Open Journal of
Mathematical Sciences

Corrigenda to "The Galerkin method and hinged beam dynamics"

David Raske

1210 Washtenaw, Ypsilanti, MI, 48197, USA.

* Correspondence: nonlinear.problem.solver@gmail.com

Communicated by: Mujahid Abbas
Received: 9 November 2023; Published: 29 December 2023.

Abstract

This corrigenda makes seven corrections to D. Raske, "The Galerkin method and hinged beam dynamics," Open J. Math. Sci. 2023, 7, 236-247.

Keywords: Nonlinear partial differential equations; Galerkin method; Continuum mechanics.
MSC: Primary 35L35; Secondary 35Q99; 35L76.

1. Introduction

When [1] was published, it contained errors. Because of this, Theorem One (the sole theorem stated in [1]) was not proven when [1] was published. To remedy this situation the author has made several changes to [1]. Once these changes have been made, Theorem One becomes proven. A list of these changes is as follows. In the first paragraph, the following mix of text and mathematical symbols appears:
"Let $y=y(x)$ and $z=z(x)$ be two real-valued functions that are defined on Ω." This should read:
"Let $u_{0}=u_{0}(x)$ and $u_{1}=u_{1}(x)$ be two real-valued functions that are defined on Ω."
In the first paragraph, the following mix of text and mathematical symbols appears:
"The initial/boundary value problem

$$
\begin{aligned}
& u_{t t}+F_{1}\left(u_{t}\right)+u_{x x x x}+F_{2}(u)=f \text { on } \Omega \times(0, T), \\
& u(a, t)=u(b, t)=0 \text { for all } t \in(0, T), \\
& u_{x x}(a, t)=u_{x x}(b, t)=0 \text { for all } t \in(0, T), \\
& u(x, 0)=y(x) \text { for all } x \in \Omega, \\
& u_{t}(x, 0)=z(x) \text { for all } x \in \Omega,
\end{aligned}
$$

occurs naturally in the study of vibrations in beams that are hinged at both ends."
This should read:
"The initial/boundary value problem

$$
\begin{aligned}
& u_{t t}+F_{1}\left(u_{t}\right)+u_{x x x x}+F_{2}(u)=f \text { on } \Omega \times(0, T), \\
& u(a, t)=u(b, t)=0 \text { for all } t \in(0, T), \\
& u_{x x}(a, t)=u_{x x}(b, t)=0 \text { for all } t \in(0, T), \\
& u(x, 0)=u_{0}(x) \text { for all } x \in \Omega, \\
& u_{t}(x, 0)=u_{1}(x) \text { for all } x \in \Omega,
\end{aligned}
$$

occurs naturally in the study of vibrations in beams that are hinged at both ends."

Page 237

In the statement of Theorem 1, the following mix of text and mathematical symbols appears:
"Furthermore, let y be an element of $H_{*}^{4}(\Omega)$, and let z be an element of $H_{*}^{2}(\Omega)$."
This should read:
"Furthermore, let u_{0} be an element of $H_{*}^{4}(\Omega)$, and let u_{1} be an element of $H_{*}^{2}(\Omega)$."

Page 240

In the second paragraph of step one of the proof of Theorem 1, the following mix of text and mathematical symbols appears:
"The goal of this step is to establish that for any $k \geq 1$ there exists a unique solution $u \in C^{3}\left([0, T] ; W_{k}\right)$ to the variational problem

$$
\begin{aligned}
& \left(u^{\prime \prime}(t), v\right)_{L^{2}}+(u(t), v)_{H_{*}^{2}}+\left(F_{1}\left(u^{\prime}(t)\right), v\right)_{L^{2}}+\left(F_{2}(u(t)), v\right)_{L^{2}}=(f(t), v)_{L^{2}} \\
& u(0)=u_{0}^{k}, u^{\prime}(0)=u_{1}^{k}
\end{aligned}
$$

for any $v \in W_{k}$ and $t \in(0, T)$."
This should read:
"The goal of this step is to establish that for any $k \geq 1$ there exists a unique solution $u_{k} \in C^{3}\left([0, T] ; W_{k}\right)$ to the variational problem

$$
\begin{aligned}
& \left(u^{\prime \prime}(t), v\right)_{L^{2}}+(u(t), v)_{H_{*}^{2}}+\left(F_{1}\left(u^{\prime}(t)\right), v\right)_{L^{2}}+\left(F_{2}(u(t)), v\right)_{L^{2}}=(f(t), v)_{L^{2}} \\
& u(0)=u_{0}^{k}, u^{\prime}(0)=u_{1}^{k}
\end{aligned}
$$

for any $v \in W_{k}$ and $t \in(0, T)$."

