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Abstract: It is on record that rolling out COVID-19 vaccines has been one of the fastest for any vaccine
production worldwide. Despite this prompt action taken to mitigate the transmission of COVID-19, the
disease persists. One of the reasons for the persistence of the disease is that the vaccines do not confer
immunity against the infections. Moreover, the virus-causing COVID-19 mutates, rendering the vaccines less
effective on the new strains of the disease. This research addresses the multi-strains transmission dynamics
and herd immunity threshold of the disease. Local stability analysis of the disease-free steady state reveals
that the pandemic can be contained when the basic reproduction number, R0 is brought below unity. The
results of numerical simulations also agree with the theoretical results. The herd immunity thresholds for
some of the vaccines against COVID-19 were computed to guide the management of the disease. This model
can be applied to any strain of the disease.
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1. Introduction

T he spread of COVID-19 since its first Infection in Wuhan, China, has witnessed massive interventions
by world leaders to get the pandemic under control [1,2]. Some of the interventions include media

campaigns for the use of non-pharmaceutical measures such as the use of face masks, social distancing,
isolation, lockdown, and handwashing, among others [3–5]. Efforts were also intensified towards the
development of vaccines to curb the spread of the disease, leading to the rolling out of vaccines such as
AstraZeneca, Moderna, etc. [6–9]. Despite these interventions, the disease persists because the vaccines
developed so far can only reduce the infection rate and severity of the disease[10]. Hence, the disease still
infects those who have been vaccinated. Another advantage of the vaccines is that the disease-induced death
rate is reduced[11]. Another reason for the persistence of the disease is the fact that the virus causing the
disease mutates, hence rendering the existing vaccines ineffective [12]. The mutation of the COVID-19 virus
gives rise to different strains of the disease [12,13], hence the need to incorporate this in the modeling of
the transmission dynamics of the disease. Many mathematical models of COVID-19 transmission have been
used to predict the dynamics of this disease. Some models focus on non-pharmaceutical control measures for
COVID-19, such as [3–5,14], and many more. Asymptomatic transmission of the disease has also been modeled
by several researchers, including [15,16], and [17]. Since the discovery of COVID-19 vaccines, Scientists have
examined the effects of such vaccines on the eradication of the disease [7,13]. Multiple strain transmission
models have also been developed to study the transmission dynamics of the pandemic. In the current work,
we intend to construct a multiple strains COVID-19 model incorporating vaccination to determine the herd
immunity threshold for eradicating the disease. To our knowledge, this aspect has not been adequately
addressed by researchers. The emergence of different strains of the disease has led to new waves of infections
worldwide. Daily reported cases of infections in Nigeria shows clearly the distinct waves of infections in
the country, as can be seen in Figure 1. The most severe waves of infections were witnessed in Nigeria
between January and March 2021, December 2021, and February 2022. Daily recoveries were also recorded
from the first case of the disease in the country in February 2020 [18] up to June 2022. This is depicted in
Figure 2. However, you will notice some isolated high figures of recoveries for some days. These were due
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Figure 1. The daily records of new COVID-19 cases.

Figure 2. The Daily Records of COVID-19 Recoveries.

to accumulated recoveries that were not reported at the right time. Daily death records are represented in
Figure 3. The one isolated case in this Figure was also accumulated records of deaths that were reported in
one day. Figure 4, on the other hand, shows the daily records of new infections, recoveries, and deaths. It is
clear from the figure that daily mortality from the disease in Nigeria is negligible compared to new infections
and recoveries. Subsequent sections of this paper are organized as follows: Section 2 is dedicated to the model
formulation to be followed by the local stability analysis of the disease-free equilibrium in section 3, while
results and discussion will be the subject of section 4, and finally, the conclusion will come up in section 5.

2. Materials and Methods

We construct a mathematical model focusing on the effects of vaccination in a multiple-strain transmission
of COVID-19. This is divided into the following compartments: the susceptible individuals S(t), the exposed
individuals Ei(t), the infected individuals Ii(t), the vaccinated individuals Vi(t), the exposed vaccinated
individuals EVi (t), the infected vaccinated individuals IVi (t), and the removed/recovered individuals R(t),
with total population given by

N(t) = S(t) + Ei(t) + Ii(t) + Vi(t) + EVi (t) + IVi (t) + R(t).
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Figure 3. The Daily Records of deaths .

