate by Dext the extended Dirichlet space of E which is introduced in [4].

Remark 1 ([4]). If a Dirichlet form (E ,D) on L2(Ω, µ) is transient, then its extended Dirichlet space Dext is
complete w.r.t the metric E .

Henceforth, making use the theorem below to induce the extended Dirichlet space Dext.

Theorem 1. Assume that boundary 0 (resp. ∞) is approachable but non-regular. Let

D(θ)
0 := { f ∈ D(θ) : f (0) = 0} (resp. D(θ)

0 := { f ∈ D(θ) : f (∞) = 0}) (5)

(E ,D) = (E (θ),D(θ)
0 ∩ L2(Ω, µ)) (6)

is a transient Dirichlet form on L2(Ω, µ). Therefore

D ⊂ Dext = D(θ)
0 , E = E (θ). (7)

Proof. See [8, Theorem 3.2].

By virtue of [4, Theorem 2.2.11] E is transient if and only if either 0 or ∞ is approachable and non-regular.
Henceforth we assume that either 0 or ∞ is approachable but non-regular. Thus E is transient. The Feller’s test
of non-explosion processes ([4, p. 126]) leads to the conservativeness property of E whenever

∫ c

0

( ∫ c

x
γ(y) dy

)
1

γ(x)
dx =

∫ ∞

c

( ∫ x

c
γ(y) dy

)
1

γ(x)
dx = ∞, ∀ c > 0. (8)

We remark that endpoints 0 and ∞ are non-exit.

Remark 2. If 0 (resp. ∞) is approachable, hence for each function f from D(θ) we get f (0) = limx↓0,x∈Ω f (x) <
∞, (resp. f (∞) = limx↑∞,x∈Ω f (x) < ∞) and f ∈ C(Ω), (resp. f ∈ C(Ω) ) [4].

3. Traces of one-dimensional diffusions on countable sets

Let F = {pk ∈ Ω, k ∈ N} be a countable set. Let (αk)k∈N be a sequence of in the right half axis (0, ∞). We
define a discrete measure ν on F by

ν = ∑
k∈N

αkδpk ,
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where δpk denote the Dirac measure centred on some fixed point pk in F.

Let Haux = ℓ2(F, µ) be a real Hilbert space equipped with a scalar product given by

( f , g)ν := ∑
k∈N

αk f (pk)g(pk) and ∥ f ∥ν :=
√
( f , f )ν.

On the other hand, Ě is the trace of E on F w.r.t ν (see [1,9,10]). As by assumptions E is transient, hence
we can adopt the technique developed in [2] to evaluate Ě .

We shall now discuss the following case:

0 is approachable and non-regular.

According to Theorem 1 the extended domain Dext is given by

Dext =
{

f : Ω → R : f ∈ ACθ(Ω),
∫

Ω
(

d f
dx

(x))2 γ(x) dx < ∞ s.t. f (0) = 0
}

.

The trace operator Tr defined from dom(Tr) to ℓ2(F, ν) by

dom(Tr) :=
{

f ∈ Dext : ∑
k∈N

αk f 2(pk) < ∞
}

,

Tr f := f |F for all f ∈ dom(Tr).

Furthermore, the linear operator Tr is bounded on (Dext, E) if and only if (αk) is bounded. Regularity of
E implies density of dom(Tr) in (Dext, E) as well as density of ran(Tr) in ℓ2(F, ν). Obviously

ker(Tr) =
{

f ∈ dom(Tr) : f (pk) = 0 for all k ∈ N
}

.

According to [1, Chapter 1] we can compute the trace form Ě following method introduced by Fukushima.
Thereby we denote by Π the E -orthogonal projection in Dext onto (ker(Tr))⊥. Then

dom Ě = ran(Tr) and Ě [Tr f ] = E [Π f ], for all f ∈ dom(Tr).

Certainly
(ker(Tr))⊥ = { f ∈ Dext : E( f , g) = 0, for all g ∈ ker(Tr)}.

We are now in position to compute E -orthogonal projection Π.

