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Abstract: The purpose of this paper is the study of the growth of solutions of higher order linear differential
equations f (k) +

(
Ak−1,1 (z) ePk−1(z) + Ak−1,2 (z) eQk−1(z)

)
f (k−1) + · · ·+

(
A0,1 (z) eP0(z) + A0,2 (z) eQ0(z)

)
f =

0 and f (k) +
(

Ak−1,1 (z) ePk−1(z) + Ak−1,2 (z) eQk−1(z)
)

f (k−1) + · · · +
(

A0,1 (z) eP0(z) + A0,2 (z) eQ0(z)
)

f =

F (z) , where Aj,i (z) ( ̸≡ 0) (j = 0, ..., k − 1; i = 1, 2) , F (z) are meromorphic functions of finite order and
Pj (z) , Qj (z) (j = 0, 1, ..., k − 1; i = 1, 2) are polynomials with degree n ≥ 1. Under some others conditions,
we extend the previous results due to Hamani and Belaïdi [1].

Keywords: Order of growth; Hyper-order; Exponent of convergence of zero sequence; Differential equation;
Meromorphic function.
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1. Introduction and main results

T hroughout this work, we assume that the reader knows the standard notations and the fundamental
results of the Nevanlinna value distribution theory of meromorphic functions as the order and the

hyper-order of growth, the convergence exponents of the zero-sequence and of distinct zeros, the hyper
convergence exponents of the zero-sequence and the distinct zeros of a meromorphic function f , see [2–5].

We recall also the following definitions. The linear measure of a set E ⊂ [0,+∞) is defined as m (E) =∫ +∞
0 χE (t) dt and the logarithmic measure of a set F ⊂ [1,+∞) is defined by lm (F) =

∫ +∞
1

χF(t)
t dt, where

χH (t) is the characteristic function of a set H.
For results on the growth of solutions of the complex linear differential equation

f (k) + Ak−1 (z) ePk−1(z) f (k−1) + · · ·+ A1 (z) eP1(z) f ′ + A0 (z) eP0(z) f = 0,

where Pj (z) = aj,nzn + · · ·+ aj,0 are polynomials with degree n ≥ 1, aj,q (j = 0, 1, ..., k − 1; q = 0, 1, ..., n) are
complex numbers and Aj(z) ( ̸≡ 0), (j = 0, 1, ..., k − 1) are entire or meromorphic functions of finite order less
than n, the reader is referred to [1,6–8].

Recently, Hamani and Belaïdi [1] studied the order of transcendental meromorphic solutions of the
homogeneous and the non-homogeneous linear differential equations

f (k) + hk−1 (z) ePk−1(z) f (k−1) + · · ·+ h1 (z) eP1(z) f ′ + h0 (z) eP0(z) f = 0, (1)

f (k) + hk−1 (z) ePk−1(z) f (k−1) + · · ·+ h1 (z) eP1(z) f ′ + h0 (z) eP0(z) f = F, (2)

and have proved the following results;

Theorem 1. [1] Let k ≥ 2 be an integer and Pj (z) =
n
∑

i=0
aj,izi (j = 0, 1, ..., k − 1) be nonconstant polynomials

with degree n ≥ 1, where aj,0, aj,1, ..., aj,n (j = 0, 1, ..., k − 1) are complex numbers. Let hj(z) (j = 0, 1, ..., k − 1)
be meromorphic functions ρ

(
hj
)
< n. Suppose that there exists s, d ∈ {0, 1, ..., k − 1} such that hs hd ̸≡ 0, as,n =

|as,n| eiθs , ad,n =
∣∣ad,n

∣∣ eiθd , θs, θd ∈ [0, 2π), θs ̸= θd then for j ∈ {0, 1, ..., k − 1}⧹ {s, d} , aj,n satisfies either aj,n =
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cjas,n or aj,n = cjad,n (0 < cj < 1). Then every transcendental meromorphic solution f whose poles are of uniformly
bounded multiplicities of Equation (1) is of infinite order and satisfies ρ2( f ) = n.

Theorem 2. [1] Let k ≥ 2 be an integer, hj (z) , Pj (z) and an,j satisfy the hypotheses of Theorem . Let F ( ̸≡ 0) be
a meromorphic function of order ρ (F) < n. Then every transcendental meromorphic solution f whose poles are of
uniformly bounded multiplicities of Equation (2) is of infinite order and satisfies λ2 ( f ) = λ2 ( f ) = ρ2 ( f ) = n, with
at most one exceptional solution f0 of finite order.