Figure 4. The Daily Records of New Cases, Recoveries and Deaths of COVID-19.

Figure 5. Flow diagram for the transmission dynamics of the pandemic.
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The flow diagram of the transmission dynamics based on these compartments is shown in Figure 5. Following
the flow diagram, the governing equations for the dynamics of the disease are given by

dS
dt

=Λ − (1 − ρi)βiSIi − λiρiVi − µS + θR

dEi
dt

=(1 − ρi)βiSIi − (ωi + ξi + µ) Ei

dIi
dt

=ωiEi − (γi + ηi + µ + δi) Ii

dVi
dt

= (λiρi − µ)Vi + ξiEi + ηi Ii − βVi Vi IVi

dEVi

dt
=βVi Vi IVi −

(
ωVi + µ

)
EVi

dIVi

dt
=ωVi EVi −

(
γVi + µ

)
IVi

dR
dt

=γVi IVi + γi Ii − (µ + θ) R

(1)

with the initial conditions

S(0) > 0, Ei(0) > 0, Ii(0) ≥ 0, Vi(0) ≥ 0, EVi ≥ 0, IVi ≥ 0, R(0) ≥ 0.

The parameter Λ is the recruitment rate of susceptible individuals, βi and βVi are effective rates of Infection
of susceptible individuals and vaccinated individuals, respectively, δi is the disease induced death rate of the
infectives, ωi and ωVi are the rates at which the exposed and the exposed vaccinated individuals move into the
infective compartment, γi and γVi are the recovery rates of infected and vaccinated individuals respectively, θ

is the rate at which the recovered return to the susceptible class, µ is the natural death rate of individuals, ηi
is the rate at which the infected are vaccinated, ξi is the rate at which the exposed are vaccinated, λi is rate of
progression from susceptible to the vaccinated, while 0 < ρi < 1 is the proportion of susceptible individuals
who are vaccinated. All the parameters are positive and each of them is taken as a rate per day, while i
represents the variant of the virus. The feasible region for the system (1) is given by

Ψ =

{
(S, E, I, V, EV , IV , R) ∈ R7

+ : S + E + I + EV + IV + R ≤ Λ
µ

}
,

which is bounded and positively invariant. The basic reproduction number ℜ0 of the model is obtained
using the next-generation matrix procedure. Hence, we express the governing equations of the infected
compartments as

dXi
dt

= Fi(X)− Vi(X),

where X ≡ [Ei, Ii, EVi , IVi ]
T ≡ [x1, x2, x3, x4]

T , then F =

[
∂ fij

∂xi

]
X0

, V =

[
∂vij

∂xi

]
X0

, 1 ≤ i, j ≤ 4, where X0 =(
Λ
µ

, 0, 0, 0, 0, 0, 0
)T

, Fi are the new infections in compartment i and Vi are the rates of transfer of infections in

and out of the compartments. To avoid any confusion, the largest eigenvalue of the next generation matrix
FV−1, is the basic reproduction number. From (1), we obtain

F1 = (1 − ρi) βiSIi

F2 =0

F3 =βVi Vi IVi

F4 =0

(2)

and
V1 = (ωi + ξi + µ) Ei

V2 = (γi + ηi + µ + δi)− ωiEi

V3 =
(
ωVi + µ

)
EVi

V4 =
(
γVi + µ

)
IVi − ωVi EVi

(3)
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From (2) and (3), we obtain the Jacobian matrices evaluated at the disease-free equilibrium as

F =


0 (1−ρi)Λβi

µ 0 0
0 0 0 0
0 0 0 0
0 0 0 0


and

V =


ωi + ξi + µ 0 0 0

−ωi γi + ηi + µ + δi 0 0
0 0 ωVi + µ 0
0 0 −ωVi γVi + µ


with| V |= (µ + ωi + ξi)(γi + ηi + µ + δi)(µ + ωVi )(γVi + µ). The inverse of the matrix V is obtained as

V−1 =


1

µ+ωi+ξi
0 0 0

ωi
(µ+ωi+ξi)(γi+ηi+µ+δi)

1
γi+ηi+µ+δi

0 0

0 0 1
µi+ωi

0

0 0
ωVi

(µ+ωVi
)(γVi+µ)

1
γvi+µ

 .

