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1. Introduction

T he year 1695, a communication of Leibniz and L’Hospital, was treated as the origin of fractional calculus.
However, the first accurate definition of fractional derivative and ancient was commenced at the end

of the nineteenth century by Liouville and Riemann. This calculus of arbitrary order first came into sight as
a hypothetical development in mathematical analysis. However, in the past few decades, it has proved to
be an exceptional tool in describing many processes occurring naturally. The subject of fractional calculus
(integration and differentiation of fractional-order) is enjoying interest among mathematicians, physicists,
and engineers. We can find several applications of fractional order differential equations in viscoelasticity,
electrochemistry, control, porous media, electromagnetic, etc. There has been considerable development in
ordinary and partial fractional differential equations in recent years; see the monograph of Hilfer [1], Kilbas
et al., [2] and Podlubny [3]. Some recent existence-uniqueness results of solutions for fractional differential
equations with initial as well as boundary conditions can be found in [4–7] and the references therein.

Jung found many results on the Ulam type stability of linear and nonlinear differential equations and
obtained the Hyers-Ulam stability of first-order linear both ordinary and partial differential equations in the
series of papers [8–10]. The standard theory of Ulam-Hyers (UH) stability has appropriate significance. If we
are dealing with a UH stable system, we do not seek the exact solution. All that is involved is to find a function
that satisfies the proper approximation in the equation. This approach is helpful in many applications such as
numerical testing and optimization were looking for the exact solution is impossible. Many authors discussed
the stability of fractional differential equations, and its significant results could be seen in the papers [7,11,12].

In past decay, differential equations with impulsive effects have been considered by many authors due
to their significant applications in various fields of science and technology. Due to its large number of
applications, this area has been received great importance and remarkable attention from the researchers see
the monographs of Lakshmikantham et al., [13] and Samoilenko et al., [14] and the papers [15–17].

Recently, a new fractional derivative was introduced by Katugampola [18]. Later on, the new fractional
derivative is generalized with Hilfer fractional derivative and so-called Hilfer-Katugampola fractional
derivative (HKFD), involving basic properties, definitions, and results regarding existence and uniqueness
results for the Cauchy type problem is discussed in [19]. This work aims to study the existence, uniqueness,
and stability results for implicit differential equations (IDEs) with impulsive, nonlocal, and boundary
conditions involving HKFD.
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2. Preliminary

For the ease of the readers, we present some basic definitions and lemmas.

Definition 1. [18] The generalized left-sided fractional integral ρIαg of order α ∈ C(ℜ(α)) is defined by

(ρIαg) (t) =
ρ1−α

Γ(α)

∫ t

a
(tρ − sρ)α−1sρ−1g(s)ds, t > a, (1)

if the integral exists.
The generalized fractional derivative corresponding to the generalized fractional integral (1) is defined

for 0 ≤ a < t by

(ρDαg) (t) =
ρα−n−1

Γ(n − α)

(
t1−ρ d

dt

)n ∫ t

a
(tρ − sρ)n−α+1sρ−1g(s)ds, (2)

if the integral exists.

Definition 2. [19] The HKFD, with respect to t, with ρ > 0, is defined by(
ρDα,βg

)
(t) =

(
ρIβ(1−α)

(
tρ−1 d

dt

)
ρI(1−β)(1−α)g

)
(t)

=
(

ρIβ(1−α)δρ
ρI(1−β)(1−α)g

)
(t).

Theorem 1. [20](Krasnoselskii’s fixed point theorem) Let R be a Banach space, B be a bounded closed convex subset of
R and P1,P2 be mapping from B into R such that P1h+P2y ∈ B for every pair h, y ∈ B. If P1 is contraction and P2

is completely continuous, then the equation P1h+P2h = h has a solution on B.

Theorem 2. [20](Schaefer’s fixed point theorem) Let R be a Banach space and P : R → R be completely continuous
operator. If the set {h ∈ R : h = δPh for some δ ∈ (0, 1)} is bounded, then P has a fixed point.

Theorem 3. [20](Banach fixed point theorem) Suppose Q be a non-empty closed subset of a Banach space E. Then any
contraction mapping P from Q into itself has a unique fixed point.

3. Impulsive IDEs involving HKFD

Consider the IDEs with HKFD involving impulse effect is of the form
ρDα,βh(t) = g(t, h(t), ρDα,βh(t)), t ∈ J

′
:= J \ {t1, t2, ..., tm} , J = (a, b],

∆ρI1−γh(t)|t=tk = ψk(h(tk)), t = tk, k = 1, 2, ..., m,
ρI1−γh(t)|t=a = ha, γ = α + β − αβ,

(3)

where ρDα,β is the Hilfer-Katugampola fractional derivative of order α and of type β, and I1−γ is generalized
fractional integral of order 1 − γ. Let g : J × R × R → R be a continuous function. Let us denote the space
PC(J) be a piecewise continuous space from J into R with the norm

PC(J) =
{
h : J → R : h(t) ∈ C(tk, tk+1], k = 0, ..., m; there exists h(t+k ) and h(t−k )

}
.

The weighted space PCγ,ρ(J) of functions g on J is defined by

PCγ,ρ(J) =
{
g : (a, b] → R :

(
tρ − aρ

ρ

)γ

g(t) ∈ PC(J)
}

, 0 ≤ γ < 1,

with the norm

∥g∥PCγ,ρ
=

∥∥∥∥( tρ − aρ

ρ

)γ

g(t)
∥∥∥∥

PC[a,b]
= max

t∈J

∣∣∣∣( tρ − aρ

ρ

)γ

g(t)
∣∣∣∣ .



