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Abstract: In this study, we focus on the slip effects on the peristaltic unsteady flow of magnatohydromagnetic
Jeffrey fluid in a flow passage with non-conducting and flexible boundary walls. The effect of the
magnetic field with varying thermal conductivity is taken under the influence of heat transfer analysis.
The dimensionless system of PDEs is solved analytically, and the obtained results are computed for the
temperature, pressure drop, the axial pressure gradient, axial velocity, and then these results are discussed
for different values of the physical parameters of our interest. For the stream functions, the contour plots are
also obtained which indicates the exact flow behavior within the flow channel, and the effects of the physical
parameters on Jeffery fluid within the flow channel are discussed briefly. Our results indicate that the heat
transfer coefficient decreases with an increase in thermal slip and velocity slip parameters. Furthermore, it
shows that the size of the trapped bolus is greater for the inclined magnetic field as compared to the transverse
magnetic field.
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1. Introduction

I n magnetohydrodynamics some recent studies [1–11] have considered the peristaltic flow of Newtonian
and non-Newtonian fluid and investigated the result of magnetic field on them. Stud et al., [12]

investigated the interaction of Poiseuille with peristalsis flow. In an asymmetric tube, the effects of peristalsis
of viscous fluid are studied by Mekheimer [13].

In the diagnoses of blood circulation and measurements of blood glucose, the study of heat transfer in
blood flow plays a vital role. Our normal blood temperature is about 370C, but our proteins start damaging
when the temperature is increased from 410C.In peristalsis flow, the effect of heat transfer has been investigated
by many scholars, but a review of heat transfer by Nadeem and Akbar [14] is quite famous in the era of 2003.

Most of the natural physiological fluids like polymer melts, bubbly fluids, hydrocarbons, and many
nuclear aggressive materials are based on complicated stress-strain relations as compared to Newtonian fluids.
The governing equations of such fluids give challenges to researchers and scholars. The Jeffrey version of the
Oldroyed [15–22] is an important example of non-Newtonian fluid models in which time derivative of strain
tensor. Peristaltic action of non-Newtonian fluid for small wave amplitude has been described by Raju and
Devanathan [23], the long-wavelength peristalsis analysis is performed by Radhakrishnamacharya [24].

In all the studies mentioned above slip effects in presence of variable thermal conductivity have been
ignored. Therefore it is of great interest to study the peristaltic mechanism of hydromagnetic Jeffrey fluid
having variable thermal conductivity with slip conditions and we did this analysis because of its practical
applications in the field of biomedical engineering and food industries in fluid delivery.
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2. Mathematical formulation

The unsteady flow of an incompressible hydromagnetic fluid in an asymmetric two-dimensional tube
having two walls h̄1 and h̄2 is considered in this study.

The wall geometries as shown in Figure 1 can be expressed as follows:

h̄1 (X̄, t̄) = ℓ1 + b1 cos
[

2π

λ
(X̄ − ct̄)

]
, (1)

h̄2 (X̄, t̄) = −ℓ2 − b2 cos
[

2π

λ
(X̄ − ct̄) + θ

]
, (2)

where ℓ1 and ℓ2 are te channel half widths, λ is the wavelength, c is the wave speed, b1 and b2 are the
amplitudes, t̄ is the time, and θ is the phase difference. Furthermore, θ fulfill the condition

b2
1 + b2

2 + 2b1b2 cos θ ≤ (ℓ1 + ℓ2)
2 . (3)
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Figure 1. Geometry of the physical model.

It is assumed that T1 is upper wall temperature and T2 is the lower wall temperature and T1 must be less
than T2.

In MHD fluid the governing equations are expressed as

∇̄ · V̄ = 0, (4)

ρ

[
∂V̄
∂t̄

+ (V̄ · ∇)V̄
]
= ∇̄ · T̄ + ρf̄, (5)

ρcp

[
∂T̄
∂t̄

+ (V̄ · ∇)T̄
]
= −∇̄ · q̄ + St. (6)

In above equation, ∇̄ is the gradient operator, and V̄ = [Ū (X̄, Ȳ, t̄) , V̄ (X̄, Ȳ, t̄) , 0] is the two-dimensional
velocity field vector. S̄, T̄, and Ī are respectively the extra stress tensor for Jeffrey fluid, Cauchy stress tensor
and the Identity tensor, St represent the source term, cp being the specific heat, T̄ is the temperature and q̄ is
the heat flux vector.