Theorem 2. Let f ∈ Dext. Then Π f a solution from Dext of the Sturm-Liouville problem

−(Π f )′′ − γ′

γ
(Π f )′ = 0 in Ω \ F, (9)

Π f = f on F.

Proof. Assume that t = θ−1 is absolutely continuous and t′ ∈ L2
loc(Ω). Hence, making use [11, Lemma 2.1] we

get
C∞

c (Ω \ F) ⊂ D.

Let f ∈ Dext. Given that Π the E -orthogonal projection from Dext onto (ker(Tr))⊥, then

E(Π f , g) = 0, for all g ∈ C∞
c (Ω \ F),

which is equivalent to 〈 1
γ
(Π f )′, g′

〉
C∞

c (Ω\F)′ ,C∞
c (Ω\F) = 0,
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with
〈
., .
〉
C∞

c (Ω\F)′ ,C∞
c (Ω\F) is the dual bracket between C∞

c (Ω \ F) and its dual C∞
c (Ω \ F)′. Accordingly, we

obtain
−
〈( 1

γ
(Π f )′

)′, g
〉
C∞

c (Ω\F)′ ,C∞
c (Ω\F) = 0,

which leads to

−(Π f )′′ − γ′

γ
(Π f )′ = 0 in C∞

c (Ω \ F)′. (10)

On the other hand, the closedness of the operator Tr yields the closedness of Ker(Tr) as well. Hence
f − Π f ∈ Ker(Tr) and Tr f = Tr Π f . Thus f = Π f on F.
It is easy to proof the converse so we omit.

We are in position now to compute explicitly the E -orthogonal projection Π f solution of the boundary
value problem (9). Set N0 = N∪ {0}.

Lemma 2. Let f ∈ Dext. Then

Π f (x) = f (pk) + Γk(x).
f (pk+1)− f (pk)

θ([pk, pk+1])
(11)

where Γk(x) =
∫ x

pk
γ−1(τ) dτ for all x ∈ [pk, pk+1] and k ∈ N0.

Proof. On the light of the Theorem 2, it suffices to show that the function given by (11) solves the following
ODE

−(Π f )′′(x)− γ′(x)
γ(x)

(Π f )′(x) = 0, in (0, ∞). (12)

Indeed the solution of the homogeneous differential equation (12) is given by

Π f (x) = Mk + Nk

∫ x

pk

γ−1(τ) dτ, in [pk, pk+1], for all k ∈ N, (13)

where Mk,Nk ∈ R. Hence, we obtain

Π f (pk) = Mk = f (pk),

Π f (pk+1) = Mk + Nk

∫ pk+1

pk

γ−1(τ) dτ = f (pk+1).

This leads to achieve

Π f (x) = f (pk)+

( ∫ x

pk

γ−1(τ) dτ

)
.

f (pk+1)− f (pk)∫ pk+1
pk

γ−1(τ) dτ

= f (pk) + Γk(x).
f (pk+1)− f (pk)

θ([pk, pk+1])
, for all x ∈ [pk, pk+1], k ∈ N0.

Since Π f ∈ Dext we have Π f (0) = 0.

Theorem 3. For each function f ∈ dom(Tr). It holds dom(Ě) = ran(Tr) and

Ě [Tr f ] = ∑
k∈N0

[
dΠ f
dx

(p−k+1) f (pk+1) γ(pk+1)−
dΠ f
dx

(p+k ) f (pk) γ(pk)

]
= ∑

k∈N0

1
θ([pk, pk+1])

(
f (pk+1)− f (pk)

)2, (14)

where
dΠ f
dx

(p+k ) and
dΠ f
dx

(p−k+1) are the right derivative at pk and the left derivative at pk+1 respectively.
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Proof. Let f ∈ dom(Tr) and p0 = 0. An integration by parts leads to

Ě [Tr f ] = E [Π f ] =
∫

Ω
(

dΠ f
dx

(x))2γ(x)dx

= ∑
k∈N0

∫ pk+1

pk

(
−d2Π f

dx2 (x)− γ′(x)
γ(x)

dΠ f
dx

(x)
)
(Π f )(x)γ(x)dx + ∑

k∈N0

dΠ f
dx

(x)(Π f )(x) γ(x)
∣∣∣∣pk+1

pk

= ∑
k∈N0

[
dΠ f
dx

(p−k+1) f (pk+1) γ(pk+1)−
dΠ f
dx

(p+k ) f (pk) γ(pk)