Open J. Math. Sci. 2022, 6, 108-122 110

Now, we shall give the definitions for UH and UHR stability for IDEs with impulsive effect under HK
fractional derivative. Let ϵ be a positive number and φ : J → R+ be a continuous function, for every t ∈ J

′
and

k = 1, 2, ..., m, we have the following inequalities

{ ∣∣ρDα,βv(t)− g(t, v(t), ρDα,βh(t))
∣∣ ≤ ϵ,∣∣∆ρI1−γv(t)|t=tk − ψk(v(tk))

∣∣ ≤ ϵ,
(4)

{ ∣∣ρDα,βv(t)− g(t, v(t), ρDα,βh(t))
∣∣ ≤ ϵφ(t),∣∣∆ρI1−γv(t)|t=tk − ψk(v(tk))

∣∣ ≤ ϵφ(t),
(5)

{ ∣∣ρDα,βv(t)− g(t, v(t), ρDα,βh(t))
∣∣ ≤ φ(t),∣∣∆ρI1−γv(t)|t=tk − ψk(v(tk))

∣∣ ≤ φ(t),
(6)

Definition 3. The Eq. (3) is UH stable if there exists a real number C f > 0 such that for each ϵ > 0 and for
each solution v ∈ PC1−γ,ρ(J) of the inequality (4) there exists a solution h ∈ PC1−γ,ρ(J) of Eq. (3) with

|v(t)− h(t)| ≤ C f ϵ, t ∈ J.

Definition 4. The Eq. (3) is generalized UH stable if there exist φ ∈ PC1−γ,ρ(J), φ f (0) = 0 such that for each
solution v ∈ PC1−γ,ρ(J) of the inequality (4) there exists a solution h ∈ PC1−γ,ρ(J) of Eq. (3) with

|v(t)− h(t)| ≤ φ f ϵ, t ∈ J.

Definition 5. The Eq. (3) is UHR stable with respect to φ ∈ PC1−γ,ρ(J) if there exists a real number C f ,φ > 0
such that for each ϵ > 0 and for each solution v ∈ PC1−γ,ρ(J) of the inequality (5) there exists a solution
h ∈ PC1−γ,ρ(J) of Eq. (3) with

|v(t)− h(t)| ≤ C f ,φ ϵφ(t), t ∈ J.

Definition 6. The Eq. (3) is generalized UHR stable with respect to φ ∈ PC1−γ,ρ(J) if there exists a real number
C f ,φ > 0 such that for each solution v ∈ PC1−γ,ρ(J) of the inequality (6) there exists a solution h ∈ PC1−γ,ρ(J)
of Eq. (3) with

|v(t)− h(t)| ≤ C f ,φ φ(t), t ∈ J.

Lemma 1. Let g ∈ C1−γ;ρ(J). Then the linear problem{
ρDα,βh(t) = g(t),
ρI1−γh(t)|t=a = ha,

(7)

has a unique solution which is given by

h(t) =
ha

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1g(s)ds. (8)

Lemma 2. Let g : J → R be continuous. A function h ∈ PC1−γ(J) is a solution of the fractional differential equation

ρDα,βh(t) = g(t), t ∈ J
′

ρI1−γh(ti) = hti ,

if and only if h is a solution of the integral equation

h(t) =
hti

Γ(γ)

(
tρ − aρ

ρ

)γ−1
−

(
tρ−aρ

ρ

)γ−1

Γ(γ)Γ(1 − β(1 − α))

∫ ti

a

(
tρ
i − sρ

ρ

)(1−β(1−α))−1

sρ−1g(s)ds
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+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1g(s)ds. (9)

Lemma 3. Let g : J × R × R → R be continuous. A function h is a solution of the fractional integral equation

h(t) =
ha

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

∑
0<tk<t

ψk(h(tk))

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1g(s, h(s), ρDα,βh(s))ds (10)

if and only if h is a solution of the Problem (3).

Lemma 4. [21] Let a(t) be a nonnegative function locally integrable on a ≤ t < b for some b ≤ ∞, and let g(t) be a
nonnegative, nondecreasing continuous function defined on a ≤ t < b, such that g(t) ≤ K for some constant K. Further
let h(t) be a nonnegative locally integrable on a ≤ t < b function satisfying

|h(t)| ≤ a(t) + g(t)
∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1h(s)ds, t ∈ [a, b)

with some α > 0. Then

|h(t)| ≤ a(t) +
∫ t

a

[
∞

∑
n=1

(g(t)Γ(α))n

Γ(nα)

(
tρ − sρ

ρ

)nα−1
]

sρ−1a(s)ds, a ≤ t < b.

Remark 1. Under the hypothesis of Lemma 4, let a(t) be a nondecreasing function on [0, T). Then h(t) ≤
a(t)Eα(g(t)Γ(α)tα), where Eα is the Mittag-Leffler function defined by

Eα(z) =
∞

∑
k=0

zk

Γ(kα + 1)
, z ∈ C, Re(α) > 0.

Lemma 5. Let h ∈ PC1−γ(J) satisfies the following inequality

|h(t)| ≤ c1 + c2

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1 |h(t)| ds + ∑

0<tk<t
ψk |h(tk)| ,

where c1 is a nonnegative, continuous and nondecreasing function and c2, ψi are constants. Then

|h(t)| ≤ c1

(
1 + ψEα(c2Γ(α)tα)kEα(c2Γ(α)tα

)
f or t ∈ (tk.tk+1],

where ψ = sup {ψk : k = 1, 2, 3, ..., m}.