In this paper, we continue to study the oscillation problem of solutions, we improve and extend Theorem
2 and Theorem 2 for equations of the form

f (k) +
(

Ak−1,1 (z) ePk−1(z) + Ak−1,2 (z) eQk−1(z)
)

f (k−1) + · · ·+
(

A0,1 (z) eP0(z) + A0,2 (z) eQ0(z)
)

f = 0, (3)

and

f (k) +
(

Ak−1,1 (z) ePk−1(z) + Ak−1,2 (z) eQk−1(z)
)

f (k−1) + · · ·+
(

A0,1 (z) eP0(z) + A0,2 (z) eQ0(z)
)

f = F. (4)

We obtain the following results;

Theorem 3. Let k ≥ 2 be an integer and Pj (z) = aj,nzn + · · · + aj,0, Qj (z) = bj,nzn + · · · + bj,0 be polynomials
with degree n ≥ 1, where aj,q, bj,q (j = 0, 1, ..., k − 1; q = 0, 1, ..., n) are complex numbers such that aj,nbj,n ̸= 0. Let
Aj,i(z) ( ̸≡ 0) (j = 0, 1, ..., k − 1; i = 1, 2) be meromorphic functions such that max{ρ

(
Aj,i
)

: j = 0, 1, ..., k − 1; i =
1, 2} < n. Suppose that there exist s, d ∈ {0, 1, ..., k − 1} such that As,1 Ad,1 ̸≡ 0, As,2 Ad,2 ̸≡ 0, as,n = |as,n| eiθs ,
ad,n =

∣∣ad,n
∣∣ eiθd , bs,n = |bs,n| eiφ, θs, θd, φ ∈ [0, 2π), θs ̸= θd, then for j ∈ {0, 1, ..., k − 1}⧹ {s, d} , an,j and bj,n

satisfies either aj,n = cjas,n or aj,n = cjad,n, bj,n = c′jbs,n (0 < cj < 1, 0 < c′j < 1). Then every transcendental
meromorphic solution f whose poles are of uniformly bounded multiplicities of Equation (3) is of infinite order and
satisfies ρ2( f ) = n.

Corollary 1. Let k ≥ 2 be an integer and Pj (z) = aj,nzn + · · ·+ aj,0, Qj (z) = bj,nzn + · · ·+ bj,0 be polynomials
with degree n ≥ 1, where aj,q, bj,q (j = 0, 1, ..., k − 1; q = 0, 1, ..., n) are complex numbers such that aj,nbj,n ̸= 0.
Let Aj,i(z) ( ̸≡ 0) (j = 0, 1, ..., k − 1; i = 1, 2) be entire functions such that max{ρ

(
Aj,i
)

: j = 0, 1, ..., k − 1; i =

1, 2} < n. Suppose that there exist s, d ∈ {0, 1, ..., k − 1} such that As,1 Ad,1 ̸≡ 0, As,2 Ad,2 ̸≡ 0, as,n = |as,n| eiθs ,
ad,n =

∣∣ad,n
∣∣ eiθd , bs,n = |bs,n| eiφ, θs, θd, φ ∈ [0, 2π), θs ̸= θd, then for j ∈ {0, 1, ..., k − 1}⧹ {s, d} , aj,n and bj,n

satisfies either aj,n = cjas,n or aj,n = cjad,n, bj,n = c′jbs,n (0 < cj < 1, 0 < c′j < 1). Then every transcendental solution
f of Equation (3) is of infinite order and satisfies ρ2( f ) = n.

Example 1. Consider the following differential equation

f (4) +
(
−2izeiz2

+
z2

2
e−2iz2

)
f (3) +

(
2z2e−2iz2 − iz3e−iz2

)
f ′′ +

((
−24iz4 + 12iz3

)
e2iz2

+
(

4iz5 + (6 − 4i) z3
)

e−iz2
)

f ′ +
(
−10eiz2

+
(

4iz5 + 8z4 + 6z3 − 4iz2
)

e−iz2
)

f = 0. (5)

Set 
A0,1 (z) = −10, A0,2 (z) = 4iz5 + 8z4 + 6z3 − 4iz2,

A1,1 (z) = −24iz4 + 12iz3, A1,2 (z) = 4iz5 + (6 − 4i) z3,

A2,1 (z) = 2z2, A2,2 (z) = −iz3,

A3,1 (z) = −2iz, A2,1 (z) = z2

2

and 

P0 (z) = P3 (z) = iz2,

P1 (z) = 2iz2,

P2 (z) = −2iz2,

Q0 (z) = Q1 (z) = Q2 (z) = −iz2,

Q3 (z) = −2iz2.
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We have a0,2 = i, a1,2 = 2i = as,2, a2,2 = −2i = ad,2, a3,2 = i, we can see that
a0,2 = i = 1

2 as,2, c0 = 1
2 , 0 < c0 < 1,

a3,2 = i = 1
2 as,2, c3 = 1

2 , 0 < c3 < 1,

arg as,2 ̸= arg ad,2,

and b0,2 = b1,2 = b2,2 = −i, b3,2 = −2i, we can see that
b0,2 = −i = 1

2 b3,2,

b1,2 = −i = 1
2 b3,2,

b2,2 = −i = 1
2 b3,2,

cj =
1
2 , 0 < cj < 1, j = 0, 1, 2

and max
{

ρ
(

Aj,i
)

: j = 0, ..., 3; i = 1, 2
}
< 2. Then, according to Corollary 1, every transcendental solution f of

Equation (5) satisfies ρ( f ) = +∞ and ρ2( f ) = 2. We can see that f (z) = eeiz2
represents a solution of Equation

(5) that satisfies ρ( f ) = +∞ and ρ2( f ) = 2.

