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Abstract: The aim of this paper is to present an optimal control problem to reduce the MDR-TB
(multidrug-resistant tuberculosis) and XDR-TB (extensively drug-resistant TB) cases, using controls in these
compartments and controlling reinfection/reactivation of the bacteria. The model used studies the efficacy
of the tuberculosis treatment taking into account the influence of HIV/AIDS and diabetes, and we prove
the global stability of the disease-free equilibrium point based on the behavior of the basic reproduction
number. Various control strategies are proposed with the combinations of controls. We show the existence
of optimal control using Pontryagin’s maximum principle. We solve the optimality system numerically with
an algorithm based on forward/backward Runge-Kutta method of the fourth-order. The numerical results
indicate that the implementation of the strategy that activates all controls and of type I (starting with the
highest controls) is the most cost-effective of the strategies studied. This strategy reduces significantly the
number of MDR-TB and XDR-TB cases in all sub-populations, which is an important factor in combating
tuberculosis and its resistant strains.
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1. Introduction

T uberculosis is a chronic bacterial infectious disease caused by "Mycobacterium Tuberculosis". The main
medical problems faced is the effectiveness of anti-TB treatments and extensively drug-resistant TB

(XDR-TB) cause alarm of future non-effective TB drugs [1].
The number of cases of tuberculosis in the world has been increasing annually. For example in 2015, 10.4

million new cases were estimated in the world, 1.4 million TB-induced deaths, and 0.4 million deaths resulting
from TB-HIV/AIDS co-infection [2].

The rifampcin, isoniazid, pyrazinamide, ethambtol are some of the first-line drugs for TB treatment and
amikacin, capriomycim, cycloserine, azithromycin, clavithromycin, moxifloxacin, levofloxacin are the second
line of treatment.

The treatment applied for active forms of tuberculosis is using first-line drugs (rifampcin, isoniazid,
pyrazinamide, ethambtol) which belong to the first line of treatment for 4 months and followed by a daily
intake of rifampcin and isoniazid for a period of four months.

Multidrug-resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis strains with
resistance to at least isoniazid and rifampin. Extensively drug-resistant tuberculosis (XDR-TB) is defined
as a strain resistant to any type of fluoroquinolone and mainly to one of three injectable drugs: amikacin,
capreomycin, or kanamycin in addition to isoniazid and rifampfin [3]. According to Gandhi et al., [4], about
3.2% of all new tuberculosis cases are multidrug-resistant (MDR-TB).

Diabetes is a risk factor for lower respiratory infections including TB and is a significant factor for TB
infections at the population level [5]. Stevenson et al., reported that diabetes increases TB risk 1.5 to 7.8 times
[6] and Jeon and Murray found that the relative risk for TB among diabetes patients was 3.11 [7]. Diabetes can
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affect the effectiveness of anti-TB drugs, especially rifampicin, by reducing their plasma concentrations [8].
Currently, the treatment regimen for diabetics and non-diabetics is the same [5].

TB can lead to impaired glucose tolerance (IGT) and new-onset diabetes [9]. In general, IGT normalizes
once recovered from TB but remains an important risk factor for the future development of type 2 diabetes.

The rate of diabetes for HIV patients when they are infected is the same as for the general population. But
certain metabolic factors related to HIV, and HIV therapy can increase the incidence of diabetes over 5 time.
Cases of diabetes in HIV patients on antiretroviral therapy have been increasing. This problem appears to be
related to the use of protease inhibitors and one of the solutions is the discontinuation of therapy. Patients
on treatment for HIV should be monitored and consider to changes in therapy or specific treatment when
metabolic problems occur.

Recurrent tuberculosis disease can occur as a result of reinfection, in which a patient becomes exogenously
infected with a strain of Mycobacterium tuberculosis other than the organism that caused the original infection.
A caveat in this regard is that, in high-incidence settings, patients, on rare occasions, may be exposed to or
infected with a very similar or the same strain as in the primary infection, making it difficult to differentiate
between relapse and reinfection in these particular cases [10]. Reinfection or reactivation is linked to the
immune status of the patient and takes into account the behavior of the prevalence of the disease; in the case of
HIV, the higher the prevalence, the higher the incidence of TB. Several studies have now shown that multiple
genotypes can be detected by sampling both respiratory and extrapulmonary sites in seropositive individuals,
illustrating the presence of migration routes within and between organs [11]. Reactivation TB may occur if the
patient’s immune system is weakened and cannot contain the latent bacteria. The bacteria then become active;
they overload the immune system and cause the person to become ill with tuberculosis.

Optimal control theory has been used for studying the transmission dynamic of TB in [12–16]. Example,
Kim et al., [12] proposed optimal control strategies to reduce the number of patients at high risk for latent and
infectious tuberculosis with minimal intervention costs. Numerical simulation with data from the Philippines
showed that distancing control is the most efficient control strategy when a single intervention is performed.
Silva and Torres [13] applied optimal control theory using the prevention of exogenous reinfection as control in
a tuberculosis disease. Jung et al., [14] applied optimal control theory to a two-strain tuberculosis model with
aim to reduce the latent and infectious groups with the resistant-strain tuberculosis, where the controls are two
types of treatments. Silva and Torres [16] applied optimal control theory to minimize the cost of interventions
in a model of tuberculosis with reinfection and exposure.

The problems of HIV/AIDS control and TB-HIV/AIDS co-infection with different techniques have
become a problem approached by researchers in last time. For example, Tahir et al., [17] extended a
mathematical model of TB-HIV/AIDS co-infection to study the optimal control problem, and defined different
schemes to minimize and control infection in any population. Awoke and Kassa [18] presented and studied a
mathematical model for a transmission of TB-HIV/AIDS co-infection that incorporates prevalence dependent
behaviour change in the population and treatment for the infected and applied optimal control theory to
minimize the cost of infections and control enforcement efforts.

We can find applications of the optimal control theory in the study of TB-HIV/AIDS co-infection in [19–
22]. Agusto and Adekunle [19] used optimal control theory to investigate optimal control strategies in disease
spread and demonstrated that the combined strategy of preventing treatment failure in TB-infected individuals
and treating individuals with drug-resistant TB is the most cost-effective. Silva and Torres [20] formulated a
population model for TB-HIV/AIDS coinfection that considers antiretroviral therapy for HIV infection and
treatments for latent and active TB, and used the theory of optimal control to reduce the number of individuals
with active TB and AIDS. Fatmawati and Tasman [21] presented an optimal control problem on the treatment
of the transmission of TB-HIV co-infection model, using anti-TB and antiretroviral treatments as controls.
Tanvi and Aggarwal [22] presented an HIV/AIDS and TB co-infection model and proposed an optimal control
problem to minimize the cost of the detection and treatment.

The study of diabetes control and its relationship to TB has increased in recent decades. For example,
Kouidere et al., [23] proposed conducting awareness campaigns based on the severity of complications of
diabetes, the importance of a balanced lifestyle, and correct use of treatment as an optimal control strategy.
Chávez et al., [24] formulated a control system for optimal insulin delivery in type I diabetic patients using the
linear and quadratic control problem theory. The linear model is used for the glucose-insulin dynamics and
the non-linear for the evaluation of the regulatory controller.

The objective of this work is to present and solve the optimal control problem to reduce the resistance to
tuberculosis treatment, taking into account the influence of HIV/AIDS and diabetes.
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This paper is organized as follows: §2 briefly describes a mathematical model for the study of resistance
to treatment of tuberculosis in the presence of HIV/AIDS and diabetes presented in [25]. In §3 is incorporated
four controls in order to reduce the impact of TB treatment resistance and we study the optimal control
problem. §4 includes numerical experimentation and §5 is about some conclusions.

2. Model formulation

In this section, we present the model with ordinary differential equations introduced in [25] and its basic
properties. This model is designed for the study of MDR-TB and XDR-TB, taking into account the influence of
HIV/AIDS and diabetes.

The model compartments are: uninfected of TB (ST , SH , SD), latently infected (ET , EH , ED), individuals
infected and drug-sensitive to TB (IT1 , IH1 , ID1 ), MDR-TB infected (IT2 , IH2 , ID2 ), XDR-TB infected (RT1 , RH1 ,
RD1 ) and recovered of TB (RT , RH , RD) individuals where T represent TB-Only individuals, H are HIV/AIDS
cases and D diabetics.

The M1, M2 and M3 are recruitment rates only-infected-TB, HIV/AIDS and diabetes respectively. The
rate of acquiring diabetes by use of antiretroviral treatment is α4 and the rate of an individual acquiring HIV
and of developing diabetes are α2 and α1 respectively.

The TB infection rate is defined as

λT = α∗
IT1 + IT2 + RT1 + ϵ1(IH1 + IH2 + RH1) + ϵ2(ID1 + ID2 + RD1)

N
,

where α∗ is the effective contact rate and N is the total population. The parameters ϵj, j = 1, 2 are modifications
parameters, modeling the increased infectiousness in HIV/AIDS and diabetics. The natural death rate µ is the
same from any compartment and µ11 and µ12 are death rate associated with HIV/AIDS and diabetes. The
η is defined as the natural rate of progression of tuberculosis. The β∗ represents the proportion of active TB
cases that are resistant. The ω1, ω2, are the parameters associated with the transmission of tuberculosis in the
HIV/AIDS and diabetes compartments where ω1, ω2 > 1.