The constitution Jeffrey fluid model equations are

T̄ = −P̄ Ī + S̄, (7)

S̄ =
µ

1 + λ1
[ṙ + λ2r̈] , (8)

ṙ = K + K⊤, (9)
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where S̄ is extra stress tensor, relaxation time is denoted by λ1, fluid viscosity by µ, and retardation time by λ2,
P̄ is pressure, and Ī is the identity tensor.

The components of extra stress tensor S̄ are

S̄X̄X̄ =
2µ

1 + λ1

[
1 + λ2

(
∂

∂t̄
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)]
∂Ū
∂X̄

, (10)

S̄X̄Ȳ =
µ

1 + λ1

[
1 + λ2

(
∂

∂t̄
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)](
∂V̄
∂X̄

+
∂Ū
∂Ȳ

)
, (11)

S̄ȲȲ =
2µ

1 + λ1

[
1 + λ2

(
∂

∂t̄
+ Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)]
∂V̄
∂Ȳ

, (12)

and
S̄ȲX̄ = S̄X̄Ȳ, S̄X̄Z̄ = S̄ȲZ̄ = S̄Z̄X̄ = S̄Z̄Ȳ = S̄Z̄Z̄ = 0. (13)

The current density ( J̄ = Se [V̄ × B̄0]) where magnetic field under the negligence of impose electric field and
induce electric field represent by B̄0(= [B0 cos ϕ, B0 sin ϕ, 0]). Thus magnetic body force take the form

J̄ × B̄0 =
[
−SeB2

0

(
Ū sin2 ϕ − V̄ cos ϕ sin ϕ

)
, SeB2

0

(
Ū cos ϕ sin ϕ − V̄ cos2 ϕ

)
, 0
]

. (14)

Using above results, Eqs (4)-(6) are modified as

∂Ū
∂X̄

+
∂V̄
∂Ȳ

= 0, (15)

ρ

(
∂Ū
∂t̄

+ Ū
∂Ū
∂X̄

+ V̄
∂Ū
∂Ȳ

)
= − ∂P̄

∂X̄
+

∂S̄X̄X̄
∂X̄

+
∂SX̄Ȳ

∂Ȳ
− SeB2

0

(
Ū sin2 ϕ − V̄ cos ϕ sin ϕ

)
, (16)

ρ

(
∂V̄
∂t̄

+ Ū
∂V̄
∂X̄

+ V̄
∂V̄
∂Ȳ

)
= − ∂P̄

∂Ȳ
+

∂SX̄Ȳ
∂X̄

+
∂SȲȲ
∂Ȳ

− SeB2
0

(
Ū sin ϕ cos ϕ − V̄ cos2 ϕ

)
, (17)

ρcp

(
∂T̄
∂t̄

+ Ū
∂T̄
∂X̄

+ V̄
∂T̄
∂Ȳ

)
=

∂

∂X̄
·
[

κ̄ (T̄) (
∂T̄
∂X̄

+
∂T̄
∂Ȳ

)

]
+

∂

∂Ȳ
·
[

κ̄ (T̄) (
∂T̄
∂X̄

+
∂T̄
∂Ȳ

)

]
+ Φ̄a + Φ̄b . (18)

In above Eqs (15)-(21), we define the specific heat as cp, density of the fluid as ρ, and the fluid temperature
as T̄; whereas, temperature dependent thermal conductivity κ̄(T̄), the viscous dissipation Φ̄a, and Joule
dissipation Φ̄b are defined as follows:

κ̄ (T̄) =κ0 [1 + ε1 (T̄ − T0)] , (19)