Let us introduce the following assumptions which are useful in proving the results

(H1) Let g : J × R × R → R be a continuous function and there exists positive constantS ℓ, k > 0, such that

|g(t, h1, h2)− g(t, v1, v2)| ≤ ℓ |h1 − v1|+ k |h2 − v2| , for all h1, h2, v1, v2 ∈ R.

(H2) There exist l, m, n : J → R+ with l∗ = supt∈J l(t) < 1 such that

|g(t, h, v)| ≤ l(t) + m(t) |h|+ n(t) |v| .

(H3) Let the functions ψk : R → R are continuous and there exists a constant ℓ∗k > 0, such that

|ψk(h)− ψk(v)| ≤ ℓ∗ |h− y| , for all h, v ∈ R, k = 1, 2, ..., m.

(H4) Let the functions ψk : R → R are continuous and there exists a constant h∗ > 0, such that

|ψk(h)| ≤ h∗(t), for all h ∈ R, k = 1, 2, ..., m,
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for t ∈ J and h, v ∈ R.
(H5) There exists an increasing finctions φ ∈ PC1−γ(J) and there exists λφ > 0 such that for any t ∈ J,

Iα φ(t) ≤ λφ φ(t).

Theorem 4 (Existence). Assume that [H1] - [H4] are satisfied. Then, Eq.(3) has at least one solution.

Proof. Consider the operator P : PC1−γ(J) → PC1−γ(J). The operator form of integral equation (7) is written
as follows

h(t) = Ph(t),

where

Ph(t) =
ha

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

∑
0<tk<t

ψk(h(tk))

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds. (11)

For sake of brevity, we take gh(t) := ρDα,βh(t) = g(t, h(t), gh(t)).

|gh(t)| = l(t) + m(t) |h(t)|+ n(t) |gh(t)|
≤ l∗ + m∗ |h(t)|+ n∗ |gh(t)|

≤
[

l∗ + m∗ |h(t)|
1 − n∗

]
.

First, we prove that the operator P defined by (11) verifies the conditions of Theorem 2.
Claim 1: The operator P is continuous.

Let hn be a sequence such that hn → h in PC1−γ[J, R]. Then for each t ∈ J,∣∣∣∣∣(Phn(t)−Ph(t))
(

tρ − aρ

ρ

)1−γ
∣∣∣∣∣ ≤ 1

Γ(γ) ∑
0<tk<t

|ψk(hn(tk))− ψk(h(tk))|

+
1

Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 |ghn(s)− gh(s)| ds.

Since g is continuous, then we have

∥Phn −Ph∥PC1−γ
→ 0 as n → ∞.

This proves the continuity of P.
Claim 2: The operator P maps bounded sets into bounded sets in PC1−γ(J).

Indeed, it is enough to show that for r > 0, there exists a positive constant l̃ such that Br ={
h ∈ PC1−γ(J) : ∥h∥PC1−γ

≤ r
}

, we have ∥P∥PC1−γ
≤ l̃.

∣∣∣∣∣(Ph)(t)
(

tρ − aρ

ρ

)1−γ
∣∣∣∣∣ ≤ |ha|

Γ(γ)
+

∑
0<tk<t

|ψk(x(tk))|

Γ(γ)
+

1
Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 |gh(s)| ds

≤ |ha|
Γ(γ)

+

(
tρ−aρ

ρ

)γ−1
∑

0<tk<t

∣∣∣∣∣
(

tρ − aρ

ρ

)1−γ

h∗(t)

∣∣∣∣∣
Γ(γ)

+
1

Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1

[
l∗ + m∗ |h(s)|

1 − n∗

]
ds

≤ ha

Γ(γ)
+

m
(

tρ−aρ

ρ

)γ−1

Γ(γ)
∥h∗∥PC1−γ

+
l∗
(

tρ−aρ

ρ

)γ−1

(1 − n∗)Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1ds
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+
m∗
(

tρ−aρ

ρ

)γ−1

(1 − n∗)Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 |h(s)| ds

≤ |ha|
Γ(γ)

+
m
(

tρ−aρ

ρ

)γ−1

Γ(γ)
∥h∗∥PC1−γ

+
l∗
(

tρ−aρ

ρ

)γ−1

(1 − n∗)Γ(α + 1)

(
tρ − aρ

ρ

)α

+
m∗
(

tρ−aρ

ρ

)γ−1

(1 − n∗)Γ(α)
B(γ, α)

(
tρ − aρ

ρ

)α+γ−1

∥h∥PC1−γ

≤ ha

Γ(γ)
+

m
(

bρ−aρ

ρ

)γ−1

Γ(γ)
∥h∗∥PC1−γ

+
l∗

(1 − n∗)Γ(α + 1)

(
bρ − aρ

ρ

)α+γ−1

+
m∗

(1 − n∗)Γ(α)

(
bρ − aρ

ρ

)α

B(γ, α) ∥h∥PC1−γ

=l̃.

That is P is bounded.
Claim 3: The operator P maps bounded sets into equicontinuous set of PC1−γ(J).