We assume that TB-recovered Ri, i = T, H, D acquire partial immunity so that from the recovered
compartment (the cases that recover) enter the latent compartment with a parameter associated with TB
reinfection and reactivation β

′
1 with β

′
1 ≤ 1.

We define ϵ∗j , j = 1, 2 as the parameters modification associated with resistance to tuberculosis treatment
in HIV/AIDS and diabetics.

The t1 and t2 are modifications parameters associated with diabetes or HIV infection from the
compartments of active TB infection. We define death from TB with a rate d1, deaths from the combination
TB and HIV/AIDS with a rate d2 and deaths from the combination TB and diabetes with a rate d3 and we
assumed that d3 ≥ d1 and d2 ≥ d1 as diabetes and HIV/AIDS experience greater disease induced deaths than
their corresponding only TB and we assume death from TB after the use of treatment. The rates l1, l2 and
l3 represent the cases that will be MDR-TB (first resistance). The p1, p2 and p3 represent the rates related to
developing XDR-TB. The t3 parameter is associated with the combination of antirretroviral therapy and the
treatment of tuberculosis and the possibility of developing diabetes. The η11, η12 and η13 is the recovery rate
after being sensitive TB and m1, m2 and m3 is the recovery rate after being MDR-TB. Let’s assume that η1l > ml
for l = 1, 2, 3. The t

′
l , l = 1, 2, 3 are modification parameters associated with TB deaths in MDR-TB cases.

The η∗
11, η∗

12 and η∗
13 are the recovery rate after being XDR-TB. Let’s assume that η1l > η∗

1l and ml > η∗
1l for

l = 1, 2, 3. The t∗1 , t∗2 and t∗3 are modification parameters associated with death by TB, death by combination
TB-HIV/AIDS and by combination TB-Diabetes after being XDR-TB.

The variables and parameters of the model are represented in the Table 1.

Table 1. Variables and parameters of model.

Parameter or Variable Description
ST , SH , SD Uninfected of TB
ET , EH , ED Latently infected
IT1 , IH1 , ID1 Drug-sensitive TB
IT2 , IH2 , ID2 MDR-TB infected
RT1 , RH1 , RD1 XDR-TB infected
RT , RH , RD Recovered of TB
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M1, M2, M3 Recruitment rates
α∗ Effective contact rates for TB infection
α1 Acquiring diabetes rate
α2 Acquiring HIV rate
α4 Diabetes development rate by use of HIV therapy
ω1, ω2, ϵ1, ϵ2 Modification parameters
µ Natural mortality rate
η Natural rate of progression to active TB
t1, t2, t3, t∗1 , t∗2 , t∗3 Modification parameters
t
′
1, t

′
2, t

′
3 Modification parameters

ϵ∗1 , ϵ∗2 , β
′
1 Modification parameters

l1, l2, l3 Resistant TB development rates
d1 TB induced death rate
d2 TB-HIV induced death rate
d3 TB-Diabetes induced death rate
µ11, µ12 Death rate of HIV/AIDS and diabetes respectively
m1, m2, m3 TB recovery rates for MDR-TB
β∗ Proportion of active TB cases that are resistant.
η11, η12, η13 TB recovery rates of drug-sensitive TB infected
η14, η15, η16 Resistant (XDR-TB) TB development rates after being MDR-TB
η∗

11, η∗
12, η∗

13 TB recovery rates of XDR-TB
p1, p2, p3 Rates related to developing XDR-TB

The effectiveness of the TB treatment with the presence of HIV/AIDS and diabetes is modeled with the
following system of differential equations:

dST
dt

= f1 = M1 − (µ + α1 + α2 + λT)ST ,
dSH
dt

= f2 = M2 + α2(ST + SD)− (α4 + µ + µ11 + ω1λT)SH ,
dSD
dt

= f3 = M3 + α4SH + α1ST − (α2 + µ + µ12 + ω2λT)SD,
dET
dt

= f4 = λT(ST + β
′
1RT)− (α1 + α2 + µ + η)ET ,

dEH
dt

= f5 = ω1λT(SH + β
′
1RH) + α2(ET + ED)− (ϵ∗1η + µ + µ11 + α4)EH ,

dED
dt

= f6 = ω2λT(SD + β
′
1RD) + α4EH + α1ET − (α2 + ϵ∗2η + µ + µ12)ED,

dIT1

dt
= f7 = (1 − β∗)ηET − (l1 + t1α1 + t2α2 + µ + d1 + η11)IT1 ,

dIT2

dt
= f8 = (1 − p1)β∗ηET + l1 IT1 − (t1α1 + t2α2 + m1 + µ + t

′
1d1 + η14)IT2 ,

dIH1

dt
= f9 = t2α2(IT1 + ID1) + (1 − β∗)ϵ∗1ηEH − (l2 + µ + µ11 + d2 + η12 + t3α4)IH1 ,

dIH2

dt
= f10 = t2α2(IT2 + ID2) + (1 − p2)ϵ

∗
1 β∗ηEH + l2 IH1 − (m2 + µ + µ11 + t

′
2d2 + η15 + t3α4)IH2 ,

dID1

dt
= f11 = t1α1 IT1 + t3α4 IH1 + (1 − β∗)ϵ∗2ηED − (l3 + t2α2 + µ + µ12 + d3 + η13)ID1 ,

dID2

dt
= f12 = t1α1 IT2 + t3α4 IH2 + (1 − p3)ϵ

∗
2 β∗ηED + l3 ID1 − (m3 + t2α2 + µ + µ12 + t

′
3d3 + η16)ID2 ,

dRT1

dt
= f13 = p1β∗ηET + η14 IT2 − (η∗

11 + t1α1 + t2α2 + µ + t∗1d1)RT1 ,
dRH1

dt
= f14 = p2β∗ϵ∗1ηEH + η15 IH2 + t2α2(RT1 + RD1)− (η∗

12 + t3α4 + µ + µ11 + t∗2d2)RH1 ,
dRD1

dt
= f15 = p3β∗ϵ∗2ηED + η16 ID2 + t3α4RH1 + t1α1RT1 − (t2α2 + η∗

13 + µ + µ12 + t∗3d3)RD1 ,
dRT
dt

= f16 = m1 IT2 + η11 IT1 + η∗
11RT1 − (α1 + α2 + µ + β

′
1λT)RT ,

dRH
dt

= f17 = m2 IH2 + η12 IH1 + η∗
12RH1 + α2(RT + RD)− (α4 + µ + µ11 + β

′
1ω1λT)RH ,

dRD
dt

= f18 = m3 ID2 + η13 ID1 + η∗
13RD1 + α1RT + α4RH − (α2 + µ + µ12 + β

′
1ω2λT)RD

(1)
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with initial conditions, ST(0) > 0, SH(0) > 0, SD(0) > 0, ET(0) > 0, EH(0) > 0, ED(0) > 0, IT1(0) > 0,
IT2(0) > 0, IH1(0) > 0, IH2(0) > 0, ID1(0) > 0, ID2(0) > 0, RT1(0) > 0, RH1(0) > 0, RD1(0) > 0, RT(0) > 0,
RH(0) > 0 and RD(0) > 0.

The following results present the existence and positivity of the solution of the system (1) and the region
where all variables are always non-negative that is defined as a biologically feasible region. These results and
their proof are presented in [25].

Theorem 1. Let the initial data for the model (1) be Si(0) > 0, Ei(0) > 0, Ii1(0) > 0, Ii2(0) > 0, Ri1(0) > 0, Ri(0) >
0, i = T, H, D. Then the solutions (Si(t), Ei(t), Ii1(t), Ii2(t), Ri1(t), Ri(t)), i = T, H, D of the model (1), with positive
initial data, will remain positive for all time t > 0.

Theorem 2. The solutions of model system (1) with non-negative initial conditions exist for all times.

Lemma 1. The closed set

Ω =

{
(Si, Ei, Ii1 , Ii2 , Ri1 , Ri) ∈ R18

+ , i = T, H, D : N(t) ≤ M1 + M2 + M3

µ

}
is positively-invariant and attracts all positive solutions of the model (1).

The model (1) is mathematically and epidemiologically well posed in Ω which is the biologically feasible
region.

The basic reproduction number is found for the different sub-populations (TB-HIV/AIDS, TB-Diabetes
and TB-Only) in order to study the transmission of tuberculosis in these sub-populations, using the next
generation matrix theory [26]. The basic reproduction numbers and the results relating the stability at the
disease-free equilibrium points with the basic reproduction number are given in [25].

The basic reproduction number for the sub-model where we study cases without the presence of
HIV/AIDS and diabetes (TB-Only) (SH = SD = EH = ED = IH1 = IH2 = ID1 = ID2 = RH1 = RD1 =

RH = RD = 0) is defined as

ℜT
0 =

α∗M1
(
(1 − β∗)η(k13k14 + l1(k14 + η14)) + (1 − p1)β∗ηk12(k14 + η14) + k12k13β∗ηp1

)
NT(α1 + α2 + µ)k11k12k13k14

, (2)

where k11 = α1 + α2 + η + µ, k12 = l1 + t1α1 + t2α2 + µ + d1 + η11, k13 = µ + t
′
1d1 + η14 + m1 + t1α1 + t2α2,

k14 = µ + t∗1d1 + η∗
11 + t1α1 + t2α2 and NT = ST + ET + IT1 + IT2 + RT1 + RT . We have that:

Lemma 2. The disease-free equilibrium point ϵT
0 is locally asymptotically stable when ℜT

0 < 1 and unstable when
ℜT

0 > 1.

