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Abstract: Repeated integration is a major topic of integral calculus. In this article, we study repeated
integration. In particular, we study repeated integrals and recurrent integrals. For each of these integrals, we
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theorem of calculus that expresses a definite integral in terms of an indefinite integral for repeated and
recurrent integrals. From the recurrent integral formulae, we derive some partition identities. Then we
provide an explicit formula for the n-th integral of xm(ln x)m′

in terms of a shifted multiple harmonic star sum.
Additionally, we use this integral to derive new expressions for the harmonic sum and repeated harmonic
sum.
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1. Introduction

T he author is extremely interested in the study of repetitive structures. In previous articles, the author
studied three types of repetitive sums: recurrent sums [1], multiple sums [2], and repeated sums

[3]. In this article, we extend this study to integrals by considering two types of repetitive integrals: the
repeated integral and the recurrent integral. Our aim is to obtain formulae to simplify these general integral
structures in order to improve our ability to work with them. The development of integral calculus and
multivariable calculus was revolutionary for all branches of science. Repeated integration is a fundamental
tool used everywhere from mathematics to physics to biology to economics. Due to this widespread use
of such structures, improvements in the understanding of such structures could potentially have numerous
applications. The first person to attempt simplifying repeated integrals was Cauchy [4] who developed the
following reduction formula:∫ x

a
· · ·

∫ x3

a

∫ x2

a
f (x1) dx1 · · · dxn =

1
(n − 1)!

∫ x

a
(x − t)n−1 f (t) dt.

This formula is generalized to non-integer parameters by the Riemann-Liouville integral [5–7]. Both of
these are generalized to arbitrary dimension by the Riesz potential [8]. These formulae have a multitude
of applications, in particular, they are used in fractional calculus in order to perform integrations or
differentiations of fractional order [9]. In this article, we introduce a new reduction formula for both the definite
and indefinite form of repeated integrals as well as we produce a generalization of the fundamental theorem
of calculus linking the definite form to the indefinite form. We repeat this procedure for the second type of
repetitive integrals studied, that is, recurrent integrals. In particular, the simplification formulas for definite
recurrent integrals will involve partitions. Hence, exploiting this connection between recurrent integrals and
partitions, we derive some partition identities.

A particular repeated integral in which we are interested is the n-th integral of xm(ln x)m′
. We are

interested in the repeated integral of xm(ln x)m′
as developing a formula for such an integral will require

the use of all three main theorems (the variation formula, inversion formula, and reduction formula) of [1].
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Hence, we present simplification formulae for this integral as an application to that cited article. This integral
is surprisingly linked to the harmonic sum as well as to a more general form called the multiple harmonic star
sum (which is a particular case of recurrent sums [1]). In fact, the reduction formula for the repeated integral
of xm(ln x)m′

is expressed in terms of a recurrent sum (in particular, a shifted multiple harmonic star sum). The
connection between repeated integrals and recurrent sum structures has been previously explored. In 2018,
Ce Xu [10] illustrated the connection between similar integrals involving logarithms and a particular recurrent
sum (the multiple zeta star function or multiple harmonic star sum). In this article, we further contribute to
establishing this connection between logarithmic integrals and multiple harmonic star sums. The multiple
harmonic star sum (MHSS) [11–13] is defined as follows:

ζ⋆n(s1, s2, . . . , sk) = ∑
1≤N1≤N2≤···≤Nk≤n

1
Ns1

1 Ns2
2 · · · Nsk

k
.

For the purpose of this article, let us also define the following more general notation:

ζ⋆q,n(s1, s2, . . . , sk) = ∑
q≤N1≤N2≤···≤Nk≤n

1
Ns1

1 Ns2
2 · · · Nsk

k
.

Also, let (s1, . . . , sk) = ({p}k) represent (s1, . . . , sk) = (p, . . . , p).
The connection goes both ways: In the same way multiple harmonic star sums help in simplifying such

integrals, these integrals can be used to simplify certain harmonic sums. Study [3], presents several formulae
for simplifying harmonic sums, repeated harmonic sums as well as a variant involving binomial coefficients
(that is referred to as the binomial-harmonic sum). Exploiting the connection established between logarithmic
integrals and harmonic sums, these relations will be utilized to derive formulae for the repeated harmonic
sum and the repeated binomial-harmonic sum.

In Section 2, we derive reduction formulas for indefinite repeated integrals as well as indefinite recurrent
integrals which allow us to express such integrals in terms of simple (non-repetitive) integrals. Then, we
present a generalization of the fundamental theorem of calculus for repeated integrals and recurrent integrals.
These formulae will then be used to express the definite repeated and recurrent integrals in terms of definite
single integrals. Partition identities will also be derived from the recurrent integral formulae. In Section 3, we
propose explicit formulas for the n-th order repeated integral of xm(ln x)m′

. These formulas will include n, m,
and m′ as parameters in the expression. They will also include certain number theoretical concepts such as
MHSS and partitions. In Section 4, the relation between this integral and the harmonic sum will be exploited
to produce results related to the harmonic sum such as an alternating sum representation of the harmonic sum.
We also utilize the relations derived in [3] to derive a similar alternating sum representation for the repeated
harmonic sum as well as for the modified form of the repeated harmonic sum (the repeated binomial-harmonic
sum).

2. Repeated integration

In this section, we consider two techniques of repeated integration: repeated integrals and recurrent
integrals. We begin by defining these types of repetitive integrals and presenting some notation.

Definition 1. We define the indefinite repeated integral of order n of the function f (x), denoted In[ f (x)](x) or
simply In, by the following structure:

In =
∫

· · ·
∫

f (x) dx · · · dx =
∫

· · ·
∫

f (x) dxn. (1)

It can also be defined by the following recurrent relation:{
In+1 =

∫
In dx,

I0 = f (x).
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Definition 2. We define the n-th order definite repeated integral of the function f (x), denoted In,a,b[ f (x)] or
simply In,a,b, by the following structure:

In,a,b =
∫ b

a
· · ·

∫ x3

a

∫ x2

a
f (x1) dx1dx2 · · · dxn. (2)

Definition 3. We define the indefinite recurrent integral of order n of the function f (x), denoted Jn[ f (x)](x)
or simply Jn, by the following recurrent relation:{

Jn+1 =
∫

f (x)Jn dx,

J0 = 1.

Explicitly, it can also be expressed as follows:

Jn =
∫

f (x)
∫

f (x) · · ·
∫

f (x) dxn. (3)

Definition 4. We define the n-th order definite recurrent integral of the function f (x), denoted Jn,a,b[ f (x)] or
simply Jn,a,b, by the following structure:

Jn,a,b =
∫ b

a
f (xn)

∫ xn

a
f (xn−1) · · ·

∫ x2

a
f (x1) dx1 · · · dxn. (4)

Remark 1. As we can see, repeated integrals are analogous to repeated sums [3] while recurrent integrals are
analogous to recurrent sums [1].

Likewise, before we proceed, we need to generalize the concept of constant of integration: Let us define
Cn(x) as

Cn(x) =
n−1

∑
i=0

ci
xi

i!

where the ci’s are constants of integration.

Remark 2. If we are using Cn(x) as a function of x, for simplicity, we will denote it as Cn.

2.1. Repeated integrals

In this section, we begin by providing a way to compute indefinite repeated integrals in terms of
simple indefinite integrals. Then we generalize the concept of primitive and present a generalization of the
fundamental theorem of calculus. Finally, we present a formula for computing definite repeated integrals in
terms of simple definite integrals.

2.1.1. Indefinite repeated integrals

We begin by proving a formula for expressing indefinite repeated integrals in terms of single integrals.
We refer to this theorem as the reduction formula for indefinite repeated integrals.

Theorem 1. Let f (x) be a function of x, for any n ∈ N∗, we have that

∫
· · ·

∫
f (x)dxn =

n

∑
k=1

(−1)n−k xk−1

(k − 1)!

(∫ xn−k

(n − k)!
f (x)dx

)
+ Cn.

Remark 3. By substituting k by n − k and performing a few manipulations, this theorem can be rewritten as
follows: ∫

· · ·
∫

f (x)dxn =
xn−1

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
(−1)k

xk

(∫
xk f (x)dx

)
+ Cn.
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Proof. 1. Base case: verify true for n = 1.

1

∑
k=1

(−1)1−k xk−1

(k − 1)!

(∫ x1−k

(1 − k)!
f (x)dx

)
+ C1 =

∫
f (x) dx + C1.

2. Induction hypothesis: assume the statement is true until n.

∫
· · ·

∫
f (x)dxn =

n

∑
k=1

(−1)n−k xk−1

(k − 1)!

(∫ xn−k

(n − k)!
f (x)dx

)
+ Cn.