For the case of non-homogeneous equation, we have the following result;

Theorem 4. Let k ≥ 2 be an integer, Pj (z), Qj (z) , Aj,i, aj,n, bj,n, (j = 0, 1, ..., k − 1) satisfy the hypotheses of Theorem
3. Let F ( ̸≡ 0) be a meromorphic function of order ρ( f ) < n. Then every transcendental meromorphic solution f whose
poles are of uniformly bounded multiplicities of Equation (4) satisfies λ ( f ) = λ ( f ) = ρ ( f ) = +∞ and λ2 ( f ) =

λ2 ( f ) = ρ2 ( f ) = n, with at most one exceptional solution f0 of finite order.

Corollary 2. Let k ≥ 2 be an integer, Pj (z), Qj (z) , Aj,i, aj,n, bj,n, (j = 0, 1, ..., k − 1) satisfy the hypotheses of
Corollary 1. Let F ( ̸≡ 0) be an entire function of order ρ( f ) < n. Then every transcendental solution f of Equation (4)
satisfies λ ( f ) = λ ( f ) = ρ ( f ) = +∞ and λ2 ( f ) = λ2 ( f ) = ρ2 ( f ) = n, with at most one exceptional solution f0 of
finite order.

Example 2. Consider the following differential equation

f (3) +
(
(z − 1) e−z +

(
z2 + z + 2 +

1
z

)
e−2z

)
f ′′ +

((
z2 + z

)
e2z +

(
−2z2 − 4z − 2

z
− 1
)

e−z
)

f ′

+

((
z2 − z + 1

)
ez −

(
z2 + z + 2 +

1
z

)
e−z
)

f = 2z3 + 2z2 + z + 1. (6)

Set 
A0,1 (z) = z2 − z + 1, A0,2 (z) = −z2 − z − 2 − 1

z ,

A1,1 (z) = z2 + z, A1,2 (z) = −2z2 − 4z − 2
z − 1,

A2,1 (z) = z − 1, A2,2 (z) = z2 + z + 2 + 1
z

and 
P0 (z) = z, P1 (z) = 2z,

P2 (z) = −z,

Q0 (z) = Q1 (z) = −z, Q2 (z) = −2z,

F (z) = 2z3 + 2z2 + z + 1.

We have a0,1 = 1, a1,1 = 2 = aS,1, a2,1 = −1 = ad,1, we can see that{
a0,1 = 1 = 1

2 as,1, c0 = 1
2 , 0 < c0 < 1,

arg as,1 ̸= arg ad,1,



Open J. Math. Sci. 2023, 7, 248-268 251

and b0,1 = b1,1 = −1, b2,1 = −2, we can see that
b0,1 = −1 = 1

2 b2,1,

b1,1 = −1 = 1
2 b2,1,

cj =
1
2 , 0 < cj < 1, j = 0, 1.

and max
{

ρ
(

Aj,i
)

: j = 0, ..., 2; i = 1, 2, ρ (F)
}

< 1. Then, according to Corollary 2, every transcendental
solution f of Equation (6) satisfies ρ( f ) = +∞ and λ2 ( f ) = λ2 ( f ) = ρ2( f ) = 1 with at most one exceptional
solution f0 of finite order. We can see that f (z) = z + eez

represents a solution of Equation (6) that satisfies
ρ( f ) = +∞ and λ2 ( f ) = λ2 ( f ) = ρ2( f ) = 1.

2. Auxiliary lemmas for the proofs of the theorems

To prove our theorems, we need the following lemmas;

Lemma 1. [9] Let Pj (z) (j = 0, 1, ..., k) be polynomials with deg P0 = n (n ≥ 1) and deg Pj ≤ n (j = 1, ..., k) . Let
Aj(z) (j = 0, 1, ..., k) be meromorphic functions with finite order and max

{
ρ
(

Aj
)

: j = 0, 1, ..., k
}

< n such that
A0 (z) ̸≡ 0. We denote

F (z) = AkePk(z) + Ak−1ePk−1(z) + ... + A1eP1(z) + A0eP0(z).

If deg
(

P0 (z)− Pj (z)
)
= n for all j = 1, ..., k, then F is a nontrivial meromorphic function with finite order that satisfies

ρ (F) = n.

Lemma 2. [10] Let f be a transcendental meromorphic function, and let α > 1 and ε > 0 be given constants. Then there
exist a set E1 ⊂ (1,+∞) having finite logarithmic measure and a constant B > 0, that depends only on α and (n, m)

(n, m positive integers with n > m ≥ 0) such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we have∣∣∣∣∣ f (n) (z)
f (m) (z)

∣∣∣∣∣ ≤ B
(

T (αr, f )
r

(logα r) log T (αr, f )
)n−m

.

Lemma 3. [11] Let f (z) = g(z)
d(z) be a meromorphic function with ρ( f ) = ρ ≤ +∞, where g(z) and d(z) are entire

functions satisfying one of the following conditions:

(i) g being transcendental and d being polynomial,
(ii) g, d all being transcendental and λ (d) = ρ (d) = β < ρ (g) = ρ.

For each sufficiently large |z| = r, let zr = reiθr be a point satisfying |g(zr)| = M(r, g). Then there exist a constant δr

(> 0) , a sequence {rm}m∈N , rm → +∞ and a set E2 of finite logarithmic measure such that the estimation∣∣∣∣ f (z)
f (n)(z)

∣∣∣∣ ≤ r2n
m (n ≥ 1 is an integer)

holds for all z satisfying |z| = rm /∈ E2, rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr].