Φ̄a =
µ

1 + λ1

[
1 + λ2

(
Ū

∂

∂X̄
+ V̄

∂

∂Ȳ

)]
×
[

2
(

∂Ū
∂X̄

)2

+ 2
(

∂V̄
∂Ȳ

)2

+

(
∂Ū
∂Ȳ

)2

+

(
∂V̄
∂X̄

)2

+ 2
(

∂V̄
∂X̄

)(
∂Ū
∂Ȳ

)]
, (20)

and
Φ̄b = SeB2

0 [Ū sin ϕ − V̄ cos ϕ] , (21)

where ε1 is a constant and κ0 is the dynamic thermal conductivity.
The unsteady flow in fixed frame (X̄, Ȳ, t̄) can be treated as steady in the wave frame (x̄, ȳ) if we define

ū (x̄, ȳ) = Ū (X̄, Ȳ, t̄)− c,

v (x̄, ȳ) = V̄ (X̄, Ȳ, t̄) ,

x̄ = X̄ − ct̄,

ȳ = Ȳ,

(22)

where ū and v̄ are the respective components of velocity in x̄−direction and ȳ−directions. Equations (15)−(18)
after using equations (20)-(22) give

∂ū
∂x̄

+
∂ū
∂ȳ

= 0, (23)
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ρ

(
ū

∂ū
∂x̄

+ v̄
∂ū
∂ȳ

)
= −∂ p̄

∂x̄
+

(
∂Sxx

∂x̄
+

∂Sxy

∂ȳ

)
− SeB2

0

(
sin2 ϕ(ū + c)− v̄

2
sin 2ϕ

)
, (24)(

ū
∂v̄
∂x̄

+ v̄
∂v̄
∂ȳ

)
= −∂ p̄

∂ȳ
+

(
∂Sxy

∂x̄
+

∂Syy

∂ȳ

)
+ SeB2

0

(
−v̄ cos2 ϕ +

ū + c
2

sin 2ϕ

)
, (25)

and,

cp

(
ū

∂T̄
∂x̄

+ v̄
∂T̄
∂ȳ

)
=

∂

∂x̄
·
[

κ̄ (T̄) (
∂T̄
∂x̄

+
∂T̄
∂ȳ

)

]
+

∂

∂ȳ
·
[

κ̄ (T̄) (
∂T̄
∂x̄

+
∂T̄
∂ȳ

)

]
+

µ

1 + λ1

[
1 + λ2

(
(ū + c)

∂

∂x̄
+ v̄

∂

∂ȳ

)]
×
[

2

{(
∂(ū + c)

∂x̄

)2

+

(
∂v̄
∂ȳ

)2
}
+

(
∂(ū + c)

∂ȳ
+

∂v̄
∂x̄

)2
]
+ SeB2

0 [(ū + c) sin ϕ − v̄ cos ϕ] .

(26)

Introducing the dimensionless variables as followsx = x̄
λ1

, y = ȳ
ℓ1

, S = ℓ1
µc S̄, u = ū

c , v = v̄
c , v = −δ

(
∂ψ
∂x

)
,

T = T̄−T0
T1−T0

, t = ct̄
λ1

, κ = κ̄
κ0

, ε = ε (T1 − T0) , u = ∂ψ
∂y .

(27)

We define dimensionless pressure p, wave number δ, Hartman number M, Brinkman number Br (= Pr×Ec),
Eckert number Ec, Prandtl number Pr, and Reynolds number Re as follows:p =

ℓ2
1

µλ1c p̄, Br = µc2

k0(T1−T0)
, M =

√
Se
µ B0ℓ1,

Re = ρcℓ1
µ , δ = ℓ1

λ1
, Pr = µcp

κ0
, Ec = c2

cp(T1−T0)
.

(28)

Using Eqs (27) and (28) and adopting the long wavelength procedure, the Eqs (23)-(26) reduce to

∂p
∂x

=
∂

∂y

(
1

1 + λ1

∂2ψ

∂y2

)
− M2 sin2 ϕ

(
∂ψ

∂y
+ 1
)

, (29)

∂p
∂y

= 0, (30)

and
∂

∂y

(
κ (T)

∂T
∂y

)
+ Br

[
1

1 + λ1

(
∂2ψ

∂y2

)2

+ M2 sin2 ϕ

(
∂ψ

∂y
+ 1
)2
]
= 0, (31)

where
κ(T) = 1 + ϵT. (32)

3. Boundary conditions

The appropriate dimensionless velocity slip conditions can be expressed asψ = F
2 , ∂ψ

∂y + β1
∂2ψ
∂y2 = −1, at y = h1 (x) ,

ψ = − F
2 , ∂ψ

∂y − β1
∂2ψ

∂y2 = −1, at y = h2 (x) .
(33)

The temperature jump conditions are defined as T + β2
∂T
∂y = 0, at y = h1 (x) ,

T − β2
∂T
∂y = 1, at y = h2 (x) .