3. Induction step: we will show that this statement is true for (n + 1).
We have to show the following statement to be true:

∫
· · ·

∫
f (x)dxn+1 =

n+1

∑
k=1

(−1)n−k+1 xk−1

(k − 1)!

(∫ xn−k+1

(n − k + 1)!
f (x)dx

)
+ Cn+1.

To be concise, we denote the left hand side term by I. By applying the induction hypothesis,

I =
∫ (∫

· · ·
∫

f (x) dxn
)

dx

=
∫ ( n

∑
k=1

(−1)n−k xk−1

(k − 1)!

(∫ xn−k

(n − k)!
f (x)dx

)
+ Cn

)
dx

=
∫ ( n

∑
k=1

(−1)n−k xk−1

(k − 1)!

(∫ xn−k

(n − k)!
f (x)dx

))
dx +

∫ (n−1

∑
i=0

ci
xi

i!

)
dx + C

=
n

∑
k=1

(−1)n−k
∫ xk−1

(k − 1)!

(∫ xn−k

(n − k)!
f (x)dx

)
dx +

n−1

∑
i=0

ci
xi+1

(i + 1)!
+ C.

Setting du = xk−1

(k−1)! dx and v =
∫ xn−k

(n−k)! f (x) dx, then applying integration by parts, we have

∫ xk−1

(k − 1)!

(∫ xn−k

(n − k)!
f (x)dx

)
dx =

xk

k!

∫ xn−k

(n − k)!
f (x) dx −

∫ xk

k!
xn−k

(n − k)!
f (x) dx

=
xk

k!

∫ xn−k

(n − k)!
f (x) dx −

(
n
k

) ∫ xn

n!
f (x) dx.

Substituting back, we get

I =
n

∑
k=1

(−1)n−k xk

k!

∫ xn−k

(n − k)!
f (x) dx −

n

∑
k=1

(−1)n−k
(

n
k

) ∫ xn

n!
f (x) dx +

n−1

∑
i=0

ci
xi+1

(i + 1)!
+ C

=
n

∑
k=1

(−1)n−k xk

k!

∫ xn−k

(n − k)!
f (x) dx − (−1)n

(∫ xn

n!
f (x) dx

) n

∑
k=1

(−1)k
(

n
k

)
+

n

∑
i=1

ci−1
xi

i!
+ C.

Knowing that ∑n
k=0 (−1)k(n

k) = 0,

n

∑
k=1

(−1)k
(

n
k

)
=

n

∑
k=0

(−1)k
(

n
k

)
− 1 = −1.

Also, let us consider the set of constants bi such that b0 = C and, for i ≥ 1, bi = ci−1. Hence,

I =
n

∑
k=1

(−1)n−k xk

k!

∫ xn−k

(n − k)!
f (x) dx + (−1)n

(∫ xn

n!
f (x) dx

)
+

n

∑
i=0

bi
xi

i!

=
n+1

∑
k=2

(−1)n−k+1 xk−1

(k − 1)!

∫ xn−k+1

(n − k + 1)!
f (x) dx + (−1)n

(∫ xn

n!
f (x) dx

)
+

n

∑
i=0

bi
xi

i!
.
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=
n+1

∑
k=1

(−1)n−k+1 xk−1

(k − 1)!

∫ xn−k+1

(n − k + 1)!
f (x) dx +

n

∑
i=0

bi
xi

i!

Noting that ∑n
i=0 bi

xi

i! represents Cn+1, the theorem is proven by induction.

Hence, to find the n-th integral of f (x) according to Theorem 1, it is enough to find an expression for the
integral of xk f (x) in terms of k. Thus, the problem is reduced from computing an n-th integral to computing a
simple integral. Using this theorem, we find two propositions that will be useful later on.

Proposition 1. For f (x) = 1, using Theorem 1, we get that∫
· · ·

∫
1 dxn =

xn

n!
+ Cn.

Proof. Applying Theorem 1 for f (x) = 1, we get

∫
· · ·

∫
1 dxn =

xn−1

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
(−1)k

xk

(∫
xkdx

)
+ Cn

=
xn

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
(−1)k

k + 1
+ Cn

=
xn

n!

n−1

∑
k=0

(
n

k + 1

)
(−1)k + Cn

=
xn

n!
+ Cn.

Proposition 2. For f (x) = ln x, using Theorem 1, we get that

∫
· · ·

∫
ln x dxn − Cn =

∫
· · ·

∫ 1
x

dxn+1 − Cn+1 =
xn

n!

[
ln x +

n

∑
k=1

(
n
k

)
(−1)k

k

]
.

Remark 4. Theorem 1 can also be generalized to non-integer orders to obtain:

Iα =
xα−1

Γ(α)

∞

∑
k=0

(
α − 1

k

)
(−1)k

xk

∫
xk f (x) dx

where (
α − 1

k

)
=

(α − 1) · · · (α − k)
k!

.

2.1.2. Relation between definite and indefinite repeated integrals

The fundamental theorem of calculus relates the definite integral of a function to its primitive. In this
section, we develop a generalization of the fundamental theorem of calculus that relates the definite repeated
integral of a function to its repeated primitives.

We begin by defining and generalizing the concept of primitive.

Definition 5. We denote by F(x) the primitive of f (x). We use primitive to mean the expression of the
indefinite integral without the constant of integration (In other words, the case where the constant of
integration is zero).

Definition 6. We define the primitive of order n of the function f (x), denoted Fn[ f (x)](x) or Fn(x), as the
expression of the n-th indefinite integral of f (x) excluding the constants of integration (In other words, the
case where the constants of integration are zero).

The following theorem illustrates how to compute the n-th primitive of a function f (x) in terms of a
simple primitive, specifically, the primitive of xk f (x).
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Theorem 2. Let Φk(x) be the primitive of xk f (x). The n-th primitive of f (x) can be expressed as follows:

Fn(x) =
n

∑
k=1

(−1)n−k xk−1

(k − 1)!
Φn−k(x)
(n − k)!

=
xn−1

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
Φk(x)
(−x)k .

Proof. Using the definition of the n-th primitive presented as well as the notation presented, we can see, from
Theorem 1, that the n-th primitive of f (x) can be expressed as stated by this theorem.

Example 1. The n-th primitive of f (x) = 1 is

Fn(x) =
xn

n!
. (5)

Example 2. The n-th primitive of f (x) = ln x is

Fn[ln x](x) = Fn+1

[
1
x

]
(x) =

xn

n!

[
ln x +

n

∑
k=1

(
n
k

)
(−1)k

k

]
. (6)

In the following lemma, we present a modified version of the fundamental theorem of calculus which is
needed to derive a generalization of the fundamental theorem of calculus for repeated integrals.

Lemma 1. We have that ∫ b

a
Fn(x)dx = Fn+1(x)|ba = Fn+1(b)− Fn+1(a).

Proof. Fn+1(x) is the primitive of Fn(x). Hence, from the fundamental theorem of calculus, we have the
lemma.

In what follows, we prove a generalization of the fundamental theorem of calculus.

Theorem 3. Let f (x) be a function defined in the interval [a, b], for any n ∈ N∗, we have

∫ b

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn = Fn(b)−

n

∑
k=1

(b − a)n−k

(n − k)!
Fk(a).

Remark 5. By applying the binomial theorem, this theorem can be expressed as follows:

∫ b

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn = Fn(b)−

n

∑
k=1

Fk(a)
bn−k

(n − k)!

n−k

∑
ℓ=0

(
n − k
ℓ

)
(−1)ℓ

( a
b

)ℓ
.

Proof. 1. Base case: verify true for n = 1.

F1(b)−
1

∑
k=1

(b − a)1−k

(1 − k)!
Fk(a) = F1(b)− F1(a) =

∫ b

a
f (x1)dx1.

2. Induction hypothesis: assume the statement is true until n.

∫ b

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn = Fn(b)−

n

∑
k=1

(b − a)n−k

(n − k)!
Fk(a).

3. Induction step: we will show that this statement is true for (n + 1).
We have to show the following statement to be true:

∫ b

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn+1 = Fn+1(b)−

n+1

∑
k=1

(b − a)n−k+1

(n − k + 1)!
Fk(a).

∫ b

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn+1 =

∫ b

a

[∫ xn+1

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn

]
dxn+1.



Open J. Math. Sci. 2022, 6, 51-75 57

Letting t = xn+1 and applying the induction hypothesis,

∫ b

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn+1 =

∫ b

a

[
Fn(xn+1)−

n

∑
k=1

(xn+1 − a)n−k

(n − k)!
Fk(a)

]
dxn+1

=
∫ b

a
Fn(t)dt −

n

∑
k=1

Fk(a)
∫ b

a

(t − a)n−k

(n − k)!
dt.