]
. (15)

On the other hand we compute the derivative
dΠ f
dx

for all x ∈ [pk, pk+1] and k ∈ N,

dΠ f
dx

(x) =
dΓk(x)

dx
.

f (pk+1)− f (pk)

θ([pk, pk+1])
= γ−1(x).

f (pk+1)− f (pk)

θ([pk, pk+1])
, in [pk, pk+1].

Putting all together we obtain

Ě [Tr f ] = ∑
k∈N0

1∫ pk+1
pk

γ−1(τ) dτ
.
(

f (pk+1)− f (pk)
)2

= ∑
k∈N0

1
θ([pk, pk+1])

(
f (pk+1)− f (pk)

)2, for all f ∈ dom(Tr) ,

which finishs the proof.

3.1. Feller’s Dirichlet forms on graphs

At this stage, the trace form Ě can be rewritten as

Ě [Tr f ] = ∑
pk∈F

∑
pj∼pk

ω(pk, pj)
(

f (pk))− f (pj)
)2, for each pj ∈ F,

where
ω(pk, pj) =

1
2 θ([pk, pj])

> 0 if pk ∼ pj, and ω(pk, pj) = 0 otherwise.

Then
Ě [Tr f ] = ∑

k∈N
ω(pk, pk+1)

(
f (pk+1))− f (pk)

)2, for all f ∈ dom(Tr).

We shall now adapt the geometric condition (A) of [12]. Moreover, L̃
(
Cc(F)

)
⊆ Cc(F) where

L̃ f (pk) =
1
αk

∑
j∼k

ω(pk, pj)
(

f (pk))− f (pj)
)
, for each k ∈ N. (16)

By virtue of Theorem 6 from [12] we achieve Ľ as

dom(Ľ) :=
{

f ∈ ℓ2(F, ν) : L̃ f ∈ ℓ2(F, ν)

}
Ľ f = L̃ f .

It holds for all k ∈ N and f ∈ dom(Ľ)

Ľ f (pk) = − 1
αk

(
f (pk+1)

θ([pk, pk+1])
− θ([pk−1, pk+1]) f (pk)

θ([pk, pk+1])θ([pk−1, pk])
+

f (pk−1)

θ([pk−1, pk])

)
. (17)

Remark 3. Assume that αk = 1 for all k ∈ N. Let us emphasize that the latter formulae can be viewed as a
discrete Jacobi operator as follows,

Jϕk := Akϕk+1 + Bkϕk + Ak−1ϕk−1, ∀k ∈ N, (18)
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and
ϕ0 = 0. (19)

4. Examples

4.1. Traces of one-dimension diffusion operators on N

We consider the state space I = [0, ∞). Let θ be a canonical scaling function (i.e. θ(x) = x) and µ be a
canonical speed measure such that supp[µ] = I. Let us consider H := L2((0, ∞), dx), D = W1,2(0, ∞) and
define E in H by

D := W1,2(0, ∞), E [ f ] :=
∫ ∞

0
(

d f
dx

(x))2 dx.

It is known that E is associated with the Laplacian on (0, ∞) with Neumann condition on (0, ∞) that is
d f
dx (0

+) = 0. Furthermore from [4, Theorem 2.2.11, p.68] E is recurrent and hence conservative.
Let (αn)n∈N be a sequence in (0, ∞) and ν := ∑n∈N αnδn. Choose Haux = L2(F, ν) = ℓ2(N, ν). By Sobolev’s

embedding theorem, every f ∈ W1,2(0, ∞) has a unique continuous representative f̃ . We shall assume that
every element in W1,2(0, ∞) is continuous. The trace operator Tr is defined from D to ℓ2(N, ν) by

dom(Tr) := { f ∈ W1,2(0, ∞) : ∑
n∈N

αn f 2
n < ∞}, Tr f := f |N for all f ∈ dom(Tr).