Lemma 4. [12] Let P (z) = (α + iβ) zn + · · · (α, β are real numbers, |α|+ |β| ̸= 0) be a polynomial with degree n ≥ 1
and A(z) be a meromorphic function with ρ (A) < n. Set f (z) = A(z)eP(z),

(
z = reiθ) , δ (P, θ) = α cos nθ −

β sin nθ. Then for any given ε > 0, there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such that for any
θ ∈ [0, 2π)⧹H (H = {θ ∈ [0, 2π) : δ (P, θ) = 0}) for |z| = r /∈ [0, 1] ∪ E3, r → +∞, we have

(i) if δ (P, θ) > 0, then

exp {(1 − ε) δ (P, θ) rn} ≤ | f
(

reiθ
)
| ≤ exp {(1 + ε) δ (P, θ) rn} ,

(ii) if δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} ≤ | f
(

reiθ
)
| ≤ exp {(1 − ε) δ (P, θ) rn} .
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Lemma 5. [13] Let φ : [0,+∞) → R and ψ : [0,+∞) → R be monotone nondecreasing functions such that φ(r) ≤
ψ(r) for all r /∈ (E4 ∪ [0, 1]) , where E4 is a set of finite logarithmic measure. Let α > 1 be a given constant. Then there
exists an r1 = r1(α) > 0 such that φ(r) ≤ ψ(αr) for all r > r1.

Lemma 6. [11,14] Suppose that k ≥ 2 and A0, A1, ..., Ak−1, F (F ̸≡ 0 or F ≡ 0) are meromorphic functions such that
ρ = max

{
ρ
(

Aj
)

, ρ (F) : j = 0, 1, ...k − 1
}
< ∞. Let f be a transcendental meromorphic solution whose poles are of

uniformly bounded multiplicities of the equation

f (k) + Ak−1 f (k−1) + · · ·+ A1 f ′ + A0 f = F. (7)

Then ρ2 ( f ) ≤ ρ.

Lemma 7. [15,16] Let Aj(z)( ̸≡ 0), j = 0, 1, · · · , k − 1, F(z) ̸≡ 0 be finite order meromorphic functions.

(i) If f is a meromorphic solution of Equation (7) with ρ ( f ) = +∞, then f satisfies

λ ( f ) = λ ( f ) = ρ ( f ) = +∞.

(ii) If f is a meromorphic solution of Equation (7) with ρ ( f ) = +∞ and ρ2 ( f ) = ρ, then f satisfies

λ ( f ) = λ ( f ) = ρ ( f ) = +∞, λ2 ( f ) = λ2 ( f ) = ρ2 ( f ) = ρ.

Lemma 8. [17] Let f be a meromorphic function of order ρ ( f ) = ρ < ∞. Then for any given ε > 0, there exists a
set E5 ⊂ (1,+∞) that has finite linear measure and finite logarithmic measure such that when |z| = r /∈ [0, 1] ∪ E5,
r → +∞, we have | f (z)| ≤ exp (rρ+ε) .

3. Proof of Theorem 3

First we prove that every transcendental meromorphic solution f of Equation (3) is of order ρ ( f ) ≥ n
. Assume that f is a transcendental meromorphic solution of Equation (3) with ρ ( f ) < n. We can rewrite
Equation (3) in the form(

Ak−1,1 (z) ePk−1(z) + Ak−1,2 (z) eQk−1(z)
)

f (k−1) + · · ·+
(

A0,1 (z) eP0(z) + A0,2 (z) eQ0(z)
)

f = − f (k). (8)

Since
max

{
ρ
(

Aj,i
)

: j = 0, 1, ..., k − 1; i = 1, 2
}
< n

and ρ ( f ) < n, then Aj,i f (j) (j = 0, 1, ..., k − 1; i = 1, 2) and f (k) are meromorphic functions of finite order with

ρ
(

Aj,i f (j)
)
< n and ρ

(
f (k)
)

< n. We have As,i f (s) ̸≡ 0 (i = 1, 2). Indeed, if As,i f (s) ≡ 0, it follows that

f (s) ≡ 0. Then f has to be a polynomial of degree less than s. This is a contradiction. Since as,n ̸= bs,n and
aj,n = cjas,n, bj,n = c′jbs,n, (0 < cj < 1), (0 < c′j < 1), (j ̸= s), aj,n = cjas,n or aj,n = cjad,n(0 < cj < 1), then
aj,n ̸= bj,n, as,n ̸= aj,n, bs,n ̸= bj,n and therefore deg

(
Ps − Pj

)
= deg

(
Qs − Qj

)
= n. Thus, by (8) and Lemma 1,

we find that ρ
(
− f (k)

)
= n, this contradicts the fact ρ

(
f (k)
)
< n. Consequently, every meromorphic solution

f of Equation (3) is transcendental with order ρ ( f ) ≥ n.
Assume that f is a transcendental meromorphic solution whose poles are of uniformly bounded

multiplicities of Equation (3). By Lemma , there exist a set E1 ⊂ (1,+∞) having finite logarithmic measure
and a constant B > 0, such that for all z satisfying |z| = r /∈ [0, 1]⧹E1, we have∣∣∣∣∣ f (j) (z)

f (z)