Let us note that, letting u = (t − a) and, hence, du = dt, we have

∫ b

a

(t − a)n−k

(n − k)!
dt =

∫ b

a

un−k

(n − k)!
du =

[
un−k+1

(n − k + 1)!

]b

a

=
(b − a)n−k+1

(n − k + 1)!
.

Using Lemma 2.1, we get

∫ b

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn+1 = Fn+1(b)− Fn+1(a)−

n

∑
k=1

(b − a)n−k+1

(n − k + 1)!
Fk(a)

= Fn+1(b)−
n+1

∑
k=1

(b − a)n−k+1

(n − k + 1)!
Fk(a).

The case for (n + 1) is proven. Hence, the theorem is proven by induction.

Proposition 3. For f (x) = 1, from Theorem 3, we have that

∫ b

a
· · ·

∫ x3

a

∫ x2

a
1 dx1dx2 · · · dxn =

(b − a)n

n!
.

Proof. By applying Theorem 3 for f (x) = 1, we have that

∫ b

a
· · ·

∫ x3

a

∫ x2

a
1 dx1dx2 · · · dxn =

bn

n!
−

n

∑
k=1

(b − a)n−k

(n − k)!
ak

k!

=
bn

n!
− 1

n!

n

∑
k=1

(
n
k

)
(b − a)n−kak

=
bn

n!
−
[
(b − a + a)n

n!
− (b − a)n

n!

]
=

(b − a)n

n!
.

2.1.3. Definite repeated integrals

In this section, we develop a reduction formula for definite repeated integrals which expresses such
integrals in terms of definite single integrals. According to Theorem 4, it is enough to determine an expression
for the definite integral of xk f (x) in function of k to compute the n-th definite integral of f (x). Hence, the
problem is reduced from computing an n-th integral to computing a single integral.

Theorem 4. Let f (x) be a function defined in the interval [a, b], for any n ∈ N∗, we have

∫ b

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn =

bn−1

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
(−1)k

bk

∫ b

a
xk f (x) dx.

Proof. 1. Base case: verify true for n = 1.

b1−1

(1 − 1)!

1−1

∑
k=0

(
1 − 1

k

)
(−1)k

bk

∫ b

a
xk f (x) dx =

∫ b

a
f (x) dx.
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2. Induction hypothesis: assume the statement is true until n.

∫ b

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn =

bn−1

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
(−1)k

bk

∫ b

a
xk f (x) dx.

3. Induction step: we will show that this statement is true for (n + 1).
We have to show the following statement to be true:

∫ b

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn+1 =

bn

n!

n

∑
k=0

(
n
k

)
(−1)k

bk

∫ b

a
xk f (x) dx.

To be concise, we denote the left hand side term by I. By applying the induction hypothesis,

I =
∫ b

a

[∫ xn+1

a
· · ·

∫ x3

a

∫ x2

a
f (x1)dx1dx2 · · · dxn

]
dxn+1

=
∫ b

a

[
(xn+1)

n−1

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
(−1)k

(xn+1)k

∫ xn+1

a
xk f (x) dx

]
dxn+1

=
1

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
(−1)k

∫ b

a
(xn+1)

n−k−1
∫ xn+1

a
xk f (x) dxdxn+1.

Let t = xn+1. Setting du = tn−k−1dt and v =
∫ t

a xk f (x) dx, then applying integration by parts, we have

∫ b

a
vdu = [uv]ba −

∫ b

a
udv =

[
tn−k

n − k

∫ t

a
xk f (x) dx

]t=b

t=a

−
∫ b

a

tn−k

n − k
[tk f (t)] dt

=
bn−k

n − k

∫ b

a
xk f (x) dx −

∫ b

a

tn

n − k
f (t) dt.

Hence, substituting back, we get

I=
1

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
(−1)k bn−k

n − k

∫ b

a
xk f (x) dx − 1

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
(−1)k

∫ b

a

tn

n − k
f (t) dt

=
bn

n!

n−1

∑
k=0

(
n
k

)
(−1)k

bk

(∫ b

a
xk f (x) dx

)
−
(∫ b

a

tn

n!
f (t) dt

) n−1

∑
k=0

(
n
k

)
(−1)k.

Noticing that
n−1

∑
k=0

(
n
k

)
(−1)k =

n

∑
k=0

(
n
k

)
(−1)k − (−1)n = −(−1)n

and that
bn

n!

n

∑
k=n

(
n
k

)
(−1)k

bk

(∫ b

a
xk f (x) dx

)
= (−1)n

(∫ b

a

tn

n!
f (t) dt

)
,

then substituting back, we obtain the theorem.

Remark 6. Using Theorem 4, we can provide an additional proof for Proposition 3:

∫ b

a
· · ·

∫ x3

a

∫ x2

a
1 dx1dx2 · · · dxn =

bn−1

n!

n−1

∑
k=0

(
n

k + 1

)
(−1)k

bk [bk+1 − ak+1]

=
bn

n!

[
n

∑
k=1

(
n
k

)
(−1)k+1 −

n

∑
k=1

(
n
k

)
(−1)k+1

( a
b

)k
]

=
1
n!

n

∑
k=0

(
n
k

)
(−1)kbn−kak

=
(b − a)n

n!
.
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Remark 7. Theorem 4 can also be generalized to non-integer orders to obtain:

Iα,a,b =
bα−1

Γ(α)

∞

∑
k=0

(
α − 1

k

)
(−1)k

bk

∫ b

a
xk f (x) dx

where (
α − 1

k

)
=

(α − 1) · · · (α − k)
k!

.

2.2. Recurrent integrals

In this section, we present formulas for computing indefinite and definite recurrent integrals of a function
in terms of the primitive of this same function. We also introduce the concept of recurrent primitive and
present a generalization of the fundamental theorem of calculus for recurrent integrals. We finish by deriving
a few partition identities from this type of integrals.

2.2.1. Indefinite recurrent integrals

Now we prove a formula for expressing indefinite recurrent integrals in terms of single integrals. We can
call this the reduction formula for indefinite recurrent integrals.

Theorem 5. Let f (x) be a function of x, for any n ∈ N∗, we have that

∫
f (x) · · ·

∫
f (x)

∫
f (x) dxn =

1
n!

(∫
f (x)dx

)n
+

n−1

∑
i=0

ci
1
i!

(∫
f (x)dx

)i
.

Remark 8. Using the notation introduced, this theorem can be rewritten as∫
f (x) · · ·

∫
f (x)

∫
f (x) dxn =

1
n!

(F(x))n + Cn(F(x)).

Proof. Let X =
∫

f (x) dx and dX = f (x) dx, we can rewrite the recurrent integral as follows:∫
f (x) · · ·

∫
f (x)

∫
f (x) dxn =

∫
· · ·

∫ ∫
1 dXn.

Using Proposition 1, we get

∫
f (x) · · ·

∫
f (x)

∫
f (x) dxn =

Xn

n!
+ Cn(X) =

1
n!

(∫
f (x)dx

)n
+

n−1

∑
i=0

ci
1
i!

(∫
f (x)dx

)i
.

Example 3. For the recurrent integral of order 3 of sin x, we have∫
sin x

∫
sin x

∫
sin x dxdxdx =

∫
sin x

∫
sin x (− cos x + c2) dxdx

=
∫

sin x
(

cos2 x
2

− c2 cos x + c1

)
dx

= −cos3 x
6

+ c2
cos2 x

2
− c1 cos x + c0

=
1
3!

(∫
sin x dx

)3
+

2

∑
i=0

ci
1
i!

(∫
sin x dx

)i
.

Example 4. For the recurrent integral of order 3 of ex, we have∫
ex
∫

ex
∫

ex dxdxdx =
∫

ex
∫

ex (ex + c2) dxdx

=
∫

ex
(

e2x

2
+ c2ex + c1

)
dx
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=
e3x

6
+ c2

e2x

2
+ c1ex + c0

=
1
3!

(∫
ex dx

)3
+

2

∑
i=0

ci
1
i!

(∫
ex dx

)i
.

2.2.2. Relation between definite and indefinite recurrent integrals

We begin by introducing the concept of recurrent primitive.

Definition 7. We define the recurrent primitive of order n of the function f (x), denoted ρn(x), as the resulting
expression of the n-th indefinite recurrent integral of f (x) excluding the constants of integration (In other
words, the case where the constants of integration are zero).

Theorem 6. The n-th recurrent primitive of f (x) can be expressed as follows:

ρn(x) =
1
n!

(ρ1(x))n =
1
n!

(F(x))n .

Proof. Using the definition of the n-th recurrent primitive presented as well as the notation presented, we can
see, from Theorem 5, that the n-th recurrent primitive of f (x) can be expressed as follows:

ρn(x) =
1
n!