A routine computation leads to

Ď := dom Ě = {ψ = (ψn) ∈ ℓ2(N, ν), ∑
n∈N

(ψn+1 − ψn)
2 < ∞},

and

Ě [ψ] = ∑
n∈N

1
θ([n, n + 1])

(
ψn+1 − ψn

)2

= ∑
n∈N

1(
(n + 1)− n

) (ψn+1 − ψn
)2

= ∑
n∈N

(ψn+1 − ψn)
2.

Owing to these considerations, Ě has the following expression

Ě [ψ] = ∑
n∈N

∑
m∼n

ω(n, m)(ψn − ψm)
2, for each m ∈ N, (20)

where ω(n, m) = 1/2 if |n − m| = 1 and ω(n, m) = 0 for |n − m| > 1.
From [12, Theorem 6] the discrete Laplacian operator associated with Ě is given by

(Ľψ)n = −ψn+1 + 2ψn − ψn−1, for all n ∈ N ,

and acting on
dom(Ľ) := {ψ = (ψn) ∈ ℓ2(N, ν) : Ľψ ∈ ℓ2(N, ν)}.

4.2. Traces of the Feller’s Dirichlet forms related to 1-order Bessel’s process on N

Let us consider a speed measure µ defined on Ω = (0, ∞) by

µ(dx) = 2x3dx.

We define the scaling function θ on Ω by

θ(dx) =
1
x3 dx.
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We are concerned with the Feller’s Dirichlet form E with domain D ⊂ H = L2(Ω, µ) defined by

D := D(θ) ∩ L2(Ω, µ), E [ f ] :=
∫

Ω
(

d f
dx

(x))2x3dx for all f ∈ D,

where
D(θ) :=

{
f : Ω → R : u ∈ ACθ(Ω),

∫
Ω
(

d f
dx

(x))2x3dx < ∞
}

.

It is easy to check that boundary 0 is non-approachable whereas ∞ is approachable and non-regular.
Accordingly, we can determine the extended domain Dext as

Dext = { f ∈ D(θ) : f (∞) = 0}. (21)

Let us consider the 1-order Bessel operator defined by

∆µ,θ := −
( d2

dx2 +
3

2x
d

dx
)
.

Under those circumstances, we give the self-adjoint operator L associated with E via Kato’s representation
theorem by

dom(L) =
{

f ∈ D :
d f
dx

∈ ACloc(Ω), lim
x↓0+

x3 d f
dx

(x) = 0, ∆µ,θ f ∈ L2(Ω, µ)
}

L f = ∆µ,θ f for all f ∈ dom(L).

Hence, L is nothing else but the generator of the 1-order Bessel process on Ω.
Accordingly we fix a discrete measure

ν = ∑
n∈N

αnδn,

which is supported by F = N.
In order to compute Ě on the set N in Haux = ℓ2(N, ν) we proceed to apply Theorem 3 to get the following

formulae

dom Ě = ran(Tr), (22)

Ě [Tr f ] = ∑
n∈N

1
θ([n, n + 1])

(
fn+1 − fn

)2

= ∑
n∈N

1∫ n+1
n x−3 dx

(
fn+1 − fn

)2

= ∑
n∈N

2
(n(n + 1))2

2n + 1
(

fn+1 − fn
)2, for all f ∈ dom(Tr). (23)

Let us rewrite Ě in the following way

Ě [Tr f ] = ∑
n∈N

∑
n∼m

ω(n, m)
(

fn − fm
)2, for each m ∈ N, , (24)

where

ω(n, m) =
(nm)2

n + m
> 0 if |n − m| = 1, and ω(n, m) = 0 for |n − m| > 1.

Consequently, by [12, Theorem 6] we can describe Ě as follows:

Ď := dom Ě =

{
f = ( fn) ∈ ℓ2(N, ν), ∑

n∈N
2
(n(n + 1))2

2n + 1
(

fn+1 − fn
)2

< ∞
}

, (25)

Ě [ f ] = ∑
n∈N

2
(n(n + 1))2

2n + 1
(

fn+1 − fn
)2. (26)
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