Let t1, t2 ∈ J, t1 > t2, Br be a bounded set of PC1−γ(J) as in Claim 2, and h ∈ Br. Then,∣∣∣∣∣∣
(

tρ
1 − aρ

ρ

)1−γ

(Ph)(t1)−
(

tρ
2 − aρ

ρ

)
(Ph)(t2))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑

0<tk<t1

ψk(x(tk))

Γ(γ)
+

1
Γ(α)

(
tρ
1 − aρ

ρ

)1−γ ∫ t1

a

(
tρ
1 − sρ

ρ

)α−1

sρ−1gh(s)ds

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
∑

0<tk<t2

ψk(x(tk))

Γ(γ)
− 1

Γ(α)

(
tρ
2 − aρ

ρ

)1−γ ∫ t2

a

(
tρ
2 − sρ

ρ

)α−1

sρ−1gh(s)ds

∣∣∣∣∣∣∣∣ .

As t1 → t2, the right hand side of the above inequality tends to zero. As a consequence of Claim 1 - Claim
3 together with Arzelä-Ascoli theorem, we can conclude that P : PC1−γ(J) → PC1−γ(J) is continuous and
completely continuous.

It is continuous and bounded from Claim 1 - Claim 3. Now, it remains to show that the set

ω =
{
h ∈ PC1−γ(J) : h = τP(h), 0 < τ < 1

}
is bounded set.

Let h ∈ ω, h = τP(h) for some 0 < τ < 1. Thus for each t ∈ J we have

h(t) =τ

 ha

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

∑
0<tk<t

ψk(h(tk))

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds

 .

This shows that the set ω is bounded. As a consequence of Theorem 2, we deduce that P has a fixed point
which is a solution of Problem (3).

Theorem 5. (Uniqueness) Assume that [H1] and [H3] are satisfied. If

ρ =

(
mℓ∗

Γ(γ)

(
bρ − aρ

ρ

)1−γ

+
ℓ

(1 − k)Γ(α)
B(γ, α)

(
bρ − aρ

ρ

)α
)

< 1, (12)

then, the Eq. (3) has a unique solution.

Theorem 6. The assumptions [H1], [H3], [H5] and (12) are satisfied. Then, Eq.(3) is generalized UHR stable.
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Proof. Let v be solution of inequality (6) and by Theorem 5, h is a unique solution of the problem

ρDα,βh(t) = g(t, h(t), ρDα,βh(t)),

∆ρI1−γh(t)|t=tk = ψk(h(tk)),
ρI1−γh(t)|t=a =

ρI1−γv(t)|t=a = ha.

Then, we have

h(t) =
ha

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

∑
0<tk<t

ψk(h(tk))

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds.

By differentiating inequality (6), for each t ∈ (tk, tk+1], we have

∣∣∣∣∣v(t)− ha

Γ(γ)

(
tρ − aρ

ρ

)γ−1
−

∑
0<tk<t

ψk(v(tk))

Γ(γ)

(
tρ − aρ

ρ

)γ−1
− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gv(s)ds

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑

0<tk<t
gk

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 φ(t)ds

∣∣∣∣∣∣∣∣
≤ mφ(t)

(
tρ − aρ

ρ

)γ−1
+ λφ φ(t)

≤
(

m
(

tρ − aρ

ρ

)γ−1
+ λφ

)
φ(t).

Hence for each t ∈ (tk, tk+1], it follows

|v(t) −h(t)|

≤

∣∣∣∣∣∣∣∣v(t)−
ha

Γ(γ)

(
tρ − aρ

ρ

)γ−1
−

∑
0<tk<t

ψk(h(tk))

Γ(γ)

(
tρ − aρ

ρ

)γ−1
− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣v(t)−
ha

Γ(γ)

(
tρ − aρ

ρ

)γ−1
−

∑
0<tk<t

ψk(v(tk))

Γ(γ)

(
tρ − aρ

ρ

)γ−1
− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gv(s)ds

∣∣∣∣∣∣∣∣
+

∑
0<tk<t

|ψk(v(tk))− ψk(h(tk))|

Γ(γ)

(
tρ − aρ

ρ

)γ−1
+

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 |gv(s)− gh(s)| ds

≤
(

m
(

tρ − aρ

ρ

)γ−1
+ λφ

)
φ(t) +

mℓ∗

Γ(γ)

(
tρ − aρ

ρ

)γ−1

|v(t)− h(t)|

+
ℓ

(1 − k)Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 |v(s)− h(s)| ds

By Lemma 4, there exists a constant K > 0 independent of λφ φ(t) such that

|v(t)− h(t)| ≤ K

(
m
(

bρ − aρ

ρ

)γ−1
+ λφ

)
φ(t) := C f ,φ φ(t).

Thus, Eq.(3) is generalized UHR stable.
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4. Nonlocal IDEs involving HK fractional derivative

Nonlocal IDEs with HK fractional derivative is given by{
ρDα,βh(t) = g(t, h(t), ρDα,βh(t)), t ∈ J := (a, b],
ρI1−γh(t)|t=a = ∑m

k=1 cih(τi),
(13)

τi, i = 0, 1, ..., m are prefixed points satisfying a < τ1 ≤ ... ≤ τm < b and ci is real numbers. We remark that
nonlocal condition I1−γh(0) = ∑m

i=1 cih(τi) can be applied in physical problems yields better effect than the
initial conditions I1−γh(0) = h0, in [22].

Now set the space C(J) be a continuous space from J into R with the norm

∥h∥ = sup {|h(t)| : t ∈ J} .

The weighted space Cγ,ρ(J) of functions g on J is defined by

Cγ,ρ(J) =
{
g : (a, b] → R :

(
tρ − aρ

ρ

)γ

g(t) ∈ C(J)
}

, 0 ≤ γ < 1,

with the norm

∥g∥Cγ,ρ
=

∥∥∥∥( tρ − aρ

ρ

)γ

g(t)
∥∥∥∥

C[a,b]
= max

t∈J

∣∣∣∣( tρ − aρ

ρ

)γ

g(t)
∣∣∣∣ .