(F(x))n .

Noticing that ρ1(x) is simply F(x), the proof is complete.

This definition of ρn(x) will be used in the next section to derive a reduction formula for the definite recurrent
integral of a given function f (x).

Now we prove a variant of the fundamental theorem of calculus for recurrent integration. This is needed
to prove an expression for definite recurrent integrals in terms of indefinite recurrent integrals.

Lemma 2. We have that ∫ b

a
f (x)ρn(x) dx = ρn+1(b)− ρn+1(a).

Proof. By definition of a recurrent integral, ρn+1(x) =
∫

f (x)ρn(x) dx. Hence, ρn+1(x) is the primitive of
f (x)ρn(x). Therefore, by the fundamental theorem of calculus, we obtain the lemma.

Before we can proceed, we need to present the concept of partition of an integer as partitions are involved
in the generalized fundamental theorem of calculus for recurrent integrals. As defined by the author in [1,2], a
partition is defined as follows:

Definition 8. A partition of a non-negative integer m is a set of positive integers whose sum equals m. We can
represent a partition of m as an ordered set (yk,1, . . . , yk,m) that verifies

yk,1 + 2yk,2 + · · ·+ myk,m =
m

∑
i=1

i yk,i = m. (7)

The coefficient yk,i is the multiplicity of the integer i in the k-th partition of m. Note that 0 ≤ yk,i ≤ m while
1 ≤ i ≤ m. Also note that the number of partitions of an integer m is given by the partition function denoted
p(n). Another way of representing a partition of an integer is with a set (λ1, . . . , λℓ) that satisfies:{

λ1 + · · ·+ λℓ = ∑ℓ
i=1 λi = m,

λi ≤ λi+1.
(8)

Note that the second condition is necessary to ensure a unique representation for each partition of the integer.
The λi’s are called the parts of this partition and ℓ is called the length of this given partition. Note that 1 ≤ λi ≤
m and that the λi’s are not necessarily all distinct. Also note that the partitions of an integer do not all have
the same length. In terms of the first definition, ℓ is the sum of the multiplicities: ℓ = ∑m

i=1 yi = y1 + · · ·+ ym.
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As partitions are not a fundamental part of this article, we will not go into more details. However, for readers
interested in a detailed explanation of partitions, see [14].

Now that the concept of partition of an integer has been presented, we introduce the generalized
fundamental theorem of calculus for recurrent integrals.

Theorem 7. Let f (x) be a function defined in the interval [a, b], for any n ∈ N∗, we have

∫ b

a
f (xn)

∫ xn

a
f (xn−1) · · ·

∫ x2

a
f (x1) dx1 · · · dxn

=
n

∑
k=1

(ρk(b)− ρk(a)) ∑
∑ iyi=n−k

n−k

∏
i=1

(−1)yi (ρi(a))yi .

Remark 9. This theorem can also be rewritten using the second partition notation:

∫ b

a
f (xn)

∫ xn

a
f (xn−1) · · ·

∫ x2

a
f (x1) dx1 · · · dxn =

n

∑
k=1

∑
∑ λi=n−k
λi≤λi+1

(ρk(b)− ρk(a))(−1)ℓ
ℓ

∏
i=1

ρλi (a).

This sum is over all partitions (λ1, . . . , λℓ) of all integers n − k with 1 ≤ k ≤ n. It is important to note that
it is not equivalent to a sum over all partitions (k, λ1, . . . , λℓ) of the integer n as k does not necessarily satisfy
k ≤ λ1.

Proof. 1. Base case: verify true for n = 1

1

∑
k=1

(ρk(b)− ρk(a)) ∑
∑ iyi=1−k

1−k

∏
i=1

(−1)yi (ρi(a))yi = ρ1(b)− ρ1(a).

Likewise, from Lemma 2, ∫ b

a
f (x1) dx1 =

∫ b

a
f (x1)ρ0(x1) dx1 = ρ1(b)− ρ1(a).

2. Induction hypothesis: assume the statement is true until n.

Jn,a,b =
n

∑
k=1

(ρk(b)− ρk(a)) ∑
∑ iyi=n−k

n−k

∏
i=1

(−1)yi (ρi(a))yi .

3. Induction step: we will show that this statement is true for (n + 1).
We have to show the following statement to be true:

Jn+1,a,b =
n+1

∑
k=1

(ρk(b)− ρk(a)) ∑
∑ iyi=n−k+1

n−k+1

∏
i=1

(−1)yi (ρi(a))yi .

Using the induction hypothesis,

Jn+1,a,b =
∫ b

a
f (xn+1)

(∫ xn+1

a
f (xn) · · ·

∫ x2

a
f (x1) dx1 · · · dxn

)
dxn+1

=
∫ b

a
f (xn+1)

(
n

∑
k=1

(ρk(xn+1)− ρk(a)) ∑
∑ iyi=n−k

n−k

∏
i=1

(−1)yi (ρi(a))yi

)
dxn+1

=
n

∑
k=1

(∫ b

a
f (xn+1)ρk(xn+1)dxn+1

)
∑

∑ iyi=n−k

n−k

∏
i=1

(−1)yi (ρi(a))yi

−
n

∑
k=1

ρk(a)
(∫ b

a
f (xn+1)dxn+1

)
∑

∑ iyi=n−k

n−k

∏
i=1

(−1)yi (ρi(a))yi .
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From Lemma 2, ∫ b

a
f (xn+1)ρk(xn+1) dxn+1 = ρk+1(b)− ρk+1(a),

∫ b

a
f (xn+1) dxn+1 =

∫ b

a
f (xn+1)ρ0(xn+1) dxn+1 = ρ1(b)− ρ1(a).

Hence,

Jn+1,a,b =
n

∑
k=1

(ρk+1(b)− ρk+1(a)) ∑
∑ iyi=n−k

n−k

∏
i=1

(−1)yi (ρi(a))yi

−
n

∑
k=1

ρk(a) (ρ1(b)− ρ1(a)) ∑
∑ iyi=n−k

n−k

∏
i=1

(−1)yi (ρi(a))yi

=
n+1

∑
k=2

(ρk(b)− ρk(a)) ∑
∑ iyi=n−k+1

n−k+1

∏
i=1

(−1)yi (ρi(a))yi

+ (ρ1(b)− ρ1(a))
n

∑
k=1

∑
∑ iyi=n−k

(−1)ρk(a)
n−k

∏
i=1

(−1)yi (ρi(a))yi .

Let us define a partition (Y1, . . . , Yn) such that Yk = yk + 1 and, for i ̸= k, if 1 ≤ i ≤ n − k, Yi = yi, otherwise,
Yi = 0. Noticing that ∑ i Yi = ∑ i yi + k = n, hence, (Y1, . . . , Yn) is a partition of n for all k. Thus, we have

(ρ1(b)− ρ1(a))
n

∑
k=1

∑
∑ iyi=n−k

(−1)ρk(a)
n−k

∏
i=1

(−1)yi (ρi(a))yi

= (ρ1(b)− ρ1(a)) ∑
∑ iYi=n

n

∏
i=1

(−1)Yi (ρi(a))Yi

=
1

∑
k=1

(ρk(b)− ρk(a)) ∑
∑ iYi=n−k+1

n−k+1

∏
i=1

(−1)Yi (ρi(a))Yi .

Hence, substituting back, we get the (n + 1) case and the theorem is proven.

2.2.3. Definite recurrent integrals

In this section, we develop two reduction formulae for definite recurrent integrals: the first involves a
sum over partitions while the second does not. Then, in the later section, by equating the expressions from
these two formulae, we derive partition identities.

Theorem 8. Let f (x) be a function defined in the interval [a, b], for any n ∈ N∗, we have

∫ b

a
f (xn)

∫ xn

a
f (xn−1) · · ·

∫ x2

a
f (x1) dx1 · · · dxn

=
n

∑
k=1

(F(b))k − (F(a))k

k!
(F(a))n−k ∑

∑ iyi=n−k

n−k

∏
i=1

(−1)yi

i!yi
.

Remark 10. This theorem can also be expressed using the second partition notation:

∫ b

a
f (xn)

∫ xn

a
f (xn−1) · · ·

∫ x2

a
f (x1) dx1 · · · dxn

=
n

∑
k=1

∑
∑ λi=n−k
λi≤λi+1

(F(b))k − (F(a))k

k!
(F(a))n−k(−1)ℓ

ℓ

∏
i=1

1
λi!

.