∣∣∣∣∣ ≤ B (T (2r, f ))k+1 , j = 1, 2, ..., k, j ̸= s. (9)

By (3), it follows that the poles of f can only occur at the poles of Aj,i(z) (j = 0, 1, ..., k − 1; i = 1, 2). Note that
the poles of f are of uniformly bounded multiplicities. Hence

λ

(
1
f

)
≤ max

{
ρ
(

Aj,i
)

: j = 0, 1, ..., k − 1; i = 1, 2
}
< n.
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By Hadamard factorization theorem, we know that f can be written as f (z) = g(z)
d(z) , where g(z) and d(z) are

entire functions with

λ (d) = ρ (d) = λ

(
1
f

)
< n ≤ ρ ( f ) = ρ (g) .

For each sufficiently large |z| = r, let zr = reiθr be a point satisfying |g(zr)| = M(r, g). By Lemma 3, there exist
a constant δr (> 0) , a sequence {rm}m∈N , rm → +∞ and a set E2 of finite logarithmic measure such that the
estimation ∣∣∣∣ f (z)

f (s)(z)

∣∣∣∣ ≤ r2s
m (10)

holds for all z satisfying |z| = rm /∈ E2, rm → ∞ and arg z = θ ∈ [θr − δr, θr + δr].
Set z = reiθ , as,n = |as,n| eiθs , ad,n =

∣∣ad,n
∣∣ eiθd , bs,n = |bs,n| eiφ, θs, θd, φ ∈ [0, 2π), θs ̸= θd. Then

δ (Ps, θ) = |as,n| cos (nθ + θs) ,

δ (Qs, θ) = |bs,n| cos (nθ + φ) ,

δ (Pd, θ) =
∣∣ad,n

∣∣ cos (nθ + θd) .

(11)

Since aj,n = cjas,n, bj,n = c′jbs,n, (0 < cj < 1), (0 < c′j < 1), (j ̸= s) and cj, c′j (j = 0, 1, ..., k − 1) are distinct
numbers, then

δ
(

Pj, θ
)
= cjδ (Ps, θ) or δ

(
Pj, θ

)
= cjδ (Pd, θ) , δ

(
Qj, θ

)
= c′jδ (Qs, θ) . (12)

Set H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0} and H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)}. For any given
θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2), we have δ (Ps, θ) ̸= 0, δ (Pd, θ) ̸= 0 and

δ (Ps, θ) > δ (Pd, θ) or δ (Ps, θ) < δ (Pd, θ) .

I. δ (Ps, θ) > δ (Pd, θ). Here we also divide our proof in three subcases: (φ = θs) or (φ = θd) or (φ ̸= θs

and φ ̸= θd).

Case 1. δ (Ps, θ) > δ (Pd, θ) and (φ ̸= θs and φ ̸= θd).

Subcase 1.1. δ (Ps, θ) > δ (Pd, θ) > 0, δ (Qs, θ) > 0. If δ (Ps, θ) > 0, δ (Qs, θ) > 0, then we suppose
δ (Ps, θ) > δ (Qs, θ) without loss of generality. Set δ3 = max

{
δ
(

Pj, θ
)

, δ
(
Qj, θ

)
; j ̸= s

}
and H3 = {θ ∈

[0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)}, then 0 < δ3 < δ (Ps, θ) . Thus, by Lemma , for any given

0 < 2ε < min
{

δ (Ps, θ)− δ3

δ (Ps, θ) + δ3
,

δ (Ps, θ)− δ (Qs, θ)

δ (Ps, θ) + δ (Qs, θ)

}
,

where
c = max

{
cj, c′j : j = 0, 1, ..., k − 1, j ̸= s

}
, cs = 1,

there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such that for all z satisfying |z| = r /∈
[0, 1] ∪ E3, r → +∞ and arg z = θ ∈ [θr − δr, θr + δr] ⧹ (H1 ∪ H2 ∪ H3), we have∣∣∣As,1 (z) ePs(z) + As,2 (z) eQs(z)

∣∣∣ ≥ ∣∣∣As,1 (z) ePs(z)
∣∣∣− ∣∣∣As,2 (z) eQs(z)

∣∣∣
≥ exp {(1 − ε) δ (Ps, θ) rn} − exp {(1 + ε) δ (Qs, θ) rn}

≥ 1
2

exp {(1 − ε) δ (Ps, θ) rn} , (13)

∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)
∣∣∣ ≤ ∣∣∣Aj,1 (z) ePj(z)

∣∣∣+ ∣∣∣Aj,2 (z) eQj(z)
∣∣∣

≤ exp
{
(1 + ε) δ

(
Pj, θ

)
rn}+ exp

{
(1 + ε) δ

(
Qj, θ

)
rn}

≤ 2 exp {(1 + ε) δ3rn} , j = 0, 1, 2, ..., k − 1, j ̸= s. (14)
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From (3), we have

∣∣∣As,1 (z) ePs(z) + As,2 (z) eQs(z)
∣∣∣ ≤ ∣∣∣∣ f

f (s)

∣∣∣∣
(∣∣∣∣∣ f (k)

f

∣∣∣∣∣+ k−1

∑
j=0,j ̸=s

{∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)
∣∣∣ ∣∣∣∣∣ f (j)

f

∣∣∣∣∣
})

.