Page 241

In the second paragraph, the following mix of text and mathematical symbols appears:
"It follows that we can write

$$
\begin{aligned}
& \left(u_{k}^{\prime \prime}(t), e_{i}\right)_{L^{2}}+\left(u_{k}(t), e_{i}\right)_{H_{*}^{2}}+\left(F_{1}\left(u_{k}^{\prime}(t)\right), e_{i}\right)_{L^{2}}+\left(F_{2}\left(u_{k}(t)\right), e_{i}\right)_{L^{2}}=\left(f(t), e_{i}\right)_{L^{2}} \\
& u(0)=u_{0}^{k} \\
& u^{\prime}(0)=u_{1}^{k}
\end{aligned}
$$

for all $t \in\left(0, t_{k}\right)$ and for any $i \in\{1,2,3, \ldots, k\} .{ }^{\prime \prime}$
This should read:
"It follows that we can write

$$
\begin{aligned}
& \left(u_{k}^{\prime \prime}(t), e_{i}\right)_{L^{2}}+\left(u_{k}(t), e_{i}\right)_{H_{*}^{2}}+\left(F_{1}\left(u_{k}^{\prime}(t)\right), e_{i}\right)_{L^{2}}+\left(F_{2}\left(u_{k}(t)\right), e_{i}\right)_{L^{2}}=\left(f(t), e_{i}\right)_{L^{2}} \\
& u_{k}(0)=u_{0}^{k} \\
& u_{k}^{\prime}(0)=u_{1}^{k}
\end{aligned}
$$

for all $t \in\left(0, t_{k}\right)$ and for any $i \in\{1,2,3, \ldots, k\}$."
In the second paragraph, the following mix of text and mathematical symbols appears:
"An immediate consequence of the above is that

$$
\begin{aligned}
& \left(u_{k}^{\prime \prime}(t), v\right)_{L^{2}}+\left(u_{k}(t), v\right)_{H_{*}^{2}}+\left(F_{1}\left(u_{k}^{\prime}(t)\right), v\right)_{L^{2}}+\left(F_{2}\left(u_{k}(t)\right), v\right)_{L^{2}}=(f(t), v)_{L^{2}} \\
& u(0)=u_{0}^{k} \\
& u^{\prime}(0)=u_{1}^{k}
\end{aligned}
$$

for all $v \in W_{k}$ and $t \in\left(0, t_{k}\right)$."
This should read:
"An immediate consequence of the above is that

$$
\begin{aligned}
& \left(u_{k}^{\prime \prime}(t), v\right)_{L^{2}}+\left(u_{k}(t), v\right)_{H_{*}^{2}}+\left(F_{1}\left(u_{k}^{\prime}(t)\right), v\right)_{L^{2}}+\left(F_{2}\left(u_{k}(t)\right), v\right)_{L^{2}}=(f(t), v)_{L^{2}} \\
& u_{k}(0)=u_{0}^{k} \\
& u_{k}^{\prime}(0)=u_{1}^{k}
\end{aligned}
$$

for all $v \in W_{k}$ and $t \in\left(0, t_{k}\right)$."

Page 245

In the first paragraph of Step six, the following mix of text and mathematical symbols appears:
"Proceeding as in section 7.2 of [2], we fix a positive integer N and choose a function $v \in C^{1}\left([0, T] ; H_{*}^{2}(\Omega)\right.$ of the form $v(t)=\sum_{i=1}^{N} d_{i}(t) e_{i}$, where $\left\{d_{i}\right\}_{i=1}^{N}$ are smooth functions."

This should read:
"Proceeding as in section 7.2 of [2], we fix a positive integer N and choose a function $v \in C^{1}\left([0, T] ; H_{*}^{2}(\Omega)\right)$ of the form $v(t)=\sum_{i=1}^{N} d_{i}(t) e_{i}$, where $\left\{d_{i}\right\}_{i=1}^{N}$ are smooth functions."

This concludes the corrigenda to "The Galerkin method and hinged beam dynamics."

References

[1] D. Raske, The Galerkin method and hinged beam dynamics, Open J. Math. Sci. 2023, 7, 236-247.
[2] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Volume 19, American Mathematical Society, 2002.
© 2023 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