Proof. To be concise, we will represent the recurrent integral by Jn,a,b. From Theorem 7,

Jn,a,b =
n

∑
k=1

(ρk(b)− ρk(a)) ∑
∑ iyi=n−k

n−k

∏
i=1

(−1)yi (ρi(a))yi .
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Applying Theorem 6, we get

Jn,a,b =
n

∑
k=1

(ρ1(b))k − (ρ1(a))k

k! ∑
∑ iyi=n−k

n−k

∏
i=1

(−1)yi
(ρ1(a))iyi

i!yi

=
n

∑
k=1

(ρ1(b))k − (ρ1(a))k

k!
(ρ1(a))n−k ∑

∑ iyi=n−k

n−k

∏
i=1

(−1)yi

i!yi
.

Noticing that ρ1(x) is simply the primitive F(x) of f (x), we get the theorem.

Theorem 9. Let f (x) be a function defined in the interval [a, b], for any n ∈ N∗, we have

∫ b

a
f (xn)

∫ xn

a
f (xn−1) · · ·

∫ x2

a
f (x1) dx1 · · · dxn =

1
n!

(∫ b

a
f (x) dx

)n

=
(F(b)− F(a))n

n!
.

Proof. Let Xi =
∫

f (xi) dxi = F(xi) and dXi = f (xi) dxi, we can rewrite the definite recurrent integral as
follows (Notice that the limits of integration should also be modified accordingly):

∫ b

a
f (xn)

∫ xn

a
f (xn−1) · · ·

∫ x2

a
f (x1) dx1 · · · dxn =

∫ F(b)

F(a)

∫ Xn

F(a)
· · ·

∫ X2

F(a)
1 dX1 · · · dXn.

Using Proposition 3, we get the theorem.

2.2.4. Partition identities derived from recurrent integrals

By equation the expressions of the definite recurrent integral from Theorem 8 and Theorem 9, we get the
following theorem.

Theorem 10. Let F(x) be a function defined in the interval [a, b], for any n ∈ N∗, we have

n

∑
k=1

(F(b))k − (F(a))k

k!
(F(a))n−k ∑

∑ iyi=n−k

n−k

∏
i=1

(−1)yi

i!yi
=

(F(b)− F(a))n

n!
.

Equivalently, we have

n

∑
k=1

∑
∑ λi=n−k
λi≤λi+1

(F(b))k − (F(a))k

k!
(F(a))n−k(−1)ℓ

ℓ

∏
i=1

1
λi!

=
(F(b)− F(a))n

n!
.

From this general partition identity, we derive some special partition identities.

Corollary 11. For any n ∈ N∗, we have that

n

∑
k=1

1
k! ∑

∑ iyi=n−k

n−k

∏
i=1

(−1)yi

i!yi
=

(−1)n+1

n!
.

Equivalently, we have

∑
k+λ1···+λℓ=n

λi≤λi+1

(−1)ℓ+1

k!λ1! · · · λℓ!
=

(−1)n

n!
.

Proof. Letting F(x) be such that F(a) = 1 and F(b) = 0, Theorem 10 reduces to this corollary. The second
equality is obtained by using the second partition notation and combining the two sums into one.

Corollary 12. For any n ∈ N∗ and any a, b ∈ C, we have that

n

∑
k=1

bkan−k

k! ∑
∑ iyi=n−k

n−k

∏
i=1

(−1)yi

i!yi
=

(b − a)n − (−a)n

n!
.
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Equivalently, we have

∑
k+λ1···+λℓ=n

λi≤λi+1

bkan−k

k!
(−1)ℓ

λ1! · · · λℓ!
= ∑

k+λ1···+λℓ=n
λi≤λi+1

bk

k!
(−1)ℓaλ1+···+λℓ

λ1! · · · λℓ!
=

(b − a)n − (−a)n

n!
.

Proof. Letting F(x) be such that F(a) = a and F(b) = b, from Theorem 10, we have

n

∑
k=1

bkan−k

k! ∑
∑ iyi=n−k

n−k

∏
i=1

(−1)yi

i!yi
− an

n

∑
k=1

1
k! ∑

∑ iyi=n−k

n−k

∏
i=1

(−1)yi

i!yi
=

(b − a)n

n!
.

Applying Corollary 11, we obtain this corollary. The second equality is obtained by using the second partition
notation and combining the two sums into one.

Corollary 13. For any n ∈ N∗ and any b ∈ C, we have that

n

∑
k=1

bk

k! ∑
∑ iyi=n−k

n−k

∏
i=1

(−1)yi

i!yi
=

(b − 1)n − (−1)n

n!
.

Equivalently, we have

∑
k+λ1···+λℓ=n

λi≤λi+1

bk

k!
(−1)ℓ

λ1! · · · λℓ!
=

(b − 1)n − (−1)n

n!
.

Proof. By setting a = 1 in Corollary 12, we obtain this corollary.

2.2.5. Generalized recurrent integrals

The recurrent integral structure is one where all functions are the same. It is analogous to the simple
recurrent sum (presented in [1]) where all sequences are the same. However, that last article also presents
a more general sum structure where all sequences are distinct. Similarly, we can introduce a generalized
recurrent integral structure where all functions are distinct.

Definition 9. We define the general indefinite recurrent integral of order n and denote it as:

Jn[ f1, . . . , fn](x) =
∫

fn(x)
∫

fn−1(x) · · ·
∫

f1(x) dxn. (9)

Definition 10. We define the n-th order general definite recurrent integral and denote it as:

Jn,a,b[ f1, . . . , fn] =
∫ b

a
fn(xn)

∫ xn

a
fn−1(xn−1) · · ·

∫ x2

a
f1(x1) dx1 · · · dxn. (10)

In what follows, we conjecture formulas for simplifying each of the indefinite and definite general
recurrent integrals. But first, we define the follow notation: The permutation group Sn is the set of all
permutations of the set {1, . . . , n}. Let σ ∈ Sn be a permutation of the set {1, . . . , n} and let σ(i) represent
the i-th element of this given permutation. Let Cn,k be the set of all combinations (without repetition) of k
elements from the set {1, . . . , n}. Let ε ∈ Cn,k be a combination of k elements from the set {1, . . . , n} and let ε(i)
represent the i-th element of this given combination.

Conjecture 1. Let f (x) be a function of x, for any n ∈ N∗, we have that

∑
σ∈Sn

(∫
fσ(n)(x)

∫
fσ(n−1)(x) · · ·

∫
fσ(1)(x) dxn

)

=
n

∏
i=1

(∫
fi(x) dx

)
+

n−1

∑
k=0

∑
ε∈Cn,k

ck,ε(1),...,ε(k)

k

∏
i=1

(∫
fε(i)(x)dx

)

where the ck,ε(1),...,ε(k) are constants of integration.
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Example 5. For f1(x) = ex and f2(x) = sin x, we have∫
sin x

∫
ex dx2 +

∫
ex
∫

sin x dx2

=

(∫
ex dx

)(∫
sin x dx

)
+ c1,1

(∫
sin x dx

)
+ c1,2

(∫
ex dx

)
+ c0

= −ex cos x − c1,1 cos x + c1,2ex + c0.

Conjecture 2. Let f (x) be a function defined in the interval [a, b], for any n ∈ N∗, we have

∑
σ∈Sn

(∫ b

a
fσ(n)(xn)

∫ xn

a
fσ(n−1)(xn−1) · · ·

∫ x2

a
fσ(1)(x1) dx1 · · · dxn

)
=

n

∏
i=1

(∫ b

a
fi(x) dx

)
.

Example 6. For f1(x) = ex and f2(x) = sin x, we have

∫ b

a
sin x2

∫ x2

a
ex1 dx1dx2 +

∫ b

a
ex

2

∫ x2

a
sin x1 dx1dx2

=

(∫ b

a
ex dx

)(∫ b

a
sin x dx

)
= −eb cos b − ea cos a + eb cos a + ea cos b.

3. Explicit formula for the n-th integral of xm(ln x)m′

An integral table can be found at the back of any calculus textbook. Such integral tables contain general
solutions to some general integrals. However, one integral that cannot be found is the n-th order integral of
xm(ln x)m′

, ∫
xm(ln x)m′

dxn.

This integral is of great importance due to its connection with multiple harmonic star sums (MHSSs). In this
section, we develop an explicit formula for this general integral. Through the formulas we derive in this
section, we further contribute to strengthening the connection between logarithmic integrals and multiple
harmonic star sums. We derive two expressions for this integral: the first in terms of shifted MHSSs and the
second in terms of a sum over partitions of shifted harmonic sums. Hence, further highlighting the number
theoretical nature of this integral. But, before we begin, for the sake of conciseness, let us define the following
notation: ∫

f (x) dxn =
∫

f (x) dnx =
∫

· · ·
∫

︸ ︷︷ ︸
n

f (x) dx · · · dx︸ ︷︷ ︸
n

.