The basic reproduction number for the sub-model where we study sub-population of TB-HIV/AIDS
(SD = ST = ED = ET = ID1 = ID2 = IT1 = IT2 = RT1 = RT = RD1 = RD = 0) is

ℜH
0 =

α∗ϵ1ω1M2
(
(1 − β∗)ϵ∗1η(k23k24 + l2(k24 + η15)) + (1 − p2)ϵ

∗
1 β∗ηk22(k24 + η15) + k22k23ϵ∗1 β∗ηp2

)
NH(α4 + µ + µ11)k21k22k23k24

, (3)

where k21 = α4 + ϵ∗1η + µ + µ11, k22 = l2 + µ + µ11 + d2 + η12 + t3α4, k23 = µ + µ11 + t
′
2d2 + η15 + m2 + t3α4,

k24 = µ + µ11 + t∗2d2 + η∗
12 + t3α4, NH = SH + EH + IH1 + IH2 + RH1 + RH and NH = SH + EH + IH1 + IH2 +

RH1 + RH . It follows that:

Lemma 3. The disease-free equilibrium ϵH
0 is asymptotically stable when ℜH

0 < 1 and is unstable whenever ℜH
0 > 1.

The basic reproduction number for the TB-Diabetes sub-population (SH = ST = EH = ET = IH1 = IH2 =

IT1 = IT2 = RH1 = RH = RT1 = RT = 0) is

ℜD
0 =

α∗ϵ2ω2M3
(
(1 − β∗)ϵ∗2η(k33k34 + l3(k34 + η16)) + (1 − p3)ϵ

∗
2 β∗ηk32(k34 + η16) + k32k33ϵ∗2 β∗ηp3

)
ND(α2 + µ + µ12)k31k32k33k34

, (4)
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where k31 = α2 + ϵ∗2η + µ + µ12, k32 = l3 + µ + d3 + η13 + t2α2 + µ12, k33 = µ + t
′
3d3 + η16 + m3 + t2α2 + µ12,

k34 = µ + µ12 + t∗3d3 + η∗
13 + t2α2, ND = SD + ED + ID1 + ID2 + RD1 + RD and ND = SD + ED + ID1 + ID2 +

RD1 + RD. We have that:

Lemma 4. The disease-free equilibrium ϵD
0 is asymptotically stable when ℜD

0 < 1 and is unstable whenever ℜD
0 > 1.

For the full model (1), infection-free equilibrium point is

ϵG
0 = (ST

0 , SH
0 , SD

0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and the dominant eigenvalues of the Jacobian of the full system (1) in ϵG
0 are ℜT

0 ,ℜH
0 and ℜD

0 . Then, the basic
reproduction number of the model (1) is

ℜ0 = max{ℜT
0 ,ℜH

0 ,ℜD
0 }.

2.1. Global stability

Now, we list two conditions that if, also guarantee the global asymptotic stability of the disease-free
equilibrium point. Following [27], we can rewrite the model (1) as

dS
dt

= F(S, I),
dI
dt

= G(S, I), G(S, 0) = 0,
(5)

where S ∈ R6
+ is the vector whose components are the number of uninfected and recovered individuals

(ST , SH , SD, RT , RH , RD) and I ∈ R12
+ denotes the number of infected individuals including the latent and

the infectious (the other variables of the model (1)).
The disease-free equilibrium is now denoted by EG

0 = (S∗
0 , 0) where S∗

0 = (S0, 0, 0, 0) and S0 =

(ST
0 , SH

0 , SD
0 ), ST

0 =

(
M1

µ + α1 + α2
, 0
)

, SH
0 =

(
M2

µ + µ11 + α4
, 0
)

and SD
0 =

(
M3

µ + µ12 + α2
, 0
)

.

The conditions H1 and H2 below must be satisfied to guarantee the global asymptotic stability of EG
0 .H1 : For

dS
dt

= F(S, 0), S∗
0 is globally asymptotically stable,

H2 : G(S, I) = AI − G∗(S, I), G∗(S, I) ≥ 0, for (S, I) ∈ Ω,
(6)

where A = DI G((S∗
0 , 0)) ( DI G((S∗

0 , 0)) is the jacobian of G at (S∗
0 , 0)), A is a M-matrix (the off-diagonal

elements of A are nonnegative) and Ω is the biologically feasible region.
If model (1) satisfies the conditions H1 and H2, then the following results holds;

Theorem 3. The fixed point EG
0 is a globally asymptotically stable equilibrium of model (1) provided that ℜ0 < 1 and

that the conditions H1 and H2 are satisfied.

Proof. Let

F(S, 0) =



M1 − (µ + α1 + α2)ST
M2 − (µ + µ11 + α4)SH
M3 − (µ + µ12 + α1)SD

0
0
0


.

As F(S, 0) is a linear equation, we have that S∗
0 is globally stable, hence H1 is satisfied. Then,
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A =



−k11 0 0 α∗ α∗ α∗ϵ1 α∗ϵ1 α∗ϵ2 α∗ϵ2 α∗ α∗ϵ1 α∗ϵ2
α2 −k21 α2 ω1α∗ ω1α∗ ω1α∗ϵ1 ω1α∗ϵ1 ω1α∗ϵ2 ω1α∗ϵ2 ω1α∗ ω1α∗ϵ1 ω1α∗ϵ2
α1 α4 −k31 ω2α∗ ω2α∗ ω2α∗ϵ1 ω2α∗ϵ1 ω2α∗ϵ2 ω2α∗ϵ2 ω2α∗ ω2α∗ϵ1 ω2α∗ϵ2

(1 − β∗ )η 0 0 −k12 0 0 0 0 0 0 0 0
(1 − p1)β∗η 0 0 l1 −k13 0 0 0 0 0 0 0

0 (1 − β∗ )ϵ∗1 η 0 α2 0 −k22 α2 0 0 0 0 0
0 (1 − P2)β∗ϵ∗1 η 0 0 α2 l2 −k23 0 α2 0 0 0
0 0 (1 − β∗ )ϵ∗2 η α1 0 α4 0 −k32 0 0 0 0
0 0 (1 − p3)β∗ϵ∗2 η 0 α1 0 α4 l3 −k33 0 0 0

p1 β∗η 0 0 0 η14 0 0 0 0 −k14 0 0
0 p2ϵ∗1 β∗η 0 0 0 0 η15 0 0 α2 −k24 α2
0 0 p3ϵ∗2 β∗η 0 0 0 0 0 η16 α1 α4 −k34


,

I =
(

ET , EH , ED, IT1 , IT2 , IH1 , IH2 , ID1 , ID2 , RT1 , RH1 , RD1

)
,

G∗(S, I) = AIT − G(S, I),

G∗(S, I) =



G∗
1 (S, I)

G∗
2 (S, I)

G∗
3 (S, I)

G∗
4 (S, I)

G∗
5 (S, I)

G∗
6 (S, I)

G∗
7 (S, I)

G∗
8 (S, I)

G∗
9 (S, I)

G∗
10(S, I)

G∗
11(S, I)

G∗
12(S, I)



=



α∗(IT1 + IT2 + RT1 + ϵ1(IH1 + IH2 + RH1 ) + ϵ2(ID1 + ID2 + RD1 ))

(
1 −

ST + β
′
1RT

N

)
ω1α∗(IT1 + IT2 + RT1 + ϵ1(IH1 + IH2 + RH1 ) + ϵ2(ID1 + ID2 + RD1 ))

(
1 −

SH + β
′
1RH

N

)
ω2α∗(IT1 + IT2 + RT1 + ϵ1(IH1 + IH2 + RH1 ) + ϵ2(ID1 + ID2 + RD1 ))

(
1 −

SD + β
′
1RD

N

)
0
0
0
0
0
0
0
0
0



.

Since ST + β
′
1RT , SH + β

′
1RH and SD + β

′
1RD are always less than or equal to NT ,

ST + β
′
1RT

N
≤ 1,

SH + β
′
1RH

N
≤ 1 and

SD + β
′
1RD

N
≤ 1. Thus G∗(S, I) ≥ 0 for all (S, I) ∈ D. The EG

0 is a globally asymptotically
stable.

3. Model with controls and optimal control problem

3.1. Definition of controls and its policy

Our aim with the help of the control optimal theory is to decrease the total number of patients with
MDR-TB and XDR-TB during a period of time [t0, t f ]. The control strategy is decomposed in four controls u0,
u11, u12 and u13 defined as follows:

• u0(t) (control over reinfection and reactivation)- this refers to preparing patients recovering from TB to
avoid possible reinfection or reactivation of the bacteria, scheduling medical consultations, and lab tests
periodically. Control of entry of new genotypes of TB into the population. Also, to inform patients
how to maintain an active immune system, particularly immunocompromised patients (HIV/AIDS)
with adherence to antiretroviral treatment, stimulation of a good (healthy) diet, physical exercise, among
others.

• u11(t) (control for TB-Only)- this includes personal respiratory protection, educational programs for
public health, activities that ensure treatment completion to reduce relapse following treatment. Patients
receiving treatment for MDR-TB should be monitored to ensure the completion of the treatment. As part
of this control, it is needed to check blood glucose levels and make HIV tests to determine if the person
is diabetic and/or HIV positive.