Next, we shall give the definitions and the criteria of UH stability and UHR stability for IDEs involving
HK fractional derivative. Let ϵ be a positive number and φ : J → R+ be a continuous function, for every t ∈ J
and k = 1, 2, ..., m, we have the following inequalities

∣∣∣ρDα,βv(t)− g(t, v(t), ρDα,βh(t))
∣∣∣ ≤ ϵ. (14)∣∣∣ρDα,βv(t)− g(t, v(t), ρDα,βh(t))
∣∣∣ ≤ ϵφ(t). (15)∣∣∣ρDα,βv(t)− g(t, v(t), ρDα,βh(t))
∣∣∣ ≤ φ(t). (16)

Definition 7. The Eq. (13) is UH stable if there exists a real number C f > 0 such that for each ϵ > 0 and for
each solution v ∈ C1−γ,ρ(J) of the inequality (14) there exists a solution h ∈ C1−γ,ρ(J) of Eq. (13) with

|v(t)− h(t)| ≤ C f ϵ, t ∈ J.

Definition 8. The Eq. (13) is generalized UH stable if there exist φ ∈ C1−γ,ρ(J), φ f (0) = 0 such that for each
solution v ∈ C1−γ,ρ(J) of the inequality (14) there exists a solution h ∈ C1−γ,ρ(J) of Eq. (13) with

|v(t)− h(t)| ≤ φ f ϵ, t ∈ J.

Definition 9. The Eq. (13) is UHR stable with respect to φ ∈ C1−γ,ρ(J) if there exists a real number C f ,φ > 0
such that for each ϵ > 0 and for each solution v ∈ C1−γ,ρ(J) of the inequality (15) there exists a solution
h ∈ C1−γ,ρ(J) of Eq. (13) with

|v(t)− h(t)| ≤ C f ,φ ϵφ(t), t ∈ J.

Definition 10. The Eq. (13) is generalized UHR stable with respect to φ ∈ C1−γ,ρ(J) if there exists a real number
C f ,φ > 0 such that for each solution v ∈ C1−γ,ρ(J) of the inequality (16) there exists a solution h ∈ C1−γ,ρ(J) of
Eq. (13) with

|v(t)− h(t)| ≤ C f ,φ φ(t), t ∈ J.
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Lemma 6. Let g : J × R × R → R be continuous. A function h is a solution of the fractional integral equation

h(t) = T
Γ(α)

(
tρ−aρ

ρ

)γ−1
∑m

i=1 ci
∫ τi

a

(
τ

ρ
i −sρ

ρ

)α−1
sρ−1g(s, h(s), ρDα,βh(s))ds

+ 1
Γ(α)

∫ t
a

(
tρ−sρ

ρ

)α−1
sρ−1g(s, h(s), ρDα,βh(s))ds (17)

if and only if h is a solution of the Problem (13).

Theorem 7. (Existence) Assume that [H1] and [H2] are satisfied. Then, Eq.(13) has at least one solution.

Consider the operator P̃ : C1−γ,ρ(J) → C1−γ,ρ(J), it is well defined and given by

P̃h(t) =
T

Γ(α)

(
tρ − aρ

ρ

)γ−1 m

∑
i=1

ci

∫ τi

a

(
τ

ρ
i − sρ

ρ

)α−1

sρ−1gh(s)ds +
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds. (18)

Consider the ball Br =
{
h ∈ C1−γ,ρ[a, b] : ∥h∥C1−γ,ρ

≤ r
}

. Now we subdivide the operator P̃ into two operator

P̃1 and P̃2 on Br as follows

P̃1h(t) =
T

Γ(α)

(
tρ − aρ

ρ

)γ−1 m

∑
i=1

ci

∫ τi

a

(
τ

ρ
i − sρ

ρ

)α−1

sρ−1gh(s)ds

and

P̃2h(t) =
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds.

The proof is divided into several steps.
Claim 1: P̃1h+ P̃2v(t) ∈ Br for every h, v ∈ Br.

∣∣P̃1h(t)
(

tρ − aρ

ρ

)1−γ
∣∣∣∣∣ ≤ |T|

Γ(α)

m

∑
i=1

ci

∫ τi

a

(
τ

ρ
i − sρ

ρ

)α−1

sρ−1 |gh(s)| ds

≤ |T|
Γ(α)

m

∑
i=1

ci

∫ τi

a

(
τ

ρ
i − sρ

ρ

)α−1

sρ−1
[

l∗ + m∗ |h(s)|
1 − n∗

]
ds

≤ |T|
Γ(α)

m

∑
i=1

ci

∫ τi

a

(
τ

ρ
i − sρ

ρ

)α−1

sρ−1
[

l∗

1 − n∗

]
ds +

|T|
Γ(α)

m

∑
i=1

ci

∫ τi

a

(
τ

ρ
i − sρ

ρ

)α−1

sρ−1
[

m∗ |h(s)|
1 − n∗

]
ds

≤ |T| l∗

(1 − n∗)Γ(α + 1)

m

∑
i=1

ci

(
τ

ρ
i − aρ

ρ

)α
m∗ |T|

(1 − n∗)Γ(α)
B(γ, α)

m

∑
i=1

ci

(
τ

ρ
i − aρ

ρ

)α+γ−1

∥h∥C1−γ,ρ

This gives

∥∥P̃1h
∥∥

C1−γ,ρ
≤ |T| l∗

(1 − n∗)Γ(α + 1)

m

∑
i=1

ci

(
τ

ρ
i − aρ

ρ

)α
m∗ |T|

(1 − n∗)Γ(α)
B(γ, α)

m

∑
i=1

ci

(
τ

ρ
i − aρ

ρ

)α+γ−1

∥h∥C1−γ,ρ
.