3.1. Lemmas

Before we proceed to prove the needed lemmas, we need to present the gamma function. The gamma
function [15,16], denoted Γ(z), is an extension of the factorial to complex numbers excluding the non-positive
integers as it satisfies the following property: Γ(z + 1) = zΓ(z). It was developed by Euler and is defined by
the following expression:

Γ(z) =
∫ ∞

0
xz−1e−x dx.

If z ∈ N, the gamma function reduces back to the following factorial: Γ(z) = (z − 1)!.
We will denote by Z− the set of negative integers. Hence, Γ(z + 1) is defined for z ∈ C \Z−.

Now that we have introduced the gamma function, we proceed in proving the lemmas. The first lemma
consists of proving an expression for a simpler version of the integral.

Lemma 3. For any m ∈ C \ {−1} and for any m′ ∈ N, we have that

∫
xm(ln x)m′

dx = m′!
xm+1

m + 1

m′

∑
k=0

(−1)m′−k (ln x)k

k!

(
1

(m + 1)m′−k

)
+ C1.
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Proof. 1. Base case: verify true for m′ = 0.

0!
xm+1

m + 1

0

∑
k=0

(−1)−k (ln x)k

k!

(
1

(m + 1)−k

)
=

xm+1

m + 1
=
∫

xm dx.

2. Induction hypothesis: assume the statement is true until m′.

∫
xm(ln x)m′

dx = m′!
xm+1

m + 1

m′

∑
k=0

(−1)m′−k (ln x)k

k!

(
1

(m + 1)m′−k

)
.

3. Induction step: we will show that this statement is true for (m′ + 1).
We have to show the following statement to be true:

∫
xm(ln x)m′+1 dx = (m′ + 1)!

xm+1

m + 1

m′+1

∑
k=0

(−1)m′−k+1 (ln x)k

k!

(
1

(m + 1)m′−k+1

)
.

We set

u = (ln x)m′+1, du = (m′ + 1)
(

1
x

)
(ln x)m′

dx

v = xm+1

m+1 , dv = xm dx.
Applying integration by parts, we get

∫
xm(ln x)m′+1 dx =

xm+1

m + 1
(ln x)m′+1 − m′ + 1

m + 1

∫
xm(ln x)m′

dx.

Applying the induction hypothesis,∫
xm(ln x)m′+1 dx

=
xm+1

m + 1
(ln x)m′+1 − m′ + 1

m + 1
m′!

xm+1

m + 1

m′

∑
k=0

(−1)m′−k (ln x)k

k!

(
1

(m + 1)m′−k

)

=
xm+1

m + 1
(ln x)m′+1 + (m′ + 1)!

xm+1

m + 1

m′

∑
k=0

(−1)m′−k+1 (ln x)k

k!

(
1

(m + 1)m′−k+1

)

= (m′ + 1)!
xm+1

m + 1

m′+1

∑
k=0

(−1)m′−k+1 (ln x)k

k!

(
1

(m + 1)m′−k+1

)
.

Hence, the lemma is proven by induction.

In [1], the author proved the following theorem (called the variation formula for recurrent sums),

n+1

∑
Nm=q

· · ·
N3

∑
N2=q

N2

∑
N1=q

aNm · · · aN2 aN1 =
m

∑
k=0

(an+1)
m−k

(
n

∑
Nk=q

· · ·
N3

∑
N2=q

N2

∑
N1=q

aNk · · · aN2 aN1

)
. (11)

This relation needs to be adapted to a certain form in order for it to be used in the proof of Theorem 14. This
needed adaptation is illustrated by the following lemma. This lemma consists of a multiple harmonic star sum
identity expressing a MHSS in terms of lower order MHSSs.

Lemma 4. We have that

n+m+1

∑
Nm′−i=1+m

· · ·
N3

∑
N2=1+m

N2

∑
N1=1+m

1
Nm′−i

· · · 1
N2

1
N1

=
m′

∑
k=i

1
(m + n + 1)k−i

n+m

∑
Nm′−k=1+m

· · ·
N3

∑
N2=1+m

N2

∑
N1=1+m

1
Nm′−k

· · · 1
N2

1
N1

.



Open J. Math. Sci. 2022, 6, 51-75 67

Remark 11. Using the notation, we can write the lemma as follows:

ζ⋆1+m,n+m+1({1}m′−i) =
m′

∑
k=i

ζ⋆1+m,n+m({1}m′−k)

(n + m + 1)k−i .

Proof. From equation (11) with m substituted by m′ − i, with aNk =
1

Nk
, with q = 1+m, and with n substituted

by n + m, we have that

n+m+1

∑
Nm′−i=1+m

· · ·
N3

∑
N2=1+m

N2

∑
N1=1+m

1
Nm′−i

· · · 1
N2

1
N1

=
m′−i

∑
k=0

1

(m + n + 1)m′−k−i

(
n+m

∑
Nk=1+m

· · ·
N3

∑
N2=1+m

N2

∑
N1=1+m

1
Nk

· · · 1
N2

1
N1

)
.

For the sake of conciseness, let us denote the first term as S. Substituting k by m′ − k, we get

S =
0

∑
m′−k=m′−i

1

(m + n + 1)k−i

 n+m

∑
Nm′−k=1+m

· · ·
N3

∑
N2=1+m

N2

∑
N1=1+m

1
Nm′−k

· · · 1
N2

1
N1

.

Noticing that the interval m′ − i ≤ m′ − k ≤ 0 is equivalent to the interval i ≤ k ≤ m′,

S =
m′

∑
k=i

1

(m + n + 1)k−i

 n+m

∑
Nm′−k=1+m

· · ·
N3

∑
N2=1+m

N2

∑
N1=1+m

1
Nm′−k

· · · 1
N2

1
N1

.

The relation is proven.

3.2. Theorems

Now that the needed lemmas have been proven, we can develop the following explicit expression for the
n-th integral of xm(ln x)m′

in terms of a shifted multiple harmonic star sum.

Theorem 14. For any m ∈ C \Z−, any m′ ∈ N, and any n ∈ N∗, we have that

∫
xm(ln x)m′

dnx = (m′)!Γ(m + 1)
xn+m

Γ(n + m + 1)

[
m′

∑
k=0

(−1)m′−k (ln x)k

k!
ζ⋆1+m,n+m({1}m′−k)

]
+ Cn

where

ζ⋆1+m,n+m({1}m′−k) =
n+m

∑
Nm′−k=1+m

· · ·
N3

∑
N2=1+m

N2

∑
N1=1+m

1
Nm′−k

· · · 1
N2

1
N1

.

Remark 12. If m ∈ N, we replace the gamma function by the corresponding factorial.

∫
xm(ln x)m′

dnx = (m)!(m′)!
xn+m

(n + m)!

[
m′

∑
k=0

(−1)m′−k (ln x)k

k!
ζ⋆1+m,n+m({1}m′−k)

]
+ Cn.

Remark 13. If m ∈ Z− but (n + m) < 0, by taking the limit of the gamma functions ratio,

∫
xm(ln x)m′

dnx = (m′)!
xn+m

(m + 1) · · · (n + m)

[
m′

∑
k=0

(−1)m′−k (ln x)k

k!
ζ⋆1+m,n+m({1}m′−k)

]
+ Cn.

Remark 14. As the reason for the constants of integration represented by Cn is trivial, we will neglect this term
in the proof of the theorem for simplicity.
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Proof. 1. Base case: verify true for n = 1.

Γ(m + 1)(m′)!
x1+m

Γ(2 + m)

[
m′

∑
k=0

(−1)m′−k (ln x)k

k!
ζ⋆1+m,1+m({1}m′−k)

]

= m′!
xm+1

m + 1

m′

∑
k=0

(−1)m′−k (ln x)k

k!

(
1

(m + 1)m′−k

)
.

Likewise, from Lemma 3,

∫
xm(ln x)m′

dx = m′!
xm+1

m + 1

m′

∑
k=0

(−1)m′−k (ln x)k

k!

(
1

(m + 1)m′−k

)
.

2. Induction hypothesis: assume the statement is true until n.

∫
xm(ln x)m′

dnx = Γ(m + 1)(m′)!
xn+m

Γ(n + m + 1)

[
m′

∑
k=0

(−1)m′−k (ln x)k

k!
ζ⋆1+m,n+m({1}m′−k)

]
.

3. Induction step: we will show that this statement is true for (n + 1).
We have to show the following statement to be true

∫
xm(ln x)m′

dn+1x = Γ(m + 1)(m′)!
xn+m+1

Γ(n + m + 2)

[
m′

∑
k=0

(−1)m′−k (ln x)k

k!
ζ⋆1+m,n+m+1({1}m′−k)

]
.