• u12(t) (control for HIV/AIDS cases)- the control will be based on clinical follow-up (we assume all cases
are diagnosed), and we consider all cases are using antiretroviral therapy and have a follow-up on their
CD4 count and viral load. In particular, from the beginning of treatment for TB, the return of the patient
should occur in up to 15 days. Monthly consultations until the end of the TB treatment. Consultations by
other members of the multi-professional team, with the objective of promoting adherence to treatment,
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identifying interoccurrences that may interfere with the correct use of TB drugs and antiretrovirals.
Another important element is to check blood glucose levels and determine if the person is diabetic.

• u13(t) (control for diabetics cases)- the control is focused on monitoring glycemic parameters throughout
TB treatment, and promoting adherence to treatment, identifying interoccurrences that may interfere
with the efficacy of TB treatment. Another important factor is to make HIV tests to control the exits of
this subpopulation.

In particular, u11(t) is the control in the entrance to compartment IT2 , RT1 , u12(t) is the control in the
entrance to compartment IH2 , RH1 and u13(t) is the control in the entrance to compartment ID2 , RD1 . The
u0(t) controls entry into the ET , EH and ED compartments by reinfection or reactivation. Eqs (7) shows the
incorporation of the controls in the compartments of model (1) and the other equations remain the same as the
uncontrolled model (1). The (1− u0), (1− u11), (1− u12) and (1− u13) representing effort that prevents failure
of the treatment. The Figure 1 shows the control dynamics.

Figure 1. Schematic representation of model with controls, the arrows (discontinued) and boxes red represents
the inputs and compartments to be controlled.



dET
dt

= λT(ST + (1 − u0)β
′
1RT)− (α1 + α2 + µ + η)ET ,

dEH
dt

= ω1λT(SH + (1 − u0)β
′
1RH) + α2(ET + ED)− (ϵ∗1 η + µ + µ11 + α4)EH ,

dED
dt

= ω2λT(SD + (1 − u0)β
′
1RD) + α4EH + α1ET − (α2 + ϵ∗2 η + µ + µ12)ED,

dIT1

dt
= (1 − β∗)ηET − ((1 − u11)l1 + α1 + α2 + µ + d1 + η11)IT1 ,

dIT2

dt
= (1 − p1)β∗ηET + (1 − u11)l1 IT1 − (α1 + α2 + m1 + µ + t

′
1d1 + (1 − u11)η14)IT2 ,

dIH1

dt
= t2α2(IT1 + ID1 ) + (1 − β∗)ϵ∗1 ηEH − ((1 − u12)l2 + µ + µ11 + d2 + η12 + α4)IH1 ,

dIH2

dt
= t2α2(IT2 + ID2 ) + (1 − p2)β∗ϵ∗1 ηEH + (1 − u12)l2 IH1 − (m2 + µ + µ11 + t

′
2d2 + (1 − u12)η15 + α4)IH2 ,

dID1

dt
= α1 IT1 + α4 IH1 + (1 − β∗)ϵ∗2 ηED − ((1 − u13)l3 + α2 + µ + d3 + η13 + µ12)ID1 ,

dID2

dt
= α1 IT2 + α4 IH2 + (1 − p3)ϵ

∗
2 β∗ηED + (1 − u13)l3 ID1 − (m3 + t2α2 + µ + t

′
3d3 + (1 − u13)η16 + µ12)ID2 ,

dRT1

dt
= p1β∗ηET + (1 − u11)η14 IT2 − (η∗

11 + t1α1 + t2α2 + µ + t∗1d1)RT1 ,
dRH1

dt
= p2β∗ϵ∗1 ηEH + (1 − u12)η15 IH2 + t2α2(RT1 + RD1 )− (η∗

12 + t3α4 + µ + µ11 + t∗2d2)RH1 ,
dRD1

dt
= p3β∗ϵ∗2 ηED + (1 − u13)η16 ID2 + t3α4RH1 + t1α1RT1 − (t2α2 + η∗

13 + µ + µ12 + t∗3d3)RD1 ,
dRT
dt

= m1 IT2 + η11 IT1 + η∗
11RT1 − (α1 + α2 + µ + (1 − u0)β

′
1λT)RT ,

dRH
dt

= m2 IH2 + η12 IH1 + η∗
12RH1 + α2(RT + RD)− (α4 + µ + µ11 + (1 − u0)β

′
1ω1λT)RH ,

dRD
dt

= m3 ID2 + η13 ID1 + η∗
13RD1 + α1RT + α4RH − (α2 + µ + µ12 + (1 − u0)β

′
1ω2λT)RD.

(7)
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3.2. Optimal control problem and its analysis

Our objective functional to be minimized is

J(u0, u11, u12, u13) =
∫ t f

t0

(ET(t) + EH(t) + ED(t)) + (IT2(t) + IH2(t) + ID2(t)) + (RT1(t) + RH1(t) + RD1(t))

+
1
2

(
B0u2

0(t) + (B1 + B4)u2
11(t) + (B2 + B5)u2

12(t) + (B3 + B6)u2
13(t)

)
dt.

The structure of our functional is consistent with recent works as [12–19].
The coefficients Bm, m = 0, 1, ..., 6, represent the constant weight associated with the relative costs of

implementing the respective control strategies on a finite time horizon [t0, t f ] (were initial time t0 = 0, final
time t f = 10 year period) and consists in the cost induced by the efforts of the three different types of control.
The B1, B2 and B3 are associated with the implementation of control on the MDR-TB and B4, B5 and B6 to
the XDR-TB. Given the characteristics of resistance to tuberculosis and its treatment, which in some cases may
include hospitalization, high drug costs, the use of other drugs to stimulate the immune system, among others,
let’s assume that B1 < B4, B2 < B5 and B3 < B6 and these constants cannot be neither zeros nor very large
(realistic values). Given the characteristics of resistance to tuberculosis and its treatment, which in some cases
may include hospitalization, high drug costs, the use of other drugs to stimulate the immune system, among
others, let’s assume that B1 < B4, B2 < B5 and B3 < B6 and these constants cannot be neither zeros nor very
large (realistic values).

The cost involved in the control about the compartments IT2 , IH2 and ID2 is taken as
∫ t f

t0

B1u2
11

2 ,
∫ t f

t0

B2u2
12

2 ,∫ t f
t0

B3u2
13

2 , for RT1 , RH1 , RD1 are
∫ t f

t0

B4u2
11

2 ,
∫ t f

t0

B5u2
12

2 ,
∫ t f

t0

B6u2
13

2 , for ET , EH and ED are
∫ t f

t0

B0u2
0

2 . We seek to find the
optimal controls u∗

0 , u∗
11, u∗

0 , u∗
12 and u∗

13 that satisfy

J(u∗
0 , u∗

11, u∗
12, u∗

13) = min
Uad

J(u0, u11, u12, u13) , (8)

where Uad = {(u0, u11, u12, u13)| u0, u11, u12, u13, Lebesgue Integrable 0 ≤ uk ≤ 1, k = 0, 11, 12, 13 ∀t ∈
[t0, t f ]}.

3.2.1. The necessary and sufficient conditions of optimal control

We will study the sufficient conditions for the existence of an optimal control for our controls system
using the conditions in Theorem 4.1 and its corresponding Corollary in [28]. After that, we will characterize the
optimal control functions by using Pontryagin’s Maximum Principle and then we derive necessary conditions
for our control problem. We have that solutions of the controls system are bounded and non-negative for finite
time interval in the biologically feasible region. These results are important to establish the existence of an
optimal control.
We denote the vector of states x⃗ = [ST , SH , SD, ET , EH , ED, IT1 , IT2 , IH1 , IH2 , ID1 , ID2 , RT1 , RH1 , RD1 , RT , RH , RD]

T

and the controls vector u⃗ = [u0, u11, u12, u13]
T .

Theorem 4. There exists an optimal control u∗ = (u∗
0 , u∗

11, u∗
12, u∗

13) to problem

min J(u0, u11, u12, u13) subject to model (1) with controls

where u∗ ∈ Uad.

Proof. We use the requirements of Theorem 4.1 and Corollary 4.2 in [28] to prove the Theorem 4. Let l(t, x⃗, u⃗)
as the right-hand of (1) with controls. We will show that the following requirements are satisfied:

I. l is of class C1 and there exist a constant C such that
|l(t, 0, 0)| ≤ C, |lx(t, x⃗, u⃗)| ≤ C(1 + |u⃗|), |lu(t, x⃗, u⃗)| ≤ C.

II. The admissible set F of all solution to system (1) with controls in Uad is non empty;
III. l(t, x⃗, u⃗) = a1(t, x⃗) + a2(t, x⃗)u⃗;
IV. The control set U = [0, 1]× [0, 1]× [0, 1] is closed, convex and compact;
V. The integrand of the objective functional is convex in U.