(34)

In above equation, β1 is the velocity slip parameter, whereas, β2 is the thermal slip parameter.
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4. Method

Taking cross differentiation of Eqs (29) and (30), we arrive at

0 =
∂2

∂y2

(
1

1 + λ2

∂2ψ

∂y2

)
− M2 sin2 ϕ

(
∂2ψ

∂y2

)
. (35)

The general solution of Eq. (35) is

ψ (x, y) = D1 + D2y + D3 cosh
[

M sin ϕ
√

1 + λ2y
]
+ D4 sinh

[
M sin ϕ

√
1 + λ2y

]
, (36)

where D1, D2, D3 and D4 are constants. The constants are obtained using boundary condition (33). The axial
pressure gradient has been obtained as

dp
dx

= − D5D6 + D7

R11 + R12 + R13R14
. (37)

Since Eq. (31) is highly non linear, so it is difficult to find the analytical solution. In this study, a perturbation
technique has been used to calculate the temperature distribution of Jeffery fluid, so we construct perturbation
solution for a small ε as

T (x, y) = T(0) (x, y) + εT(1) (x, y) , (38)

where (0 < ε < 1).
Using Eq. (38) into Eqs (31) and (34) give yield zeroth order and 1st order systems of the temperature

distribution, correspondingly. These are given by

Zeroth order system

∂2T(0)

∂y2 + Br

[
1

1 + λ1

∂2ψ

∂y2 + M2 sin2 ϕ

(
∂ψ

∂y
+ 1
)2
]
= 0, (39)

 T(0) + β2
∂T(0)

∂y = 0, at y = h1 (x) ,

T(0) − β2
∂T(0)

∂y = 1, at y = h2 (x) .
(40)

First order system

∂2T(1)

∂y2 +
∂

∂y

(
T(0) ∂T(0)

∂y

)
= 0, (41)

 T(1) + β2
∂T(1)

∂y = 0, at y = h1 (x) ,

T(1) − β2
∂T(1)

∂y = 1, at y = h2 (x) .
(42)

Solving zeroth and first order systems, we find that

T(0) = − f0(x, y) + D8y + D9, (43)

T(1) = − f1(x, y) + D10y + D11. (44)

The heat transfer coefficient defined as
Z =

∂h2

∂x
× ∂T

∂y
. (45)

5. Graphical illustrations

This section is aimed to study the slip effects and their importance on a peristaltic mechanism under the
influence of different emerging parameters. The graphs have been drawn for various concerned parameters.
Note that the values of the parameters are fixed as s1 = 0.75, s2 = 0.75, η = 1, θ = π/4 for all graphs and
Tables.
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Figure 2. Pressure drop ∆Pλ vs Q for (a): M = 4, λ1 = 1,β1 = 0.2, (b): ϕ = π/4,β1 = 0.2, λ1 = 1, (c):
ϕ = π/4,β1 = 0.2, M = 1, (d): M = 4, λ1 = 1,ϕ = π/4.

5.1. Pumping features

The variation of pressure drop per wavelength ∆Pλ verses flow rate Q is shown in Figure 2. Influence
of inclination angle ϕ on pressure drop ∆Pλ is depicted in Figure 2(a). It is observed that In the peristaltic
pumping region, the pumping rate starts increasing when ϕ is increased from 0 to π/2; whereas it decreases in
the augmented pumping region. It shows opposite behavior for ϕ ∈ [0, π/2] . Figure 2(b) give us opportunity
to study the connection between Hartman number M and ∆Pλ. In the positive feasible solution area which
is the peristaltic pumping area, a rise in pressure drop is observed as we increase Heartman number M. In
the augmented pumping region action of pumping performance remains increasing. Figure 2(c) is papered to
investigate the behavior on ∆Pλ by Jeffrey fluid parameter λ1 . It is seen that the pumping rate under the effects
of λ1 shows increasing behavior. Figure 2(d) illustrate the effects of thermal slip parameter β1 on ∆Pλ > 0. It
is seen that the pumping rate under the effects of λ1 shows increasing behavior.