Using the induction hypothesis,

∫
xm(ln x)m′

dn+1x =
∫ (∫

xm(ln x)m′
dnx
)

dx

=
∫

Γ(m + 1)
(m′)!xn+m

Γ(n + m + 1)

[
m′

∑
k=0

(−1)m′−k (ln x)k

k!
ζ⋆1+m,n+m({1}m′−k)

]
dx

=
Γ(m + 1)(m′)!
Γ(n + m + 1)

m′

∑
k=0

(−1)m′−k

k!
ζ⋆1+m,n+m({1}m′−k)

(∫
xn+m(ln x)k dx

)
.

Using Lemma 3, we have

∫
xn+m(ln x)k dx = k!

xm+n+1

m + n + 1

k

∑
i=0

(−1)k−i (ln x)i

i!

(
1

(m + n + 1)k−i

)
.

Substituting back and simplifying, we get

∫
xm(ln x)m′

dx =
m′!Γ(m + 1)xm+n+1

Γ(m + n + 2)

m′

∑
k=0

k

∑
i=0

(−1)m′−i (ln x)i

i!

{
ζ⋆1+m,n+m({1}m′−k)

(m + n + 1)k−i

}
.

Now we need to invert the order of summation. From Theorem 3.1 of [1], we have

m′

∑
k=0

bk

k

∑
i=0

ai =
m′

∑
i=0

ai

m′

∑
k=i

bk.

Let

ai = (−1)m′−i (ln x)i

i!
1

(m + n + 1)−i , bk =
1

(m + n + 1)k ζ⋆1+m,n+m({1}m′−k).
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Hence, applying this formula to interchange the order of summation, we get

m′

∑
k=0

k

∑
i=0

(−1)m′−i (ln x)i

i!

{
ζ⋆1+m,n+m({1}m′−k)

(m + n + 1)k−i

}

=
m′

∑
i=0

(−1)m′−i (ln x)i

i!
1

(m + n + 1)−i

m′

∑
k=i

ζ⋆1+m,n+m({1}m′−k)

(m + n + 1)k

=
m′

∑
i=0

(−1)m′−i (ln x)i

i!

m′

∑
k=i

ζ⋆1+m,n+m({1}m′−k)

(m + n + 1)k−i .

Applying Lemma 4, we get

m′

∑
k=0

k

∑
i=0

(−1)m′−i (ln x)i

i!

{
ζ⋆1+m,n+m({1}m′−k)

(m + n + 1)k−i

}
=

m′

∑
i=0

(−1)m′−i (ln x)i

i!
{

ζ⋆1+m,n+m+1({1}m′−i)
}

.

Substituting back into the expression of the integral, we get

∫
xm(ln x)m′

dn+1x = Γ(m + 1)(m′)!
xn+m+1

Γ(n + m + 2)

[
m′

∑
i=0

(−1)m′−i (ln x)i

i!
ζ⋆1+m,n+m+1({1}m′−i)

]
.

Hence, the case for (n + 1) is proven. Thus, the relation is proven by induction.

Before we proceed to prove a second expression for this logarithmic integral, we present a few corollaries
that will be useful later.

Corollary 15. For any m ∈ C \ {−1}, we have that

∫
xm ln x dx =

xm+1

m + 1

[
ln x − 1

m + 1

]
+ C1.

Corollary 16. For any m ∈ C \Z− and for any n ∈ N∗, we have that

∫
xm ln x dnx = Γ(m + 1)

xn+m

Γ(n + m + 1)

[
ln x −

n+m

∑
N=1+m

1
N

]
+ Cn.

Remark 15. If m ∈ N, we replace the gamma function by the corresponding factorial.

∫
xm ln x dnx = m!

xn+m

(n + m)!

[
ln x −

n+m

∑
N=1+m

1
N

]
+ Cn.

Remark 16. If m ∈ Z− but (n + m) < 0, by taking the limit of the gamma functions ratio,

∫
xm ln x dnx =

xn+m

(n + m) · · · (m + 1)

[
ln x −

n+m

∑
N=1+m

1
N

]
+ Cn.

Using the reduction theorem for recurrent sums presented in [1], we can develop the following explicit
expression for the n-th integral of xm(ln x)m′

in terms of a sum over partitions.

Theorem 17. For any m ∈ C \Z−, any m′ ∈ N, and any n ∈ N∗, we have that

∫
xm(ln x)m′

dnx =
(m′)!Γ(m + 1)xn+m

Γ(n + m + 1)

 m′

∑
k=0

(−1)m′−k (ln x)k

k! ∑
k

∑ i yk,i=m′−k

m′−k

∏
i=1

1
yk,i!iyk,i

(
n+m

∑
N=1+m

1
Ni

)yk,i

+ Cn.
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Remark 17. If m ∈ N, we replace the gamma function by the corresponding factorial.

∫
xm(ln x)m′

dnx = (m)!(m′)!
xn+m

(n + m)!

 m′

∑
k=0

(−1)m′−k (ln x)k

k! ∑
k

∑ i yk,i=m′−k

m′−k

∏
i=1

1
yk,i!iyk,i

(
n+m

∑
N=1+m

1
Ni

)yk,i

+ Cn.

Remark 18. If m ∈ Z− but (n + m) < 0, by taking the limit of the gamma functions ratio,

∫
xm(ln x)m′

dnx =
(m′)!xn+m

(n + m) · · · (m + 1)

 m′

∑
k=0

(−1)m′−k (ln x)k

k! ∑
k

∑ i yk,i=m′−k

m′−k

∏
i=1

1
yk,i!iyk,i

(
n+m

∑
N=1+m

1
Ni

)yk,i

+ Cn.

Proof. In [1], the author proved the following reduction formula,

n

∑
Nm=q

· · ·
N2

∑
N1=q

aNm · · · aN1 = ∑
k

∑ i.yk,i=m

m

∏
i=1

1
(yk,i)!

(
1
i

n

∑
N=q

(aN)
i

)yk,i

.

Applying this formula (with m substituted by m′, n substituted by n+m, q = 1+m, and aNk =
1

Nk
) to Theorem

14, we obtain this theorem.

Logarithms and logarithmic integrals have always held a special place in number theory. The greatest
symbol of this connection is the prime number theorem. This connection is further highlighted here as a
logarithmic integral was shown to be related to two major number theoretical concepts: MHSSs in Theorem
14 and partitions in Theorem 17.

Although it is not of major importance, we can use the theorems previously developed for definite
repeated integrals to develop some formulae for the n-th definite integral of xm(ln x)m′

.

Definition 11. We define Ln,m,m′(x) as the n-th primitive of xm(ln x)m′
whose expression can be seen from

Theorem 14 or Theorem 17.

Theorem 18. For any m ∈ C \Z−, any m′ ∈ N, and any n ∈ N∗, we have that

∫ b

a
· · ·

∫ x3

a

∫ x2

a
xm

1 (ln(x1))
m′

dx1dx2 · · · dxn = Ln,m,m′(b)−
n

∑
k=1

(b − a)n−kLk,m,m′(a).

Proof. By applying Theorem 1 for f (x) = xm(ln x)m′
, we get this theorem.

Theorem 19. For any m ∈ C \Z−, any m′ ∈ N, and any n ∈ N∗, we have that

∫ b

a
· · ·

∫ x3

a

∫ x2

a
xm

1 (ln(x1))
m′

dx1dx2 · · · dxn =
bn−1

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
(−1)k

bk

∫ b

a
xm+k(ln x)m′

dx.

Proof. By applying Theorem 4 for f (x) = xm(ln x)m′
, we get this theorem.

Theorem 20. For any m ∈ C \Z−, any m′ ∈ N, and any n ∈ N∗, we have that

∫ b

a
· · ·

∫ x3

a

∫ x2

a
xm

1 (ln(x1))
m′

dx1dx2 · · · dxn

=
bn−1

(n − 1)!

n−1

∑
k=0

(
n − 1

k

)
(−1)k

bk

m′

∑
j=0

(−1)m′−j

(m + k + 1)m′−j+1
m′!
j!

[
bm+k+1(ln b)j − am+k+1(ln a)j

]
.

Proof. By applying Lemma 3 to Theorem 19, we get this theorem.
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3.3. Particular cases

In what follows, we illustrate some special particular cases of Theorem 14.

• For n = 1: ∫
xm(ln x)m′

dx = m′!
xm+1

m + 1

m′

∑
k=0

(−1)m′−k (ln x)k

k!