(15)
By substituting (9), (10), (13), (14), into (15), for all z satisfying |z| = rm /∈ [0, 1]∪ (E1 ∪ E2 ∪ E3) , rm → +∞
and arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3), we have

1
2

exp {(1 − ε) δ (Ps, θ) rn
m} ≤ 2kBr2s

m [T (2rm, f )]k+1 exp {(1 + ε) δ3rn
m}

which gives
exp {(1 − ε) δ (Ps, θ) rn

m} ≤ 4kBr2s
m [T (2rm, f )]k+1 exp {(1 + ε) δ3rn

m} .

Since 0 < 2ε < δ(Ps ,θ)−δ3
δ(Ps ,θ)+δ3

, then we can get

exp
{

δ (Ps, θ)− δ3

2
rn

m

}
≤ 4kBr2s

m [T (2rm, f )]k+1 . (16)

By Lemma 5 and (16), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

By Lemma 6 and Equation (3), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 1.2. δ (Ps, θ) > δ (Pd, θ) > 0, δ (Qs, θ) < 0. We have δ (Qs, θ) < δ (Ps, θ) and δ (Qs, θ) <

δ
(
Qj, θ

)
< 0 < δ (Ps, θ) , Put

d = max
{

cj : j = 0, 1, ..., k − 1, j ̸= s
}

, ds = 1.

By Lemma 3, for any given ε (0 < ε < 1
2

(
1−d
1+d

)
), there is a set E3 ⊂ [1,+∞) having finite

logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and arg z = θ ∈
[θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) , where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈
[0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)} are finite sets, we
have ∣∣∣As,1 (z) ePs(z) + As,2 (z) eQs(z)

∣∣∣ ≥ ∣∣∣As,1 (z) ePs(z)
∣∣∣− ∣∣∣As,2 (z) eQs(z)

∣∣∣
≥ exp {(1 − ε) δ (Ps, θ) rn} − exp {(1 − ε) δ (Qs, θ) rn}

≥ 1
2

exp {(1 − ε) δ (Ps, θ) rn} , (17)

∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)
∣∣∣ ≤ ∣∣∣Aj,1 (z) ePj(z)

∣∣∣+ ∣∣∣Aj,2 (z) eQj(z)
∣∣∣

≤ exp
{
(1 + ε) δ

(
Pj, θ

)
rn}+ exp

{
(1 − ε) δ

(
Qj, θ

)
rn}

≤ 2 exp {(1 + ε) d δ (Ps, θ) rn} , j = 0, 1, 2, ..., k − 1, j ̸= s. (18)

By substituting (9), (10), (17), (18) into (15), for all z satisfying |z| = rm /∈ [0, 1]∪ (E1 ∪ E2 ∪ E3) , rm → +∞
and arg z = θ ∈ [θr − δr, θr + δr] ⧹(H1 ∪ H2 ∪ H3), we have

exp {(1 − ε) δ (Ps, θ) rn
m} ≤ 4kBr2s

m [T (2rm, f )]k+1 exp {(1 + ε) d δ (Ps, θ) rn
m} .
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Since 0 < ε < 1
2

(
1−d
1+d

)
, then the last inequalities leads to

exp
{
(1 − d)

2
δ (Ps, θ) rn

m

}
≤ 4kBr2s

m [T (2rm, f )]k+1 . (19)

By Lemma 5 and (19), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from Equation (3), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 1.3. δ (Ps, θ) > 0 > δ (Pd, θ) , δ (Qs, θ) > 0. We suppose δ (Ps, θ) > δ (Qs, θ) without loss of
generality. By Lemma 3, for any given ε (0 < ε < min

{
1
2

(
1−ν
1+ν

)
, 1

2

(
δ(Ps ,θ)−δ(Qs ,θ)
δ(Ps ,θ)+δ(Qs ,θ)

)}
), where

ν = max
{

cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

, νs = 1,

there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such that for all z satisfying |z| = r /∈
[0, 1] ∪ E3, r → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3),

where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)} are finite sets, we have∣∣∣As,1 (z) ePs(z) + As,2 (z) eQs(z)

∣∣∣ ≥ ∣∣∣As,1 (z) ePs(z)
∣∣∣− ∣∣∣As,2 (z) eQs(z)

∣∣∣
≥ exp {(1 − ε) δ (Ps, θ) rn} − exp {(1 + ε) δ (Qs, θ) rn}

≥ 1
2

exp {(1 − ε) δ (Ps, θ) rn} , (20)

∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)
∣∣∣ ≤ ∣∣∣Aj,1 (z) ePj(z)

∣∣∣+ ∣∣∣Aj,2 (z) eQj(z)
∣∣∣

≤ exp
{
(1 + ε) cjδ (Ps, θ) rn}+ exp

{
(1 + ε) c′jδ (Qs, θ) rn

}
≤ 2 exp {(1 + ε) νδ (Ps, θ) rn} , j = 0, 1, 2, ..., k − 1, j ̸= s. (21)

By substituting (9), (10), (20) and (21), into (15), for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3),
rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr] ⧹ (H1 ∪ H2 ∪ H3) , we have

exp {(1 − ε) δ (Ps, θ) rn
m} ≤ 4kBr2s

m [T (2rm, f )]k+1 exp {(1 + ε) νδ (Ps, θ) rn
m} .