Figure 3 shows the pressure gradient profile for one wavelength. It illustrates that in the wider part
of channel x ∈ [0, 0.2] and x ∈ [0.65, 1] the flow can pass easily without implementation of a large pressure

Table 1. Z (Heat transfer coefficient) as function of ϕ and ε. Here x = 0.1, Q = −1.2, M = 4, λ1 = 1, Br = 0.5,
β1 = 0.2, β2 = 0.2.

ϕ

ε π/4 π/2 2π/3 5π/6 7π/8

0.0 1.6713 2.41269 2.04214 1.29947 1.14463
0.1 1.6961 2.41624 2.05731 1.33195 1.17971
0.2 1.7209 2.41979 2.07247 1.36443 1.21479
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Figure 3. dp/dx (pressure gradient) vs x ∈ [−0.5, 0.5] for Q = 0.1, (a): M = 4,β1 = 0.2, λ1 = 1, (b): ϕ = π/4,
β1 = 0.2, λ1 = 1, (c): ϕ = π/4,β1 = 0.2, M = 4, (d): M = 4, λ1 = 1, ϕ = π/4.

gradient, that’s why pressure gradient is small in that region, but in the narrow part of the channel x ∈ [0.3, 0.6],
flow can pass with same flux under the large pressure gradient, especially the narrowest position x = 0.45.
This phenomenon is well in accordance with the physical situation. We also observe the effect of ϕ, M, λ1 and
β1 on dp/dx by using fixed values of other parameters. The amplitude of dp/dx increases with increase in
values of ϕ and M while it decrease as λ1 and β1 increases.

The velocity profile for different parameters is shown in Figure 4. We observe that the velocity profile
shows decreasing behavior for a gradually increase in ϕ, M, λ1 and β1.

5.2. Heat transfer characteristics

Figure 5 shows the variation of fluid temperature for various parameters. After examining Figure 5
we concluded that, if ϕ is raised from 0 to π/2 then temperature increases. As ϕ is raised from π/2 to π

then temperature decreases. When Heartman number M is increased then the temperature is also increased,
while an increase in λ1 the temperature shows decreasing behavior. Under the effects of viscous and Joule

Table 2. Z (Heat transfer coefficient) as function of M and ε. Here x = 0.1, Q = −1.2, β1 = 0.2, β2 = 0.2,
ϕ = π/4, λ1 = 1, Br = 0.5.

M

ε 1 2 3 4 5

0.0 0.97064 1.11242 1.34606 1.67129 2.08847
0.1 1.00824 1.14800 1.37690 1.69610 2.10229
0.2 1.04583 1.18358 1.40931 1.72090 2.11611
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Figure 4. Distribution of velocity(u) vs y for x = 0, Q = 1.2, (a): M = 4,β1 = 0.2 λ1 = 1, (b): ϕ = π/4,β1 = 0.2,
λ1 = 1, (c): ϕ = π/4, β1 = 0.2, M = 4 ,(d): M = 4, λ1 = 1, ϕ = π/4.

dissipation, the temperature got increases with an increase in Br. An increase in thermal slip parameters and
velocity slip parameter temperature shows decreasing behavior.

Tables 1-6 give us the numerical results of heat transfer coefficient Z various parameters. From Table 1,
we observe that the heat transfer coefficient is less for hydrodynamic fluid but large for the hydromagnetic
fluid. The value of the heat transfer coefficient Z increases under the effect of ϕ ∈ [0, π/2]; however, opposite
behavior is observed for ϕ ∈ [π/2, π]. Table 2 tells us that the value of Z increases as we move from Jeffrey
fluid to Newtonian fluid. Table 4 witness that the heat transfer coefficient Z increases under the consideration
of the viscous and Joule dissipation. Table 5 and Table 6 tell us that the heat transfer coefficient Z decreases as
we increase thermal slip parameters and velocity slip parameters.