(19)

For operator P̃2∣∣∣∣∣P2h(t)
(

tρ − aρ

ρ

)1−γ
∣∣∣∣∣ ≤ 1

Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 |gh(s)| ds

≤ l∗

(1 − n∗)Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1ds

+
m∗

1 − n∗Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 |h(s)| ds
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≤ l∗

(1 − n∗)Γ(α + 1)

(
tρ − aρ

ρ

)1−γ ( tρ − aρ

ρ

)α

+
m∗

(1 − n∗)Γ(α)

(
tρ − aρ

ρ

)1−γ

B(γ, α)

(
tρ − aρ

ρ

)α+γ−1

∥h∥C1−γ,ρ
.

Thus we obtain

∥∥P̃2h
∥∥

C1−γ,ρ
≤ l∗

(1 − n∗)Γ(α + 1)

(
bρ − aρ

ρ

)α−γ+1
+

m∗

(1 − n∗)Γ(α)
B(γ, α)

(
bρ − aρ

ρ

)α

∥h∥C1−γ,ρ
. (20)

Linking (19) and (20), for every x, y ∈ Br,∥∥P̃1h+ P̃2v
∥∥

C1−γ,ρ
≤
∥∥P̃1h

∥∥
C1−γ,ρ

+
∥∥P̃2v

∥∥
C1−γ,ρ

≤ r.

Claim 2: P̃1 is a contraction mapping.
For any h, v ∈ Br∣∣∣∣∣(P̃1h(t)− P̃1v(t)

) ( tρ − aρ

ρ

)1−γ
∣∣∣∣∣ ≤ |T|

Γ(α)

m

∑
i=1

ci

∫ τi

a

(
τ

ρ
i − sρ

ρ

)α−1

sρ−1 |gh(s)− gv(s)| ds

≤ |T|
Γ(α)

m

∑
i=1

ci

∫ τi

a

(
τ

ρ
i − sρ

ρ

)α−1

sρ−1
(

ℓ

1 − k

)
|h(s)− v(s)| ds

≤ |T|
Γ(α)

B(γ, α)
m

∑
i=1

ci

(
τ

ρ
i − aρ

ρ

)α+γ−1 (
ℓ

1 − k

)
∥h− v∥C1−γ,ρ

.

This gives

∥∥P̃1h− P̃1v
∥∥

C1−γ,ρ
≤ |T|

Γ(α)
B(γ, α)

(
ℓ

1 − k

) m

∑
i=1

ci

(
τ

ρ
i − aρ

ρ

)α+γ−1

∥h− v∥C1−γ,ρ
.

The operator P̃1 is contraction mapping due to hypothesis [H2].
Claim 3: The operator P̃2 is compact and continuous.

According to Step 1, we know that

∥∥P̃2

∥∥
C1−γ,ρ

≤ l∗

(1 − n∗)Γ(α + 1)

(
bρ − aρ

ρ

)α−γ+1
+

m∗

(1 − n∗)Γ(α)
B(γ, α)

(
bρ − aρ

ρ

)α

∥h∥C1−γ,ρ
.

So operator P̃2 is uniformly bounded. Now we prove the compactness of operator P̃2. For a < t1 < t2 < b,
we have

∣∣P̃2h(t1)− P̃2h(t2)
∣∣ ≤

∣∣∣∣∣∣ 1
Γ(α)

∫ t1

a

(
tρ
1 − sρ

ρ

)α−1

sρ−1 f (s, x(s))ds − 1
Γ(α)

∫ t2

a

(
tρ
2 − sρ

ρ

)α−1

sρ−1gh(s)ds

∣∣∣∣∣∣
≤

∥gh∥C1−γ,ρ

Γ(α)
B(γ, α)

∣∣∣∣∣∣
(

tρ
1 − aρ

ρ

)α+γ−1

−
(

tρ
2 − aρ

ρ

)α+γ−1
∣∣∣∣∣∣

tending to zero as t1 → t2. Thus P̃2 is equicontinuous. Hence, the operator P̃2 is compact on Br by the
Arzelä-Ascoli theorem. It follows Theorem 1 that the problem (13) has at least one solution.

Theorem 8. (Uniqueness) Assume that [H1] and [H3] are satisfied. If

ρ1 =
ℓB(γ, α)

(1 + k)Γ(α)

 m

∑
i=1

ci

(
τ

ρ
i − aρ

ρ

)α+γ−1

+

(
bρ − aρ

ρ

)α
 < 1, (21)
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then, the Eq. (13) has a unique solution.

Theorem 9. The assumptions [H1], [H3], [H5] and (21) hold. Then, Eq.(13) is generalized UHR stable.

Proof. Let v be solution of inequality (16) and by Theorem 5, h is a unique solution of the problem

ρDα,βh(t) = g(t, h(t), ρDα,βh(t)),

ρI1−γh(t)|t=a =
m

∑
k=1

cih(τi).