Open J. Math. Sci. 2022, 6, 76-98 85

We can write system (1) with controls as

l(t, x⃗, u⃗) =



M1 − (µ + α1 + α2 + λT)ST
M2 + α2(ST + SD)− (α4 + µ + µ11 + ω1λT)SH
M3 + α4SH + α1ST − (α2 + µ + µ12 + ω2λT)SD
λT(ST + (1 − u0)β

′
1RT)− (α1 + α2 + µ + η)ET

ω1λT(SH + (1 − u0)β
′
1RH) + α2(ET + ED)− (ϵ∗1 η + µ + µ11 + α4)EH

ω2λT(SD + (1 − u0)β
′
1RD) + α4EH + α1ET − (α2 + ϵ∗2 η + µ + µ12)ED

(1 − β∗)ηET − ((1 − u11)l1 + t1α1 + t2α2 + µ + d1 + η11)IT1

(1 − p1)β∗ηET + (1 − u11)l1 IT1 − (t1α1 + t2α2 + m1 + µ + t
′
1d1 + (1 − u11)η14)IT2

t2α2(IT1 + ID1 ) + (1 − β∗)ϵ∗1 ηEH − ((1 − u12)l2 + µ + µ11 + d2 + η12 + t3α4)IH1

t2α2(IT2 + ID2 ) + (1 − p2)ϵ
∗
1 β∗ηEH + (1 − u12)l2 IH1 − (m2 + µ + µ11 + t

′
2d2 + (1 − u12)η15 + t3α4)IH2

t1α1 IT1 + t3α4 IH1 + (1 − β∗)ϵ∗2 ηED − ((1 − u13)l3 + t2α2 + µ + µ12 + d3 + η13)ID1

t1α1 IT2 + t3α4 IH2 + (1 − p3)ϵ
∗
2 β∗ηED + (1 − u13)l3 ID1 − (m3 + t2α2 + µ + µ12 + t

′
3d3 + (1 − u13)η16)ID2

p1ηET + (1 − u11)η14 IT2 − (η∗
11 + t1α1 + t2α2 + µ + t∗1d1)RT1

p2ϵ∗1 ηEH + (1 − u12)η15 IH2 + t2α2(RT1 + RD1 )− (η∗
12 + t3α4 + µ + µ11 + t∗2d2)RH1

p3ϵ∗2 ηED + (1 − u13)η16 ID2 + t3α4RH1 + t1α1RT1 − (t2α2 + η∗
13 + µ + µ12 + t∗3d3)RD1

m1 IT2 + η11 IT1 + η∗
11RT1 − (α1 + α2 + µ + (1 − u0)β

′
1λT)RT

m2 IH2 + η12 IH1 + η∗
12RH1 + α2(RT + RD)− (α4 + µ + µ11 + (1 − u0)β

′
1ω1λT)RH

m3 ID2 + η13 ID1 + η∗
13RD1 + α1RT + α4RH − (α2 + µ + µ12 + (1 − u0)β

′
1ω2λT)RD



.

Then, we have l(t, x⃗, u⃗) is of class C1 by the model construction. Let’s

|lu(t, x⃗, u⃗)| =



0 0 0 0
0 0 0 0
0 0 0 0

−β
′
1λT RT 0 0 0

−β
′
1ω1λT RH 0 0 0

−β
′
1ω2λT RD 0 0 0

0 l1 IT1 0 0
0 −l1 IT1 0 0
0 0 l2 IH1 0
0 0 −l2 IH1 0
0 0 0 l3 ID1

0 0 0 −l3 ID1

0 0 0 0
0 0 0 0
0 0 0 0

β
′
1λT RT 0 0 0

β
′
1ω1λT RH 0 0 0

β
′
1ω2λT RD 0 0 0



,

lx(t, x⃗, u⃗) = [AB],

where

A =



−k10 0 0 0 0 0 −c1 −c1 −ϵ1c1 −ϵ1c1
α2 −k20 α2 0 0 0 −c2 −c2 −ϵ1c2 −ϵ1c2
α1 α4 −k30 0 0 0 −c3 −c3 −ϵ1c3 −ϵ1c3
λT 0 0 −k11 0 0 c4 c4 ϵ1c4 ϵ1c4
0 ω1λT 0 α2 −k21 α2 c5 c5 ϵ1c5 ϵ1c5
0 0 ω2λT α1 α4 −k31 c6 c6 ϵ1c6 ϵ1c6
0 0 0 (1 − β∗ )η 0 0 −kc

12 0 0 0
0 0 0 (1 − p1)β∗η 0 0 (1 − u11)l1 −kc

13 0 0
0 0 0 0 (1 − β∗ )ϵ∗1 η 0 t2α2 0 −kc

22 0
0 0 0 0 (1 − p2)ϵ

∗
1 β∗η 0 0 t2α2 (1 − u12)l2 −kc

23
0 0 0 0 0 (1 − β∗ )ϵ∗2 η 0 0 t3α4 0
0 0 0 0 0 (1 − p3)ϵ

∗
2 β∗η 0 t1α1 0 t3α4

0 0 0 p1 β∗η 0 0 0 (1 − u11)η14 0 0
0 0 0 0 p2 β∗ϵ∗1 η 0 0 0 0 (1 − u12)η15
0 0 0 0 0 p3 β∗ϵ∗2 η 0 0 0 0
0 0 0 0 0 0 η11 − (c4 − c1) m1 − (c4 − c1) −ϵ1(c4 − c1) −ϵ1(c4 − c1)
0 0 0 0 0 0 −(c5 − c2) −(c5 − c2) η12 − ϵ1(c5 − c2) m2 − ϵ1(c5 − c2)
0 0 0 0 0 0 −(c6 − c3) −(c6 − c3) −ϵ1(c6 − c3) −ϵ1(c6 − c3)


,
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B =



−ϵ2c1 −ϵ2c1 −c1 −ϵ1c1 −ϵ2c1 0 0 0
−ϵ2c2 −ϵ2c2 −c2 −ϵ1c2 −ϵ2c2 0 0 0
−ϵ2c3 −ϵ2c3 −c3 −ϵ1c3 −ϵ2c3 0 0 0

ϵ2c4 ϵ2c4 c4 ϵ1c4 ϵ2c4 (1 − u0)β
′
1λT 0 0

ϵ2c5 ϵ2c5 c5 ϵ1c5 ϵ2c5 0 (1 − u0)β
′
1ω1λT 0

ϵ2c6 ϵ2c6 c6 ϵ1c6 ϵ2c6 0 0 (1 − u0)β
′
1ω2λT

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

t2α2 0 0 0 0 0 0 0
0 t2α2 0 0 0 0 0 0

−kc
32 0 0 0 0 0 0 0

(1 − u13)l3 −kc
33 0 0 0 0 0 0

0 0 −k14 0 0 0 0 0
0 0 t2α2 −k24 t2α2 0 0 0
0 (1 − u13)η16 t1α1 t3α4 −k34 0 0 0

−ϵ2(c4 − c1) −ϵ2(c4 − c1) η∗11 − (c4 − c1) −ϵ1(c4 − c1) −ϵ2(c4 − c1) −k40 0 0
−ϵ2(c5 − c2) −ϵ2(c5 − c2) −(c5 − c2) η∗12 − ϵ1(c5 − c2) −ϵ2(c5 − c2) α2 −k50 α2

η13 − ϵ2(c6 − c3) m3 − ϵ2(c6 − c3) −(c6 − c3) −ϵ1(c6 − c3) η∗13 − ϵ2(c6 − c3) α1 α4 −k60


,

where c1 =
α∗ST

N
, c2 =

ω1α∗SH
N

, c3 =
ω2α∗SD

N
, c4 = c1 +

(1 − u0)β
′
1α∗RT

N
, c5 = c2 +

(1 − u0)β
′
1ω1α∗RH

N
, c6 =

c3 +
(1 − u0)β

′
1ω2α∗RD

N
, k10 = µ + α1 + α2 + λT , k20 = µ + µ11 + α4 + ω1λT , k30 = µ + µ12 + α2 + ω2λT , k40 =

µ + α1 + α2 + (1 − u0)β
′
1λT , k50 = µ + µ11 + α4 + (1 − u0)β

′
1ω1λT , k60 = µ + µ12 + α2 + (1 − u0)β

′
1ω2λT . The

kc
12, kc

13, kc
22, kc

23, kc
32 and kc

33 represent the k12, k13, k22, k23, k32 and k33, with the respective control expressions.
We have that

|l(t, 0, 0)| =
∣∣∣∣(M1, M2, M3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)T
∣∣∣∣ .

All the variables of the model are positive and bounded by definition of the Ω (biologically feasible
region). Remember that,

Ω =

{
(Si, Ei, Ii1 , Ii2 , Ri1 , Ri) ∈ R18

+ , i = T, H, D : N(t) ≤ M1 + M2 + M3

µ

}
,

where N(t) is the total population. Then, there exists a constant C such that

|l(t, 0, 0)| ≤ C, |lx(t, x⃗, u⃗)| ≤ C(1 + |u⃗|), |lu(t, x⃗, u⃗)| ≤ C.