5.3. Trapping phenomena

The plots for streamlines for different values of M, ϕ, β1, β2 and λ1 are given in Figures 6-8. Figure
6 depicts that size of trapped bolus reduces as a result of increasing ϕ ∈ [0, π/2]; however, the situation is
reversed for ϕ ∈ [π/2, π], it displays an inverse behavior. Figure 7 concludes that the trapped bolus is smaller
in size for hydromagnetic fluids than hydrodynamic fluids. It can be seen from Figure 8 that the size of the
bolus is a decreasing function of Jeffrey fluid parameter λ1. Figure 9 tells us that the size of the trapped bolus
falls down with an increment in the value of velocity slip parameter β1.
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Figure 5. Distribution of temperature(T) vs y for x = 0, Q = −1.2, (a): ε = 0.1, M = 4, λ1 = 1, β1 = 0.2,
β2 = 0.2 Br = 1, (b): ε = 0.1, ϕ = π/4,β1 = 0.2, β2 = 0.2, λ1 = Br = 1, (c): ϕ = π/4, M = 4, Br = 1.5,β1 = 0.2,
β2 = 0.2, ε = 0.1, (d): ϕ = π/4, M = 4, Br = 1,β1 = 0.2, β2 = 0.2, (e): ε = 0.1, ϕ = π/3,β1 = 0.2, β2 = 0.2,
M = 4, λ1 = 1, (f): ε = 0.1, ϕ = π/4, λ1 = Br = 1.
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Table 3. Z (Heat transfer coefficient) as a function of λ1 and ε. Here x = 0.1, Q = −1.2, β1 = 0.2, β2 = 0.2,
ϕ = π/4, M = 4, Br = 0.5.

λ1

ε 1 2 3 4 5

0.0 1.67129 1.65697 1.64965 1.64522 1.64226
0.1 1.69610 1.68210 1.67496 1.67063 1.66774
0.2 1.72090 1.70724 1.70026 1.69604 1.69321

Table 4. Z (Heat transfer coefficient) as a function of Br and ε. Here x = 0.1, Q = −1.2, β1 = 0.2, β2 = 0.2,
ϕ = π/4, M = 4, λ1 = 1.

Br

ε 0.5 1 1.5 2 2.5

0.0 1.67129 2.45597 3.24064 4.02532 4.80999
0.1 1.69610 2.45803 3.21107 3.99555 4.69048
0.2 1.72090 2.46010 3.18151 3.88513 4.57098

Table 5. Z (Heat transfer coefficient) as a function of β1 and ε. Here x = 0.1, Q = −1.2, β2 = 0.2, Br = 0.5,
ϕ = π/4, M = 4, λ1 = 1.

β1

ε 0.1 0.2 0.3 0.4 0.5

0.0 1.70382 1.67129 1.65603 1.64778 1.64275
0.1 1.72792 1.69610 1.68124 1.67313 1.66822
0.2 1.75196 1.72090 1.70640 1.69848 1.69368

Table 6. Z (Heat transfer coefficient) as a function of β2 and ε. Here x = 0.1, Q = −1.2, β1 = 0.2, Br = 0.5,
ϕ = π/4, M = 4, λ1 = 1.

β2

ε 0.1 0.2 0.3 0.4 0.5

0.0 1.73194 1.67129 1.61795 1.57066 1.52845
0.1 1.76865 1.69610 1.63254 1.57635 1.52629
0.2 1.80537 1.72090 1.64713 1.58205 1.52414
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Figure 6. Effect on trapping by ϕ with Q = 1.48, M = 1.2, λ1 = 1, (a); ϕ=0, (b); ϕ = π/6, (c); ϕ = π/3, (d);
ϕ = π/2.
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Figure 7. Effect on trapping by M with Q = 1.48, ϕ = π/4, λ1 = 1(a); M=0, (b); M=1, (c); M=1.3, (d); M=1.5 .
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Figure 9. Effect on trapping by λ1 with Q = 1.48, ϕ = π/4, M = 1, λ1 = 1 (a); β1=0, (b); β1=0.1, (c); β1=0.2, (d);
β1=0.3, .
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6. Concluding remarks

The peristaltic flow of a hydromagnetic Jeffrey fluid under the influence of an inclined magnetic field and
variable thermal conductivity with slip conditions has been analyzed. The influence of various parameters is
discussed graphically. The main finding can be summerize as listed below.