(
1

(m + 1)m′−k

)
+ C1. (12)

• For n = 1 and m = 0: ∫
(ln x)m′

dx = m′!x
m′

∑
k=0

(−1)m′−k (ln x)k

k!
+ C1. (13)

• For m = 0: ∫
(ln x)m′

dnx = m′!
xn

n!

m′

∑
k=0

(−1)m′−k (ln x)k

k!
ζ⋆n({1}m′−k) + Cn, (14)

where

ζ⋆n({1}m′−k) =
n

∑
Nm′−k=1

· · ·
N3

∑
N2=1

N2

∑
N1=1

1
Nm′−k

· · · 1
N2

1
N1

.

• For m′ = 1: ∫
xm(ln x) dnx = Γ(m + 1)

xn+m

Γ(n + m + 1)

[
ln x −

n+m

∑
N=1+m

1
N

]
+ Cn. (15)

• For n = 1 and m′ = 1: ∫
xm(ln x) dx =

xm+1

m + 1

[
ln x − 1

m + 1

]
+ C1. (16)

• For m′ = 0: ∫
xm dnx =

xn+m

Γ(n + m + 1)
+ Cn. (17)

4. Application to the expression of harmonic sums

In this section, we use the connection between logarithmic integrals and harmonic sums established
in the previous section to prove some results related to the harmonic sum, repeated harmonic sum, and
binomial-harmonic sum.

4.1. An alternating expression for the harmonic sum

In this section, we derive a new expression for the harmonic sum as an alternating sum. We present a
particularly original proof for this expression using the logarithmic integral from Corollary 16.

We begin by proving the following lemma.

Lemma 5. For any n ∈ N∗ and any m ∈ N, we have that

dn

dxn (xn+m ln x) =
(n + m)!

m!
xm ln x + n!xm

n

∑
k=1

(−1)k+1

k

(
m + n
m + k

)
.

Proof. Let u = xn+m, v = ln x. From Leibniz’s theorem, we get

dn

dxn

(
xn+m ln x

)
= (uv)(n) =

n

∑
k=0

(
n
k

)
u(n−k)v(k) =

n

∑
k=0

(
n
k

)
[xn+m](n−k)[ln x](k).

For k = 0, (n
k)[x

n+m](n−k)[ln x](k) = (n+m)!
m! xm ln x. Hence,

dn

dxn

(
xn+m ln x

)
=

(n + m)!
m!

xm ln x +
n

∑
k=1

(
n
k

)
[xn+m](n−k)[ln x](k).

We also know the following:

∀z ∈ N, [xn+m](z) =
(m + n)!

(m + n − z)!
xm+n−z, hence, [xn+m](n−k) =

(m + n)!
(m + k)!

xm+k.
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∀k ∈ N∗, v(k) =
(−1)k+1(k − 1)!

xk .

Hence, by substituting back, we get

dn

dxn

(
xn+m ln x

)
=

(n + m)!
m!

xm ln x +
n

∑
k=1

(
n
k

) [
(m + n)!
(m + k)!

xm+k
] [

(−1)k+1(k − 1)!
xk

]

=
(n + m)!

m!
xm ln x + xm

n

∑
k=1

(−1)k+1

k
(m + n)!n!

(m + k)!(n − k)!

=
(n + m)!

m!
xm ln x + n!xm

n

∑
k=1

(−1)k+1

k

(
m + n
m + k

)
.

The formula is proven.

Using the lemma, we develop an alternating sum expression for the harmonic sum.

Theorem 21. For any n ∈ N∗ and any m ∈ N, we have that(
m + n

m

) n+m

∑
k=1+m

1
k
=

n

∑
k=1

(−1)k+1

k

(
m + n
m + k

)
.

Proof. From Corollary 16, we have that

∫
xm ln x dxn = m!

xn+m

(n + m)!

[
ln x −

n+m

∑
N=1+m

1
N

]
+ Cn.

We rearrange the terms as follows,

xn+m
n+m

∑
N=1+m

1
N

= xn+m ln x − (n + m)!
m!

∫
xm ln x dxn + Cn.

By differentiating n times, we get(
n+m

∑
N=1+m

1
N

)
dn

dxn (xn+m) =
dn

dxn (xn+m ln x)− (n + m)!
m!

dn

dxn

(∫
xm ln x dxn

)
+

dn

dxn (Cn).

We know the following:

dn

dxn (Cn) = 0,
dn

dxn (xn+m) =
(n + m)!

m!
xm,

dn

dxn

(∫
xm ln x dxn

)
= xm ln x,

and, from Lemma 5,

dn

dxn (xn+m ln x) =
(n + m)!

m!
xm ln x + n!xm

n

∑
k=1

(−1)k+1

k

(
m + n
m + k

)
.

Hence, substituting back, we get(
n+m

∑
N=1+m

1
N

)
(n + m)!

m!
xm =

(n + m)!
m!

xm ln x + n!xm
n

∑
k=1

(−1)k+1

k

(
m + n
m + k

)
− (n + m)!

m!
xm ln x

= n!xm
n

∑
k=1

(−1)k+1

k

(
m + n
m + k

)
.

Dividing both sides by n!xm, we get the theorem.
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Corollary 22. For m = 0, Theorem 21 becomes

n

∑
k=1

1
k
=

n

∑
k=1

(−1)k+1

k

(
n
k

)
.

4.2. Applications of the alternating expression

4.2.1. Expression of the repeated harmonic sum in terms of an alternating sum

In [3], the author showed how the repeated harmonic sum can be expressed in terms of a simple shifted
harmonic sum. In this section, we express the repeated harmonic sum as an alternating sum.

Theorem 23. For any n ∈ N∗ and any m ∈ N, we have that

n

∑
km+1=1

· · ·
k3

∑
k2=1

k2

∑
k1=1

1
k1

=
n

∑
k=1

(−1)k+1

k

(
m + n
m + k

)
.

Proof. In [3], the following formula was proven,

n

∑
km+1=1

· · ·
k2

∑
k1=1

1
k1

=

(
n + m

m

) n+m

∑
i=1+m

1
i

.

By applying Theorem 22, we obtain the theorem.

4.2.2. Expression of the repeated binomial-harmonic sum in terms of an alternating sum

Similarly, in [3], the author also showed that the binomial-harmonic sum can be expressed as a shifted
harmonic sum. In this section, we develop a new expression in terms of an alternating sum.

Theorem 24. For any n, k ∈ N∗ and any m ∈ N, we have that

n

∑
Nk=1

· · ·
N2

∑
N1=1

[(
N1 + m

m

) N1+m

∑
i=1+m

1
i

]
=

n

∑
i=1

(−1)i+1

i

(
m + k + n
m + k + i

)
.

Proof. In [3], the following formula was proven,

n

∑
Nk=1

· · ·
N2

∑
N1=1

[(
N1 + m

m

) N1+m

∑
i=1+m

1
i

]
=

(
n + m + k

m + k

) n+m+k

∑
i=1+m+k

1
i

.

Applying Theorem 21, we obtain the theorem.

4.2.3. Application to the expression of the n-th integral of xm ln x

In this section, we present an alternative expression for the n-th integral of xm ln x.

Theorem 25. For any n ∈ N∗ and any m ∈ N, we have that

∫
xm ln x dxn =

xn+m

n!(n+m
m )

ln x − xn+m

n!(n+m
m )

2

n

∑
k=1

(−1)k+1

k

(
m + n
m + k

)
+ Cn.

Proof. From Corollary 16, we have

∫
xm ln x dxn =

xn+m

n!(n+m
m )

[
ln x −

n+m

∑
k=1+m

1
k

]
+ Cn.

Hence, applying Theorem 21, we obtain the theorem.
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Corollary 26. For m = 0, Theorem 25 becomes

∫
ln x dxn =

xn

n!
ln x − xn

n!

n

∑
k=1

(−1)k+1

k

(
n
k

)
+ Cn.

4.2.4. Divergence of the alternating series

The harmonic series was proven to diverge by several mathematicians including Nicole Oresme [17],
Pietro Mengoli [18], Johann Bernoulli [19], and Jacob Bernoulli [20,21]. Twenty additional proofs can also be
found in [22]. In this section, we use this fact to proof the divergence of the alternating series presented in this
section.

Theorem 27. For any m ∈ N, we have that

lim
n→∞

[
n

∑
k=1

(−1)k+1

k

(
m + n
m + k

)]
= ∞.

Proof.

lim
n→∞

(
n + m

m

)
= lim

n→∞

(n + m)!
m!n!

=
1

m!
lim

n→∞
(n + m) · · · (n + 1) = ∞.

lim
n→∞

n+m

∑
k=1+m

1
k
= lim

n→∞

[
n+m

∑
k=1

1
k
−

m

∑
k=1

1
k

]
=

∞

∑
k=1

1
k
−

m

∑
k=1

1
k
= ∞.

Hence, by using Theorem 21, we prove that this alternating series diverges.
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