Hence, the next generation matrix (FV−1), is given by

FV−1 =


(1−ρi)βiΛωi

µ(µ+ωi+ξi)(γi)+ηi+µ+δi)
Λ(1−ρi)βi

µ(γi+ηi+µ+δi)
0 0

0 0 0 0
0 0 0 0
0 0 0 0

 (4)

with the eigenvalues Λ1 = Λ2 = Λ3 = 0 and Λ4 = (1−ρi)βiΛωi
µ(µ+ωi+ξi)(γi+ηi+µ+δi)

. Thus, the basic reproduction

number, ℜ0 is the spectral radius of the next generation matrix (FV−1), given by

ℜ0 =
(1 − ρi)βiΛωi

µ(µ + ωi + ξi)(γi + ηi + µ + δi)
. (5)

The baseline parameters obtained for the model are tabulated below:

Table 1. Description of Baseline Parameters for Model (1).

Parameter Description Estimated value
Λ Recruitment rate of susceptible individuals. 0.0375 [14]
θ Rate at which the recovered lose immunity 1.000 assumed
βi Effective rate of infection of individuals 0.14 estimated [19]
µ Natural death rate of individuals 0.015 [14]
ρi Proportion of susceptible individuals who are vaccinated. 0.13 assumed
ωi The effective rate of exposed individuals. 0.12 assumed
ωvi The rate of exposure of vaccinated individuals. 0.16 assumed
γi Recovery rate of infected individuals. 0.27 estimated [20]
δi Disease induced death rate of the infectives. 0.021 estimated [21]
ξi Rate at which the exposed are vaccinated. 0.10 assumed
ηi Rate at which the infected are vaccinated. 0.20 assumed
βvi Effective rate of infection of vaccinated individuals. 0.16 assumed
γvi Recovery rate of vaccinated individuals 1.000 assumed
λi rate of progression from susceptible to the vaccinated. 0.06 assumed

Definition 1. The normalised sensitivity index γR
λ of the variable R(λ) is defined by

γR
λ =

∂R
∂λ

× λ

R
(6)
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Using (6), we obtain the sensitivity indices of the various parameters contained in the basic reproduction
number ℜ0 as depicted in Table 2, based on the baseline parameter values in Table 1

Table 2. The numerical values of Sensitivity indices of the model (1)

Parameter Sensitivity index
Λ 1.000
βi 1.000
ρi −0.1494
ωi 0.4894
γi −0.9029
δi 0.023
ξi −0.4255
ηi −0.0564

2.1. Herd Immunity Threshold

The essence of vaccination against any infectious disease is to protect the population from Infection and
eventually bring the disease to an end. To eradicate the disease through vaccination, a certain threshold
must be targeted. This threshold is referred to as the herd immunity threshold. Herd immunity is defined
as the percentage of the susceptible population that must be vaccinated to stop disease transmission in that
population. It can be expressed in terms of the basic reproduction number ℜ0 as Him = 100

(
1 − 1

ℜ0

)
% for a

vaccine that is 100% efficient. However, for an imperfect vaccine with efficacy Ve, the threshold is expressed
as Him = 100

Ve

(
1 − 1

ℜ0

)
%. When Ve < 1 − 1

ℜ0
, the disease becomes impossible to eradicate even if the whole

population is vaccinated (Fine, et al., 2011). The expression gives the herd immunity threshold for this model

Him = 1 − µ(µ + ωi + ξi)(γi + ηi + µ + δi)

Λ(1 − ρi)βiωi
.

For the parameter values in Table 1, ℜ0 = 1.234 and the corresponding herd immunity threshold for COVID-19
vaccines such as Moderna and Johnson and Johnson is Him = 20.176%. This means Nigeria must vaccinate
about 20% of its population to eradicate COVID-19. However, with AstraZeneca with an efficiency of 72%, the
herd immunity threshold is Him = 26.341%, the country needs to vaccinate at least 26% of the population to
get the disease under control.

3. Existence and Local Stability Analysis of Equilibria

Here, we examine the local stability of the disease-free equilibrium (DFE) in relation to the basic
reproduction number, ℜ0. The disease-free equilibrium is defined as the point at which no disease is present
in the population, which occurs when Ei = Ii = EVi = IVi = R = 0.