1. The magnetic field forϕ ∈ [0, π/2] shows opposite behavior when compared with ϕ ∈ [π/2, π].
2. For magnetic fluid, the value of axial pressure gradient is higher rather than Newtonian fluid.
3. An increase in ϕ and M leads to an increase in dp/dx, whilst it decreases when λ1 is increased.
4. The magnitude of dp/dx show decreasing behavior when β1 is increased.
5. The amplitude of velocity u is a decreasing function of ϕ ∈ [0, π/2] , β1, M and λ1.
6. The temperature of the fluid T falls down under the effect of ϕ ∈ [0, π/2]; Contrarily, it decreases with

an increase in conductivity parameter ε.
7. Ascending values of λ1 decreases the value of heat transfer coefficient Z, whilst, an increment in the

values of M, ε and Br leads to an increase in heat transfer coefficient Z.
8. The heat transfer coefficient decreases as we increase thermal slip parameters β2 and velocity slip

parameter β1.
9. Size of the trapped bolus is greater for the inclined magnetic field as compared with the transverse

magnetic field. Moreover, increasing M, β1, and λ1 decreases the size of the trapped bolus.

Appendix

Here we include the values of Di(i = 1, 2, ...., 11) and Ri(i = 1, 2, .., 26).

R1 = 8(h1 + h2)
√

1 + λ1,

R2 =
R1

2
(−2 − FM2β1(1 + λ1) + FM2β1(1 + λ1) cos 2ϕ)cosh((h1 − h2)M

√
1 + λ1 sin ϕ),

R3a = M(1 + λ1)2(h1 + h2)(−4β1 − F(2 + M2β12(1 + λ1),

R3b = FM2β2
1(1 + λ1) cos 2ϕ sin ϕ sinh(M(

√
1 + λ1)(h1 − h2) sin ϕ)),

R4 = −16
√

1 + λ1,

R5a = 8
√

1 + λ1(2 − M2β1(h1 − h2)(1 + λ1) + (h1 − h2)M2β1(1 + λ1),

R5b = cos 2ϕ cosh(M
√

1 + λ1 sin ϕ(h1 − h2)),

R6a = 8M(1 + λ1) sin ϕ(h1 − h2 − 2β1,

R6b = (h1 − h2)M2β2
1(1 + λ1) sin ϕ2 sinh(M

√
1 + λ1 sin ϕ(h1 − h2))),

R7 = cosh(h1M
√

1 + λ1 sin ϕ) sin ϕ,

R8 = FM
√

1 + λ1 cosh(h2M
√

1 + λ1 sin ϕ)FM
√

1 + λ1 sin ϕ,

R9 = (2 + FM2β1(1 + λ1) sin ϕ2),

R10 = sinh(
√

1 + λ1h1M sin ϕ)− sinh(
√

1 + λ1 sin ϕh2M),

R11 = cosh(h1M
√

1 + λ1 sin ϕ) sin ϕ,

R12 = (h1 − h2)M
√

1 + λ1 cosh(h2M
√

1 + λ1 sin ϕ)(h1 − h2)M
√

1 + λ1 sin ϕ,

R13 = −2 + (h1 − h2)M2β1(1 + λ1) sin ϕ2,

R14 = sinh(sin ϕh1M
√

1 + λ1)− sinh(
√

1 + λ1h2M sin ϕ),

R15 = cosh(h1M
√

1 + λ1 sin ϕ)(F + h1 − h2)
√

1 + λ1,

R16 = cosh(h2M
√

1 + λ1 sin ϕ)(F + h1 − h2),

R17 = (F + h1 − h2)Mβ1(1 + λ1) sin ϕ sinh(h1M
√

1 + λ1 sin ϕ),

R18 = (F + h1 − h2)Mβ1(1 + λ1) sin ϕ sinh(h2M
√

1 + λ1 sin ϕ),

R19 = (h1 − h2)M2β1(1 + λ1
3/2 + (1 + λ1) cos 2ϕ),

R20 = cosh(
√

1 + λ1 sin ϕ(h1 − h2)M),

R21 = (h1 − h2) sin ϕ(2β1 + M2β2
1(1 + λ1) sin ϕ2)M(1 + λ1),