Thus condition I. is satisfied.
By the construction of the model and the condition I., system (1) with controls has a unique solution for

constant controls, this implies that condition II. is satisfied.
We can write the system (1) with controls as

l(t, x⃗, u⃗) =



M1 − (µ + α1 + α2 + λT)ST
M2 + α2(ST + SD)− (α4 + µ + µ11 + ω1λT)SH
M3 + α4SH + α1ST − (α2 + µ + µ12 + ω2λT)SD

λTST − (α1 + α2 + µ + η)ET
ω1λTSH + α2(ET + ED)− (ϵ∗1 η + µ + µ11 + α4)EH
ω2λTSD + α4EH + α1ET − (α2 + ϵ∗2 η + µ + µ12)ED
(1 − β∗)ηET − (t1α1 + t2α2 + µ + µ11 + d1 + η11)IT1

(1 − p1)β∗ηET − (t1α1 + t2α2 + m1 + µ + µ11 + t
′
1d1)IT2

t2α2(IT1 + ID1 ) + (1 − β∗)ϵ∗1 ηEH + (µ + µ11 + d2 + η12 + t3α4)IH1

t2α2(IT2 + ID2 ) + (1 − p2)ϵ
∗
1 ηEH − (m2 + µ + µ11 + t

′
2d2 + t3α4)IH2

t1α1 IT1 + t3α4 IH1 + (1 − β∗)ϵ∗2 ηED − (t2α2 + µ + µ12 + d3 + η13)ID1

t1α1 IT2 + t3α4 IH2 + (1 − p3)ϵ
∗
2 β∗ηED − (m3 + t2α2 + µ + µ12 + t

′
3d3)ID2

p1β∗ηET − (η∗
11 + t1α1 + t2α2 + µ + t∗1d1)RT1

p2ϵ∗1 β∗ηEH + t2α2(RT1 + RD1 )− (η∗
12 + t3α4 + µ + µ11 + t∗2d2)RH1

p3ϵ∗2 β∗ηED + t3α4RH1 + t1α1RT1 − (t2α2 + η∗
13 + µ + µ12 + t∗3d3)RD1

m1 IT2 + η11 IT1 + η∗
11RT1 − (α1 + α2 + µ)RT

m2 IH2 + η12 IH1 + η∗
12RH1 + α2(RT + RD)− (α4 + µ + µ11)RH

m3 ID2 + η13 ID1 + η∗
13RD1 + α1RT + α4RH − (α2 + µ + µ12)RD


︸ ︷︷ ︸

a1(t,⃗x)

+ lu(t, x⃗, u⃗)︸ ︷︷ ︸
a2(t,⃗x)

×


u0

u11
u12
u13


︸ ︷︷ ︸

u⃗

.

Then, l(t, x⃗, u⃗) = a1(t, x⃗) + a2(t, x⃗)u⃗.
This means that condition III. holds. By construction the sets U is closed, convex and compact and

condition IV. is satisfied.
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Now, we are going to prove the convexity of the integrand in the objective functional

f (t, x⃗, u⃗) =ET(t) + EH(t) + ED(t) + IT2(t) + IH2(t) + ID2(t) + IT3(t) + IH3(t) + ID3(t) +
B0u2

0(t)
2

+
(B1 + B4)u2

11(t)
2

+
(B2 + B5)u2

12(t)
2

+
(B3 + B6)u2

13(t)
2

,

this implies proving that

(1 − q) f (t, x⃗, u⃗) + q f (t, x⃗, v⃗) ≥ f (t, x⃗, (1 − q)u⃗ + qv⃗),

where u⃗, v⃗ are two control vectors with q ∈ [0, 1]. It follows that

(1 − q) f (t, x⃗, u⃗) + q f (t, x⃗, v⃗) = (1 − q)
(

ET + EH + ED + IT2 + IH2 + ID2 + IT3 + IH3 + ID3 +
B0u2

0
2

+
(B1 + B4)u2

11
2

+
(B2 + B5)u2

12
2

+
(B3 + B6)u2

13
2

)
+ q

(
ET + EH + ED + IT2 + IH2 + ID2 + IT3 + IH3 + ID3 +

B0v2
0

2
+

(B1 + B4)v2
11

2

+
(B2 + B5)v2

12
2

+
(B3 + B6)v2

13
2

)
= ET + EH + ED + IT2 + IH2 + ID2 + IT3 + IH3 + ID3 +

(
B0(qv2

0 + (1 − q)u2
0)

2
+

(B1 + B4)(qv2
11 + (1 − q)u2

11)

2

+
(B2 + B5)(qv2

12 + (1 − q)u2
12)

2
+

(B3 + B6)(qv2
13 + (1 − q)u2

13)

2

)
,

and

f (t, x⃗, (1 − q)u⃗ + qv⃗) = (ET + EH + ED + IT2 + IH2 + ID2 + IT3 + IH3 + ID3 +
B0

2

[
(1 − q)u0 + qv0

]2

+
(B1 + B4)

2

[
(1 − q)u11 + qv11

]2

+
(B2 + B5)

2

[
(1 − q)u12 + qv12

]2

+
(B3 + B6)

2

[
(1 − q)u13 + qv13

]2

.

Then, we have

(1 − q) f (t, x⃗, u⃗) + q f (t, x⃗, v⃗)− f (t, x⃗, (1 − q)u⃗ + qv⃗)

=
B0

2

(
(1 − q)u2

0 + qv2
0 − ((1 − q)u0 + qv0)

2
)
+

(B1 + B4)

2

(
(1 − q)u2

11 + qv2
11 − ((1 − q)u11 + qv11)

2
)

+
(B2 + B5)

2

(
(1 − q)u2

12 + qv2
12 − ((1 − q)u12 + qv12)

2
)
+

(B3 + B6)

2

(
(1 − q)u2

13 + qv2
13 − ((1 − q)u13 + qv13)

2
)

=
B0

2

[√
q(1 − q)u0 −

√
q(1 − q)v0

]2

+
(B1 + B4)

2

[√
q(1 − q)u11 −

√
q(1 − q)v11

]2

+
(B2 + B5)

2

[√
q(1 − q)u12 −

√
q(1 − q)v12

]2

+
(B3 + B6)

2

[√
q(1 − q)u13 −

√
q(1 − q)v13

]2

≥ 0.

With this, we prove the requirement V. and the proof of the theorem is complete.

The Pontryagin’s Maximum Principle, provides the necessary conditions an optimal control must satisfy.
Firstly, the Hamiltonian for the control problem is defined by

H = ET(t) + EH(t) + ED(t) + IT2(t) + IH2(t) + ID2(t) + RT1(t) + RH1(t) + RD1(t) +
B0u2

0(t)
2

+
(B1 + B4)u2

11(t)
2

+

+
(B2 + B5)u2

12(t)
2

+
(B3 + B6)u2

13(t)
2

+
18

∑
n=1

λn fn, (9)

where λ1, λ2, · · · , λ18 are the adjoint variables. Now, we are going to prove the following theorem:
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Theorem 5. Given an optimal controls u∗
0 , u∗

11, u∗
12, u∗

13 and associated solutions S∗
T , S∗

H , S∗
D, E∗

T , E∗
H , E∗

D, I∗T1
, I∗T2

, I∗H1
,

I∗H2
, I∗D1

, I∗D2
, R∗

T , R∗
H and R∗

D, that minimizes J(u0, u11, u12, u13) over the domain Uad, there exist adjoint function,
λn(t), n = 1, .., 18 that satisfy:

dλn

dt
= −∂H

∂xi

where xi = ST , SH , SD, ET , EH , ED, IT1 , IT2 , IH1 , IH2 , ID1 , ID2 , RT , RH , RD. In association with the transversality
conditions λn(t f ) = 0 for n = 1, 2, ..., 18. Moreover, the following characterization holds

u∗
0 = min

{
max

{
0,

β
′
1λT

(
(λ4 − λ16)RT + ω1(λ5 − λ17)RH + ω2(λ6 − λ18)RD

)
B0

}
, 1
}

,

u∗
11 = min

{
max

{
0,

l1 IT1(λ8 − λ7) + η14 IT2(λ13 − λ8)

B1 + B4

}
, 1
}

,

u∗
12 = min

{
max

{
0,

l2 IH1(λ10 − λ9) + η15 IH2(λ14 − λ10)

B2 + B5

}
, 1
}

,

u∗
13 = min

{
max

{
0,

l3 ID1(λ12 − λ11) + η16 ID2(λ15 − λ12)

B3 + B6

}
, 1
}

.

(10)

Proof. Using Pontryagin’s Maximum Principle [29], the adjoint equations are obtained:

dλ1

dt
= − ∂H

∂ST
= α1(λ1 − λ3) + α2(λ1 − λ2) + λT(λ1 − λ4) + µλ1,

dλ2

dt
= − ∂H

∂SH
= α4(λ2 − λ3) + ω1λT(λ2 − λ5) + (µ + µ11)λ2,

dλ3

dt
= − ∂H

∂SD
= α2(λ3 − λ2) + ω2λT(λ3 − λ6) + (µ + µ12)λ3,

dλ4

dt
= − ∂H

∂ET
= −1 + α1(λ4 − λ6) + α2(λ4 − λ5) + η((λ4 − λ7) + β∗((λ7 − λ8) + p1(λ8 − λ13))) + µλ4,

dλ5

dt
= − ∂H

∂EH
= −1 + α4(λ5 − λ6) + ηϵ∗1((λ5 − λ9) + β∗((λ9 − λ10) + p2(λ10 − λ14))) + (µ + µ11)λ5,

dλ6

dt
= − ∂H

∂ED
= −1 + α2(λ6 − λ5) + ηϵ∗2((λ6 − λ11) + β∗((λ11 − λ12) + p3(λ12 − λ15))) + (µ + µ12)λ6,

dλ7

dt
= − ∂H

∂IT1

= −1 + t1α1(λ7 − λ11) + t2α2(λ7 − λ9) + η11(λ7 − λ16) + (1 − u11)l1(λ7 − λ8)

dλ8

dt
= − ∂H

∂IT2

= −1 + (1 − u11)η14(λ8 − λ13) + t1α1(λ8 − λ12) + t2α2(λ8 − λ10) + m1(λ8 − λ16)

+
α∗

N
(
(λ1 − λ4)ST + ω1SH(λ2 − λ5) + ω2SD(λ3 − λ6) + (1 − u0)β

′
1(RT(λ16 − λ4)

+ ω1RH(λ17 − λ5) + ω2RD(λ18 − λ6))
)
+ (µ + t

′
1d1)λ8,

dλ9

dt
= − ∂H

∂IH1

= −1 + (1 − u12)l2(λ9 − λ10) + η12(λ9 − λ17) + t3α4(λ9 − λ11)