Then, we have

h(t) = fh +
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds,

where

fh =
T

Γ(α)

(
tρ − aρ

ρ

)γ−1 m

∑
i=1

ci

∫ τi

a

(
τ

ρ
i − sρ

ρ

)α−1

sρ−1gh(s)ds.

On the other hand, h(τi) = y(τi), then we get fh = fy. Thus

h(t) = fv +
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds.

By differentiating inequality (16) for each t ∈ J, we have∣∣∣∣∣v(t)− fv −
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1gv(s)ds

∣∣∣∣∣ ≤
(

T
(

tρ − aρ

ρ

)γ−1
m

m

∑
i=1

ci + 1

)
λφ φ(t).

Hence it follows

|v(t)− h(t)| ≤
∣∣∣∣∣v(t)− fv −

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds

∣∣∣∣∣
≤
∣∣∣∣∣v(t)− fv −

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gy(s)ds

∣∣∣∣∣
+

∣∣∣∣∣ 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gy(s)ds − 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds

∣∣∣∣∣
≤
(

T
(

tρ − aρ

ρ

)γ−1
m

m

∑
i=1

ci + 1

)
λφ φ(t) +

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 |gv(s)− gh(s)| ds

≤
(

T
(

tρ − aρ

ρ

)γ−1
m

m

∑
i=1

ci + 1

)
λφ φ(t)

+

(
ℓ

1 − k

)
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 |v(s)− h(s)| ds

:= C f ,φ φ(t).

Thus, Eq.(13) is generalized UHR stable.

5. Boundary value problem involving HK fractional derivative

Boundary valve problem for IDEs with HK fractional derivative is given by{
ρDα,βh(t) = g(t, h(t), ρDα,βh(t)), t ∈:= (a, b]
ρI1−γh(t)|t=a = ha, ρI1−γh(t)|t=b = hb.

(22)



Open J. Math. Sci. 2022, 6, 108-122 119

Lemma 7. Let g : J × R × R → R be continuous. A function h is a solution of the fractional integral equation

h(t) =ρIαg(t, h(t), ρDα,βh(t)) +
ha

Γγ

(
tρ − aρ

ρ

)γ−1

+

(
bρ − aρ

ρ

)1−2β Γ(2β)

Γ(γ + 2β − 1)

(
hb − ha − ρI1−β+αβg(b, h(b), ρDα,βh(b))

)( tρ − aρ

ρ

)γ+2β−2
, (23)

if and only if h is a solution of the Problem (22).

Theorem 10. Assume that [H1] and [H2] are satisfied. Then, (22) has at least one solution.

Proof. Consider the operator P̆ : C1−γ,ρ(J) → C1−γ,ρ(J). The equivalent integral equation (23) which can be
written in the operator form

h(t) = P̆h(t)

where

P̆h(t) =ρIαgh(t) +
ha

Γγ

(
tρ − aρ

ρ

)γ−1

+

(
bρ − aρ

ρ

)1−2β Γ(2β)

Γ(γ + 2β − 1)

(
hb − ha − ρI1−β+αβgh(b)

)( tρ − aρ

ρ

)γ+2β−2
. (24)

We shall show that the operator P̆ is continuous and completely continuous.
Claim 1: P̆ is continuous.

Let hn be a sequence such that hn → h in C1−γ,ρ[a, b]. Then for each t ∈ J,∣∣∣∣∣(P̆hn(t)− P̆h(t))
(

tρ − aρ

ρ

)1−γ
∣∣∣∣∣

≤ ρIα |ghn(t)− gh(t)|+
(

bρ − aρ

ρ

)1−2β Γ(2β)

Γ(γ + 2β − 1)

(
ρI1−β+αβ |ghn(b)− gh(b)|

)( tρ − aρ

ρ

)2β−1

≤
(

bρ − aρ

ρ

)α ( Γ(2β)

Γ(γ + 2β − 1)
B(γ, 1 − β(1 − α))

Γ(1 − β(1 − α))
+

B(γ, α)

Γ(α)

)
∥ghn(·)− gh(·)∥C1−γ,ρ

.

Since g is continuous, then we have ∥∥(P̆hn − P̆h)
∥∥

C1−γ,ρ
→ 0 as n → ∞.

Claim 2 : P̆ maps bounded sets into bounded sets in C1−γ,ρ(J).
Indeed, it is enough to show that for r > 0, there exists a positive constant l such that Br ={

h ∈ C1−γ,ρ(J) : ∥h∥C1−γ,ρ
≤ r
}

,

∣∣∣∣∣P̆h(t)
(

tρ − aρ

ρ

)1−γ
∣∣∣∣∣

≤
(

tρ − aρ

ρ

)1−γ
ρIα |gh(t)|+

ha

Γγ

+

(
bρ − aρ

ρ

)1−2β Γ(2β)

Γ(γ + 2β − 1)

(
hb + ha +

ρI1−β+αβ |gh(b)|
)( tρ − aρ

ρ

)2β−1

≤
(

tρ − aρ

ρ

)1−γ
ρIα

[
l∗ + m∗ |h(t)|

1 − n∗

]
+

ha

Γγ

+

(
bρ − aρ

ρ

)1−2β Γ(2β)

Γ(γ + 2β − 1)

(
hb + ha +

ρI1−β+αβ

[
l∗ + m∗ |h(b)|

1 − n∗

])(
tρ − aρ

ρ

)2β−1

≤ l∗

(1 − n∗)Γ(α + 1)

(
bρ − aρ

ρ

)α−γ+1
+

m∗B(γ, α)

(1 − n∗)Γ(α)

(
bρ − aρ

ρ

)α

∥h∥C1−γ,ρ
+

ha

Γ(γ)
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+
Γ(2β)

Γ(γ + 2β − 1)
(hb + ha) +

Γ(2β)

Γ(γ + 2β − 1)
l∗

(1 − n∗)Γ(2 − β(1 − α))

(
bρ − aρ

ρ

)1−β+αβ

+
m∗Γ(2β)

(1 − n∗)Γ(γ + 2β − 1)
B(γ, 1 − β(1 − α))

Γ(1 − β(1 − α))

(
bρ − aρ

ρ

)α

∥h∥C1−γ,ρ

= l.