R22 = sinh(h1 − h2M
√

1 + λ1 sin ϕ),

R23 = sin ϕβ11 + λ1 cosh(h1M
√

1 + λ1 sin ϕ)(F + h1 − h2)M(F + h1 − h2)M,



Open J. Math. Sci. 2022, 6, 123-138 136

R24 = sin ϕ cosh(h2M
√

1 + λ1 sin ϕ)(F + h1 − h2),

R25 =
√
(1 + λ1) sinh(h1M

√
1 + λ1 sin ϕ)(F + h1 − h2),

R26 = sinh(h2M
√

1 + λ1 sin ϕ)
√
(1 + λ1)(F + h1 − h2),

D1 = − R1 + R2 + R3a + R3b
R4 + R5a + R5b − R6a − R6b

,

D2 =
R7 + R8 + R9R10

R11 + R12 + R13R14
,

D3 = −R15 − R16 + R17 + R18

(R19R20 − R21R22)
,

D4 =
R23 + R24 + R25 − R26

(R19R20 − R21R22)
,

D5 = 2(F + h1 − h2)M3 cosh((h1 − h2)M
√

1 + λ1 sin ϕ) sin ϕ3,

D6 =
√

1 + λ1 cosh(
1
2
(h1 − h2)M

√
1 + λ1 sin ϕ),

D7 = Mβ11 + λ1 sin ϕ sinh(
1
2
(h1 − h2)M

√
1 + λ1 sin ϕ),

D8 =
−1 + f0(x, h2) + f0(x, h1) + β2 ( f ′0(x, h2) + f ′0(x, h1))

2β2 + h1 + h2
,

D9 =
β2 + h1 + f0(x, h1)(β2 + h2) + f0(x, h2)(β2 + h1)− β2(β2 + h1) ( f ′0(x, h2))

2β2 + h1 + h2

+
f ′0(x, h1)(2β2

2 + β2h1 + β2h2 − β2 − h1)

2β2 + h1 + h2
,

D10 =
− f1(x, h2) + f1(x, h1) + β2 ( f ′1(x, h2) + f ′1(x, h1))

2β2 + h1 − h2
,

D11 =
− f1(x, h1)(−1 + 2β2 + h1 − h2) + f1(x, h2) + ( f1(x, h2)

2β2 + h1 − h2

−
f ′1(x, h1)(β2h1 − β2h2 + 2β2

2 + β2) + f ′1(x, h2)

2β2 + h1 − h2
.
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Nomenclature

X̄, Ȳ Dimensional form of X coordinate and Y coordinate in laboratory frame
ū, v̄ Dimensional form of velocity components in wave frame
x̄, ȳ Dimensional form of x coordinate and y coordinate in wave frame
x, y Dimensionless form of x coordinate and y coordinate in wave frame
u, v Dimensionless form of velocity components in wave frame
H̄1, H̄2 Wall structures dimensional form in laboratory frame
h1, h2 Wall structures dimensionless form in wave frame
θ1, θ2 Wave amplitudes
s1, s2 Ratios of Amplitude
c Wave speed
ℓ1, ℓ2 Channel widths
γ Phase difference
η Ratios of channel widths
λ Wavelength
ϕ Inclination angle of magnetic field
t̄ Dimensional form of time
t Dimensionless form of time
P̄ Dimensional form of Pressure
p Dimensionless pressure
∆Pλ Pressure drop per wavelength
ψ Stream function
Q̄ Rate of flow of volume
F Instantaneous rate of flow of volume
œ̄ Extra stress tensor of Jeffrey fluid
Ī Identity tensor
ṙ First Rivilin Ericksen tensor of Jeffrey fluid
J̄ Current density
B̄0 Magnetic field
M Hartman number
Br Brinkman number
Re Reynolds number
ρ Fluid density
µ Fluid viscosity
λ1 Jeffrey fluid parameter
λ2 Retardation time
β1 Velocity slip parameter
β2 Thermal slip parameter
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