Since 0 < ε < 1
2

(
1−ν
1+ν

)
, then

exp
{
(1 − ν)

2
δ (Ps, θ) rn

m

}
≤ 4kBr2s

m [T (2rm, f )]k+1 . (22)

By Lemma 5 and (22), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, then by Lemma 6 and from Equation (3), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.
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Subcase 1.4. δ (Ps, θ) > 0 > δ (Pd, θ) , δ (Qs, θ) < 0. We have δ (Ps, θ) > δ
(

Pj, θ
)

> 0, δ (Qs, θ) <

δ
(
Qj, θ

)
< 0, then δ (Qs, θ) < δ (Ps, θ) . Put

ν′ = max
{

cj : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

, ν′s = 1.

By Lemma 3, for any given 0 < ε < 1
2

(
1−ν′
1+ν′

)
, there is a set E3 ⊂ [1,+∞) having finite

logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and arg z = θ ∈
[θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) , where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈
[0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)} are finite sets, we
have ∣∣∣As,1 (z) ePs(z) + As,2 (z) eQs(z)

∣∣∣ ≥ ∣∣∣As,1 (z) ePs(z)
∣∣∣− ∣∣∣As,2 (z) eQs(z)

∣∣∣
≥ exp {(1 − ε) δ (Ps, θ) rn} − exp {(1 − ε) δ (Qs, θ) rn}

≥ 1
2

exp {(1 − ε) δ (Ps, θ) rn} , (23)

∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)
∣∣∣ ≤ ∣∣∣Aj,1 (z) ePj(z)

∣∣∣+ ∣∣∣Aj,2 (z) eQj(z)
∣∣∣

≤ exp
{
(1 + ε) δ

(
Pj, θ

)
rn}+ exp

{
(1 − ε) δ

(
Qj, θ

)
rn}

≤ 2 exp
{
(1 + ε) ν′ δ (Ps, θ) rn} , j = 0, 1, 2, ..., k − 1, j ̸= s. (24)

By substituting (9), (10), (23), (24) into (15), for all z satisfying |z| = rm /∈ [0, 1]∪ (E1 ∪ E2 ∪ E3) , rm → +∞
and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

we have
exp {(1 − ε) δ (Ps, θ) rn

m} ≤ 4kBr2k
m [T (2rm, f )]k+1 exp

{
(1 + ε) ν′ δ (Ps, θ) rn

m
}

.

Since 0 < ε < 1
2

(
1−ν′
1+ν′

)
, then

exp
{
(1 − ν′)

2
δ (Ps, θ) rn

m

}
≤ 4kBr2k

m [T (2rm, f )]k+1 . (25)

By Lemma 5 and (25) we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from Equation (3), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 1.5. 0 > δ (Ps, θ) > δ (Pd, θ) , δ (Qs, θ) > 0. We have δ (Pd, θ) < δ (Ps, θ) < 0 < δ (Qs, θ) . Put

d′ = max
{

c′j : j = 0, 1, ..., k − 1, j ̸= s
}

, d′s = 1.

By Lemma 3, for any given ε (0 < ε < 1
2

(
1−d′
1+d′

)
), there is a set E3 ⊂ [1,+∞) having finite

logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and arg z = θ ∈
[θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) , where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈
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[0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)} are finite sets, we
have ∣∣∣As,1 (z) ePs(z) + As,2 (z) eQs(z)

∣∣∣ ≥ ∣∣∣As,2 (z) eQs(z)
∣∣∣− ∣∣∣As,1 (z) ePs(z)

∣∣∣
≥ exp {(1 − ε) δ (Qs, θ) rn} − exp {(1 − ε) δ (Ps, θ) rn}

≥ 1
2

exp {(1 − ε) δ (Qs, θ) rn} , (26)

∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)
∣∣∣ ≤ ∣∣∣Aj,1 (z) ePj(z)

∣∣∣+ ∣∣∣Aj,2 (z) eQj(z)
∣∣∣

≤ exp
{
(1 − ε) δ

(
Pj, θ

)
rn}+ exp

{
(1 + ε) δ

(
Qj, θ

)
rn}

≤ 2 exp
{
(1 + ε) d′δ (Qs, θ) rn} , j = 0, 1, 2, ..., k − 1, j ̸= s. (27)

By using a similar proof as that of subcase 1.2, since 0 < ε < 1
2

(
1−d′
1+d′

)
, we can obtain for all z satisfying

|z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3), rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]

exp
{
(1 − d′)

2
δ (Qs, θ) rn

m

}
≤ 4kBr2s

m [T (2rm, f )]k+1 . (28)

So, by Lemma 5 and (28) we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from Equation (3), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 1.6. 0 > δ (Ps, θ) > δ (Pd, θ) , δ (Qs, θ) < 0. Set

λ = min
{

cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

.