We evaluate the Jacobian matrix at the DFE, denoted as
(

Λ
µ , 0, 0, 0, 0, 0, 0

)
, which yields:

JE0 =



−µ 0 −Λ(1−ρi)βi
−λiρi

0 0 0 0

0 −(ωi + ξi + µ) Λ(1−ρi)βi
µ 0 0 0 0

0 ωi −(γi + ηi + µ + δi) 0 0 0 0
0 ξi ηi λiρi − µ 0 0 0
0 0 0 0 −(µ + ωVi ) 0 0
0 0 0 0 ωVi −(γvi + µ) 0
0 0 γi 0 0 γVi −(µ + θ)


This matrix has the following eigenvalues: Λ1 = −µ, Λ2 = −(µ + θ), Λ3 = λiρi − µ, Λ4 = −(γVi + µ),

and Λ5 = −(µ + ωVi ).
The remaining eigenvalues can be obtained from the sub-matrix:

J2 =

(
−(ωi + ξi + µ) Λ(1−ρi)βi

µ

ωi −(γi + ηi + µ + δi)

)
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The matrix (7) has the characteristic polynomial:

λ2 + (2µ + γi + ωi + ξi + ηi + δi)λ + (µ + ωi + ξi)(γi + ηi + µ + δi)−
Λ(1 − ρi)βiωi

µ
= 0

Which can be simplified to:

1
(µ + ωi + ξi)(γi + ηi + µ + δi)

λ +
2µ + γi + ηi + ωi + ξi + δi

(µ + ωi + ξi)(γi + ηi + µ + δi)
λ + 1 −ℜ0 = 0.

This equation can be rewritten as:

a0λ2 + a1λ + a2 = 0 (7)

Where
a0 =

1
(µ + ωi + ξi)(γi + ηi + µ + δi)

> 0,

a1 =
2µ + γi + ηi + ωi + ξi + δi

(µ + ωi + ξi)(γi + ηi + µ + δi)
> 0,

and

a2 = 1 −ℜ0.

For the stability of the DFE, it is required that 1 −ℜ0 > 0, leading to the condition ℜ0 < 1 and λiρi < µ.
Hence, we conclude the following result:

Theorem 1. The disease-free equilibrium (DFE) of the model (1) is locally asymptotically stable for ℜ0 < 1 and λiρi <

µ, and unstable otherwise.

4. Results

A model for the transmission dynamics of multi-strain COVID-19 infections with individual vaccination
has been developed. Theoretical analysis of critical factors in disease management, including the basic
reproduction number and the disease-free equilibrium, has been conducted. The disease-free equilibrium
has been determined to be locally asymptotically stable when the basic reproduction number is less than
unity (ℜ0 < 1), subject to a minimum vaccination threshold within the population. The various parameters
contributing to the basic reproduction number have been characterized by their sensitivity indices, as
presented in Table 2.

Normalized sensitivity indices have been employed to identify parameters with a greater impact on
disease transmission. These sensitivity indices can be positive or negative. The parameter with the highest
positive (or negative) sensitivity index is the one most (or least) sensitive to ℜ0, and thus, to disease
transmission. Figure 6 visualizes the magnitudes of these sensitivity indices.

Simulations of the model equations were also conducted based on the parameter values in Table 1. The
results are presented in Figures 7, 8, 9, and 10. The simulations reveal that infections decrease over time with
reduced exposure to infection, as illustrated in Figure 7.

However, an increase in the recruitment rate of individuals (Λ = 0.375) results in a prolonged persistence
of the disease, as observed in Figure 8. Figure 9 demonstrates that infections slow down with an increase in
the proportion of vaccinated individuals (increasing from ρi = 0.13 to ρi = 0.43).

Furthermore, Figure 10 highlights the fact that a further increase in the proportion of vaccinated
individuals leads to a reduction in infections as well as exposure to the disease.
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Figure 6. Sensitivity Indices of the Parameters Contained in R0.

Figure 7. Solution Curves for all the Compartments.

Figure 8. Solution curves for all the compartments with Λ = 0.375
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Figure 9. Solution curves for all the compartments with Λ = 0.375, ρ = 0.43

Figure 10. Solution curves for all the compartments with Λ = 0.375, ρ = 0.55

5. Conclusions

A multi-strains transmission dynamics of COVID-19 have been constructed and analyzed. The theoretical
analysis, as well as numerical simulations, show that the disease can be contained when R0 < 1 and when more
people are vaccinated. Herd immunity thresholds for the commonly used COVID-19 vaccines in Nigeria were
also computed to guide policymakers.
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