Claim 3 : P̆ maps bounded sets into equicontinuous set of C1−γ,ρ(J).
Let t1, t2 ∈ J, t1 > t2, Br be a bounded set of C1−γ,ρ(J) as in claim 2, and h ∈ Br. Then,

∣∣(P̆h(t1)− P̆h(t2))
∣∣ ≤ρIα |gh(t1)− gh(t2)|+

ha

Γγ

( tρ
1 − aρ

ρ

)γ−1

−
(

tρ
2 − aρ

ρ

)γ−1


+

(
bρ − aρ

ρ

)1−2β Γ(2β)

Γ(γ + 2β − 1)

(
hb + ha +

ρI1−β+αβ | f (b, x(b))|
)

×

( tρ
1 − aρ

ρ

)γ+2β−2

−
(

tρ
2 − aρ

ρ

)γ+2β−2


As t1 → t2, the right hand side of the above inequality tends to zero. As a consequence of claim 1 to 3, together
with Arzelä-Ascoli theorem, we can conclude that P̆ : C1−γ,ρ(J) → C1−γ,ρ(J) is continuous and completely
continuous.
Claim 4: A priori bounds.

Now it remains to show that the set

ω =
{
h ∈ C1−γ,ρ(J) : h = δP̆(h), 0 < δ < 1

}
is bounded set. Let h ∈ ω, h = δP̆(h) for some 0 < δ < 1. Thus for each t ∈ J we have

h(t) = δ

[
ρIαgh(t) +

ha

Γγ

(
tρ − aρ

ρ

)γ−1

+

(
bρ − aρ

ρ

)1−2β Γ(2β)

Γ(γ + 2β − 1)

(
hb − ha − ρI1−β+αβgh(b)

)( tρ − aρ

ρ

)γ+2β−2
]

.

This shows that the set ω is bounded. As a consequence of Theorem 2, we deduce that P̆ has a fixed point
which is a solution of Problem (22).

Theorem 11. Assume that hypothesis (H1) is fulfilled. If(
ℓB(γ, α)

(1 − k)Γ(α)
+

Γ(2β)

Γ(γ + 2β − 1)
ℓB(γ, 1 − β + αβ)

(1 − k)Γ(1 − β(1 − α))

)(
bρ − aρ

ρ

)α

< 1

then, Eq. (22) has unique solution.

Theorem 12. The assumptions [H1], [H3], [H5] and (21) hold. Then, Eq.(22) is generalized UHR stable.

Proof. Let v be solution of inequality (16) and by Theorem 11, h is a unique solution of the problem

ρDα,βh(t) = g(t, h(t), ρDα,βh(t)),
ρI1−γh(t)|t=a = ha, ρI1−γh(t)|t=b = hb.

Then, we have

h(t) = gh +
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds,
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where

gh =
ha

Γγ

(
tρ − aρ

ρ

)γ−1
+

(
bρ − aρ

ρ

)1−2β Γ(2β)

Γ(γ + 2β − 1)

(
hb − ha − ρI

1−β+αβ
a+ gh(b)

)( tρ − aρ

ρ

)γ+2β−2
.

On the other hand, ρI1−γh(t)|t=a = ρI1−γv(t)|t=a, ρI1−γh(t)|t=b = ρI1−γv(t)|t=b, then we get gh = gv. Thus

h(t) = gv +
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds.

By differentiating inequality (16) for each t ∈ J, we have∣∣∣∣∣v(t)− gv −
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1gv(s)ds

∣∣∣∣∣ ≤
(

Γ(2β)

Γ(γ + 2β − 1)

(
bρ − aρ

ρ

)γ−1
+ 1

)
λφ φ(t).

Hence it follows

|v(t)− h(t)| ≤
∣∣∣∣∣v(t)− gv −

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds

∣∣∣∣∣
≤
∣∣∣∣∣v(t)− gv −

1
Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1gv(s)ds

∣∣∣∣∣
+

∣∣∣∣∣ 1
Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1
sρ−1gv(s)ds − 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1gh(s)ds

∣∣∣∣∣
≤
(

Γ(2β)

Γ(γ + 2β − 1)

(
bρ − aρ

ρ

)γ−1
+ 1

)
λφ φ(t) +

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 |gv(s)− gh(s)| ds

≤
(

Γ(2β)

Γ(γ + 2β − 1)

(
bρ − aρ

ρ

)γ−1
+ 1

)
λφ φ(t)

+

(
ℓ

1 − k

)
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1
sρ−1 |v(s)− h(s)| ds

:= C f ,φ φ(t).

Thus, Eq.(22) is generalized UHR stable.

6. Conclusion

Fractional implicit differential equations be used to model the many real-world problems. This paper
looks at the HKFD for the proposed problem with the impulsive, nonlocal, and boundary conditions. We
investigated the essential requirements for the existence, uniqueness, and stability of solutions using classical
fixed point theorems.
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