+
α∗

N
ϵ1
(
(λ1 − λ4)ST + ω1SH(λ2 − λ5) + ω2SD(λ3 − λ6) + (1 − u0)β

′
1(RT(λ16 − λ4)

+ ω1RH(λ17 − λ5) + ω2RD(λ18 − λ6))
)
+ (µ + µ11 + d2)λ9,

dλ10

dt
= − ∂H

∂IH2

= −1 +
α∗

N
ϵ1
(
(λ1 − λ4)ST + ω1SH(λ2 − λ5) + ω2SD(λ3 − λ6) + (1 − u0)β

′
1(RT(λ16 − λ4)

+ ω1RH(λ17 − λ5) + ω2RD(λ18 − λ6))
)
+ t3α4(λ10 − λ12) + m2(λ10 − λ17) + (1 − u11)η15(λ10

− λ14) + (µ + µ11 + t
′
2d2)λ10,

dλ11

dt
= − ∂H

∂ID1

= −1 +
α∗

N
ϵ2
(
(λ1 − λ4)ST + ω1SH(λ2 − λ5) + ω2SD(λ3 − λ6) + (1 − u0)β

′
1(RT(λ16 − λ4)

+ ω1RH(λ17 − λ5) + ω2RD(λ18 − λ6))
)
+ (1 − u13)l3(λ11 − λ12) + η13(λ11 − λ18)

+ t2α2(λ11 − λ9) + (µ + µ12 + d3)λ11,
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dλ12

dt
= − ∂H

∂ID2

= −1 +
α∗

N
ϵ2
(
(λ1 − λ4)ST + ω1SH(λ2 − λ5) + ω2SD(λ3 − λ6) + (1 − u0)β

′
1(RT(λ16 − λ4)

+ ω1RH(λ17 − λ5) + ω2RD(λ18 − λ6))
)
+ t2α2(λ12 − λ10) + m3(λ12 − λ18)

+ (1 − u13)η16(λ12 − λ15) + (µ + µ12 + t
′
3d3)λ12,

dλ13

dt
= − ∂H

∂RT1

= −1 +
α∗

N
(
(λ1 − λ4)ST + ω1SH(λ2 − λ5) + ω2SD(λ3 − λ6) + (1 − u0)β

′
1(RT(λ16 − λ4)

+ ω1RH(λ17 − λ5) + ω2RD(λ18 − λ6))
)
+ η∗

11(λ13 − λ16) + t1α1(λ13 − λ15)

+ t2α2(λ13 − λ14) + (µ + t∗1d1)λ13,

dλ14

dt
= − ∂H

∂RH1

= −1 +
α∗

N
ϵ1
(
(λ1 − λ4)ST + ω1SH(λ2 − λ5) + ω2SD(λ3 − λ6) + (1 − u0)β

′
1(RT(λ16 − λ4)

+ ω1RH(λ17 − λ5) + ω2RD(λ18 − λ6))
)
+ η∗

12(λ14 − λ17) + t3α4(λ14 − λ15)

+ (µ + µ11 + t∗2d2)λ14,

dλ15

dt
= − ∂H

∂RD1

= −1 +
α∗

N
ϵ2
(
(λ1 − λ4)ST + ω1SH(λ2 − λ5) + ω2SD(λ3 − λ6) + (1 − u0)β

′
1(RT(λ16 − λ4)

+ ω1RH(λ17 − λ5) + ω2RD(λ18 − λ6))
)
+ η∗

13(λ15 − λ18) + t2α2(λ15 − λ14)

+ (µ + µ12 + t∗3d3)λ15,

dλ16

dt
= − ∂H

∂RT
= (1 − u0)β

′
1λT(λ16 − λ4) + α1(λ16 − λ18) + α2(λ16 − λ17) + µλ16,

dλ17

dt
= − ∂H

∂RH
= (1 − u0)β

′
1λTω1(λ17 − λ5) + α4(λ17 − λ18) + (µ + µ11)λ17,

dλ18

dt
= − ∂H

∂RD
= (1 − u0)β

′
1λTω2(λ18 − λ6) + α2(λ18 − λ17) + (µ + µ12)λ18. (11)

Optimality is when the equations
∂H
∂uk

= 0 at u∗
k for k = 0, 11, 12, 13. Then,

∂H
∂u0

= B0u0 + β
′
1λT

(
(λ16 − λ4)RT + ω1(λ17 − λ5)RH + ω2(λ18 − λ6)RD

)
= 0 ,

which implies that

u∗
0 =

β
′
1λT

(
(λ4 − λ16)RT + ω1(λ5 − λ17)RH + ω1(λ6 − λ18)RD

)
B0

,

on the set {t : 0 < u∗
0(t) < 1}.

∂H
∂u11

= (B1 + B4)u11 + l1 IT1(λ7 − λ8) + η14 IT2(λ8 − λ13)RD = 0 ,

which implies that

u∗
11 =

l1 IT1(λ8 − λ7) + η14 IT2(λ13 − λ8)

B1 + B4
,

on the set {t : 0 < u∗
11(t) < 1}.

Analogously, for the optimal control u∗
12, we have

∂H
∂u12

= (B2 + B5)u12 + l2 IH1(λ9 − λ10) + η15 IH2(λ10 − λ14)RH = 0.

Therefore,

u∗
12 =

l2 IH1(λ10 − λ9) + η15 IH2(λ14 − λ10)

B2 + B5
,

on the set {t : 0 < u∗
12(t) < 1}. For the control u∗

13, we obtained

∂H
∂u13

= (B3 + B6)u13 + l3 ID1(λ11 − λ12) + η16 ID2(λ12 − λ15) = 0,
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and this implies that

u∗
13 =

l3 ID1(λ12 − λ11) + η16 ID2(λ15 − λ12)

B3 + B6
,

on the control set {t : 0 < u∗
13(t) < 1}.

Note that the optimality conditions only hold on the interior of the control set.

4. Numerical Results

The aim of this section is to simulate the application of the controls in the population. First, we solve
the optimality system numerically using an iterative method based on the fourth-order Runge-Kutta. We use
the forward-backward sweep method for finding the solution of the optimality system which has the state
Eq. (1), adjoint Eq. (11), control characterizations (10), and initial/final condition (initial and transversality
conditions). The method starts with initial values for the optimal control and we solve the state system
forward in time using the Runge-Kutta method of the fourth-order. Following, we solve the adjoint equation
backward in time with Runge-Kutta of the fourth-order using the state variables, initial control guesses, and
transversality conditions. The controls u0(t), u11(t), u12(t) and u13(t) are updated and used to solve the state
and adjoint system respectively. This iterative process continues until that current state, adjoint, and control
values converge [19,30].

For the numerical simulations, we use a set of parameters extracted from [31–41] with purposes
illustrative and to support the analytical results, see Table 2.

The initial conditions for the TB-Only and TB-Diabetes sub-populations are taken from [31], and the
values for the sub-population of HIV/AIDS are assumed and do not represent a specific demographic area, but
fall within the range of actual achievable data, see Table 2. The values of the parameters and initial conditions
that are assumed are discussed and validated with the specialists. We assume that B0 = 200, B1 = 50, B2 = 150,
B3 = 75, B4 = 100, B5 = 250 and B3 = 150.

We assume that always apply control in the HIV/AIDS sub-population because tuberculosis is classified
as an opportunistic disease and HIV/AIDS cases are monitored by the use of antiretroviral therapy. Also,
reinfection or reactivation of TB is always controlled in all strategies because of its impact on treatment
resistance. Then, our control strategies are defined as the combination of efforts and are defined as:

Strategy I. We activate all controls (u0(t) > 0, u11(t) > 0, u12(t) > 0, u13(t) > 0).
Strategy II. Combination of u0(t), u11(t), u12(t) while setting u13(t) = 0 (u0(t) > 0, u11(t) > 0, u12(t) > 0

and u13(t) = 0).
Strategy III. Combination of u0(t), u12(t), u13(t) while setting u11(t) = 0 (u0(t) > 0, u12(t) > 0, u13(t) > 0

and u11(t) = 0).
We are going to study how we start the control process, with high efficient control (type I) and with

minimum value (type II). Figure 2 shows the profiles of the resistance controls (u11(t), u12(t), u13(t)) over time
for the different strategies and control types.

Strategy I. In this strategy all controls are active (u0(t) > 0, u11(t) > 0, u12(t) > 0 and u13(t) > 0). In
other words, reinfection or reactivation and resistance are controlled. We show the behavior of the controls
over time, see Figure 2a for control type I and see Figure 2b for control type II. It is observed that when this
control strategy is implemented, there is a significant decrease in the number of TB resistant compared with
the model without control, see Figure 3. In the case of MDR-TB in the different sub-populations before the
study year, a decrease in the number of reported cases was observed, see Figures 3a-3c. In the case of XR-TB,
the reduction in the number of cases will occur over a longer period of time, but this reduction is significant,
mainly in XDR-TB diabetics, which has a strong incidence in the dynamics, see Figure 3d-3f. In the case of
MDR-TB and XDR-TB in the TB-HIV/AIDS sub-population, the control manages to avoid the growth of the
number of cases because in the dynamics these compartments tend to decrease initially and then grow. This
strategy takes advantage of the decrease in the number of cases by preventing future growth. The type I control
showed better results so it is recommended to start with higher efficacy and this evolves showing better results.

Strategy II. Here we activate the controls u0(t) > 0, u11(t) > 0 and u12(t) > 0 and u13(t) = 0, this means
that we control resistance in the TB-HIV/AIDS and TB-Only sub-populations and reinfection or reactivation
TB in the full model. The behavior of the controls is shown in Figure 2c-2d.
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Table 2. Values of variables and parameters used in the model (1).

Variables Value Variables Value Variables Value
ST(0) 8741400 SH(0) 111000 SD(0) 200000
ET(0) 565600 EH(0) 5000 ED(0) 8500
IT1(0) 20000 IH1(0) 1400 ID1(0) 1800
IT2(0) 1300 IH2(0) 400 ID2(0) 550
RT1(0) 700 RH1(0) 210 RD1(0) 250
RT(0) 8800 RH(0) 500 RD(0) 300
Parameters Value Reference Parameters Value Reference
M1, M2, M3 667685, 10000, 50000 [31], Assumed, Assumed α∗ 9.5 [31–33]
α1, α2 0.0075, 0.009 Assumed, [31,32] ω1, ω2 1.22, 1.10 [31,32,34], Assumed
α4 17.3 (per thousand people per year) [35] ϵ1, ϵ2 1.3, 1.1 Assumed, [31,32]
µ, µ11, µ12 1/53.5, 0.045, 0.03 [31,32,34], Assumed η, β∗ 0.5, 0.04 [31,32,34,36,37]
d1, d2, d3 0.275, 0.33, 1.5 ∗ d1 [31,32,34] ϵ∗1 , ϵ∗2 1.3, 1.1 [34], Assumed
t∗1 , t∗2 , t∗3 1.01, 1.02, 1.01 Assumed t

′
1, t

′
2, t

′
3 1, 1.01, 1 Assumed

β
′
1 0.9 [34] l1, l2, l3 0.0018, 0.0022, 0.0048 [33,38–40], Assumed

m1, m2, m3 0.6266,0.45,0.4054 [31,32], Assumed η14, η15, η16 0.013, 0.022, 0.006 [33,38–40], Assumed
η11, η12, η13 0.7372, 0.55, 0.7372 [31,32], Assumed p1, p2, p3 0.00225,0.0035,0.0041 [36,37,41], Assumed
η∗

11, η∗
12, η∗

13 0.4006,0.255,0.3317 [31,32], Assumed t1, t2, t3 1.01, 1.01, 1.01 Assumed
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This strategy succeeds in reducing the number of resistant cases, but this reduction is lower than that
of strategy I. It is important to keep in mind that the largest number of resistant cases are XDR-TB diabetics
and this strategy reduces this compartment but not sufficiently. It is recommended to maintain control over
diabetic resistant compartments, due to their impact on resistance dynamics, mainly of XR-TB. In XDR-TB,
TB-HIV/AIDS and TB-Diabetes sub-populations the controls decreased the number of cases but did not
take advantage of the decrease in the number of cases and with the controls, the asymptotic behavior was
maintained. The type I control was more effective.

Strategy III. This strategy does not control resistance in the TB-Only sub-population. As in the previous
strategies, the objective of reducing resistance in the dynamics is met. Controls in XDR-TB HIV/AIDS and
diabetes reduced the number of cases and asymptotic behavior was maintained, but the results were better
than strategy II for the different types of controls. This strategy also failed to take advantage of the decrease in
the number of cases, reducing the number of cases but not avoiding future asymptotic growth, see Figures 5a,
5e and 5f. Here too, type I controls achieved better results.

In general, all strategies and types of controls met the objective of reducing the number of cases of
MDR-TB and XDR-TB. The most efficient strategy was the strategy I with type I control. In addition to
significantly reducing the number of cases in all resistance compartments and also takes advantage of the
decrease in dynamics and prevents the future growth of cases. In all strategies, type I control showed better
results, so it is recommended to start with low control. In [25] the numerical results show the need to
reduce XDR-TB in diabetics due to the growth that occurs in this sub-population, so strategy II does not meet
significantly this objective. Strategy II is not recommended because it fails to significantly reduce resistance in
diabetics and diabetes is a risk factor for adherence to TB treatment.

5. Conclusions

In this work, we have studied the problem of control in patients to achieve greater adherence to treatment
taking into account the influence of HIV/AIDS and diabetes and thus avoid MDR-TB and XDR-TB. We present
the stability at the disease-free equilibrium point related to the basic reproduction number for the sub-models
and proved the global stability of this point for the full model (1). The controls are defined as u0, u11, u12 and u13

and are based on avoiding reinfection or reactivation of the bacteria and on differentiated care and follow-up in
cases who are neither HIV+ nor diabetics, HIV/AIDS, and diabetics. The optimal control theory for the model
is derived analytically by applying Pontryagin’s maximum principle and we demonstrate the existence of
optimal control. For the computational simulations, we used a fourth-order Runge-Kutta forward/backward
scheme. We experimented in different scenarios built with different combinations of the controls. We present
the results of the resistance compartments (IT2 , IH2 , ID2 , RT1 , RH1 and RD1 ). We concluded that all variants of
strategies with the different types of controls met the objective of reducing the number of resistant cases. The
strategy that obtained the best results was the strategy I (activating all controls) with type I controls (starting
with the highest controls). Recommend keeping all sub-populations under control and starting with maximum
control. However, if we have to use only three control, we recommended using strategy III, because all the
resistance compartments and mainly the diabetic XDR-TB are reduced compared with strategy II. We do not
recommend the use of strategy II, since one of the main factors of resistance to TB treatment is diabetes and this
strategy did not manage to reduce significantly the number of resistant cases to TB treatment in diabetics. The
results of this work help those responsible for health systems to make decisions for the efficacy of tuberculosis
treatment, taking into account the influence of HIV/AIDS and diabetes. In future works, we propose to
experiment in a real scenario and use differential inclusions for the control system.
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(a) Controls profiles, strategy I, type I.
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(b) Controls profiles, strategy I, type II.
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(c) Controls profiles, strategy II, type I.
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(d) Controls profiles, strategy II, type II.
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Figure 2. The profiles of the controls associated with resistance in the different strategies and for the different
types of controls.
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Time (years)

0 1 2 3 4 5 6 7 8 9 10

C
a

s
e

s
 (

in
 t

h
o

u
s
a

n
d

 p
e

rs
o

n
s
)

0

0.5

1

1.5
MDR-TB Cases, TB-Diabetes, Strategy I

Without controls

Controls Type I

Controls Type II

(c) MDR-TB cases in the TB-Diabetes, study
period 10 years.

Time (years)

0 1 2 3 4 5 6 7 8 9 10

C
a

s
e

s
 (

in
 t

h
o

u
s
a

n
d

 p
e

rs
o

n
s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
XDR-TB Cases, TB-Only, Strategy I

Without controls

Controls Type I

Controls Type II

(d) XDR-TB cases in the TB-Only, study period
10 years.
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Figure 3. Comparison in the resistance compartments between the types of controls for strategy I.



Open J. Math. Sci. 2022, 6, 76-98 95

Time (years)

0 1 2 3 4 5 6 7 8 9 10

C
a

s
e

s
 (

in
 t

h
o

u
s
a

n
d

 p
e

rs
o

n
s
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
MDR-TB Cases, TB-Only, Strategy II

Without controls

Controls Type I

Controls Type II

(a) MDR-TB cases in the TB-Only, study period
10 years.

Time (years)

0 1 2 3 4 5 6 7 8 9 10

C
a

s
e

s
 (

in
 t

h
o

u
s
a

n
d

 p
e

rs
o

n
s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
MDR-TB Cases, TB-HIV/AIDS, Strategy II

Without controls

Controls Type I

Controls Type II

(b) MDR-TB cases in the TB-HIV/AIDS, study
period 10 years.

Time (years)

0 1 2 3 4 5 6 7 8 9 10

C
a

s
e

s
 (

in
 t

h
o

u
s
a

n
d

 p
e

rs
o

n
s
)

0

0.5

1

1.5
MDR-TB Cases, TB-Diabetes, Strategy II

Without controls

Controls Type I

Controls Type II

(c) MDR-TB cases in the TB-Diabetes
sub-population, study period 10 years.

Time (years)

0 1 2 3 4 5 6 7 8 9 10

C
a

s
e

s
 (

in
 t

h
o

u
s
a

n
d

 p
e

rs
o

n
s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
XDR-TB Cases, TB-Only, Strategy II

Without controls

Controls Type I

Controls Type II

(d) XDR-TB cases in the TB-Only
sub-population, study period 10 years.

Time (years)

0 1 2 3 4 5 6 7 8 9 10

C
a

s
e

s
 (

in
 t

h
o

u
s
a

n
d

 p
e

rs
o

n
s
)

0.05

0.1

0.15

0.2

0.25

0.3
XDR-TB Cases, TB-HIV/AIDS, Strategy II

Without controls

Controls Type I

Controls Type II

(e) XDR-TB cases in the TB-HIV/AIDS
sub-population, study period 10 years.

Time (years)

0 1 2 3 4 5 6 7 8 9 10

C
a

s
e

s
 (

in
 t

h
o

u
s
a

n
d

 p
e

rs
o

n
s
)

0

5

10

15

20

25
XDR-TB Cases, TB-Diabetes, Strategy II

Without controls

Controls Type I

Controls Type II

(f) XDR-TB cases in the TB-Diabetes
sub-population, study period 10 years.

Figure 4. Comparison in the resistance compartments between the types of controls for strategy II.
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Figure 5. Comparison in the resistance compartments between the types of controls for strategy III.
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