By Lemma 3, for any given 0 < ε < 1, there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such
that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,
where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)} are finite sets, we have∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)

∣∣∣ ≤ ∣∣∣Aj,1 (z) ePj(z)
∣∣∣+ ∣∣∣Aj,2 (z) eQj(z)

∣∣∣
≤ exp

{
(1 − ε) δ

(
Pj, θ

)
rn}+ exp

{
(1 − ε) δ

(
Qj, θ

)
rn}

≤ 2 exp {(1 − ε) λδ (Ps, θ) rn} , j = 0, 1, 2, ..., k − 1. (29)

From (3), we have

1 ≤
∣∣∣∣ f

f (k)

∣∣∣∣ k−1

∑
j=0

{∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)
∣∣∣ ∣∣∣∣∣ f (j)

f

∣∣∣∣∣
}

. (30)

By substituting (9), (10), (29) into (30), for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3), rm → +∞ and
arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3), we have

1 ≤ 2kBr2k
m [T (2rm, f )]k+1 exp {(1 − ε) λδ (Ps, θ) rn

m}

which gives
exp {(ε − 1) λδ (Ps, θ) rn

m} ≤ 2kBr2k
m [T (2rm, f )]k+1 . (31)
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Since 0 < ε < 1 and λδ (Ps, θ) < 0, then by Lemma 2.5 and (31), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from Equation (3), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Case 2. δ (Ps, θ) > δ (Pd, θ) and φ = θs

Subcase 2.1. δ (Ps, θ) > δ (Pd, θ) > 0. Because of as,n ̸= bs,n, we suppose |as,n| < |bs,n| without loss
of generality. In this case, by (3.4) and (3.5) we have δ (Qs, θ) > δ

(
Qj, θ

)
> 0, δ (Qs, θ) > δ (Ps, θ) >

δ
(

Pj, θ
)
> 0. Put

c = max
{

cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

, cs = 1.

Then, 0 < c < 1. By Lemma 3, for any given ε with

0 < ε < min
{

1
2

(
1 − c
1 + c

)
,

1
2

(
δ (Qs, θ)− δ (Ps, θ)

δ (Qs, θ) + δ (Ps, θ)

)}
,

there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such that for all z satisfying |z| = r /∈
[0, 1] ∪ E3, r → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0} are finite sets, we have∣∣∣As,1 (z) ePs(z) + As,2 (z) eQs(z)

∣∣∣ ≥ ∣∣∣As,2 (z) eQs(z)
∣∣∣− ∣∣∣As,1 (z) ePs(z)

∣∣∣
≥ exp {(1 − ε) δ (Qs, θ) rn} − exp {(1 + ε) δ (Ps, θ) rn}

≥ 1
2

exp {(1 − ε) δ (Qs, θ) rn} , (32)

∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)
∣∣∣ ≤ ∣∣∣Aj,1 (z) ePj(z)

∣∣∣+ ∣∣∣Aj,2 (z) eQj(z)
∣∣∣

≤ exp {(1 + ε) cδ (Ps, θ) rn}+ exp {(1 + ε) cδ (Qs, θ) rn}
≤ 2 exp {(1 + ε) cδ (Qs, θ) rn} , j = 0, 1, 2, ..., k − 1, j ̸= s. (33)

By substituting (9), (10), (32), (33) into (15), since 0 < ε < 1
2

(
1−c
1+c

)
, for all z satisfying |z| = rm /∈

[0, 1] ∪ (E1 ∪ E2 ∪ E3), rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3), we obtain

exp
{
(1 − c)

2
δ (Qs, θ) rn

m

}
≤ 4kBr2s

m [T (2rm, f )]k+1 . (34)

Thus, by Lemma 5 and (34) we get

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from Equation (3), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.
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Subcase 2.2. δ (Ps, θ) > 0 > δ (Pd, θ) . Because of as,n ̸= bs,n, we suppose |as,n| < |bs,n| without loss
of generality. In this case, by (11) and (12) we have δ (Qs, θ) > δ

(
Qj, θ

)
> 0, δ (Qs, θ) > δ (Ps, θ) >

δ
(

Pj, θ
)
> 0. Put

c = max
{

cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

, cs = 1.

Using the same reasoning as in Subcase 2.1 , we can also obtain ρ ( f ) = +∞ and ρ2 ( f ) = n.

Subcase 2.3. 0 > δ (Ps, θ) > δ (Pd, θ) . We have δ (Qs, θ) < δ
(
Qj, θ

)
< δ (Ps, θ) < 0, δ (Ps, θ) < δ

(
Pj, θ

)
<

0. Put
λ = min

{
cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d

}
.

By Lemma 3, for any given 0 < ε < 1, there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such
that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,
where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0} are finite sets, we have∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)

∣∣∣ ≤ ∣∣∣Aj,1 (z) ePj(z)
∣∣∣+ ∣∣∣Aj,2 (z) eQj(z)

∣∣∣
≤ exp

{
(1 − ε) δ

(
Pj, θ

)
rn}+ exp

{
(1 − ε) δ

(
Qj, θ

)
rn}

≤ 2 exp {(1 − ε) λδ (Ps, θ) rn} , j = 0, 1, 2, ..., k − 1. (35)

By substituting (9), (10) and (35) into (30), for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3), rm → +∞
and arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3), we have

1 ≤ 2kBr2k
m [T (2rm, f )]k+1 exp {(1 − ε) λδ (Ps, θ) rn

m}

which gives
exp {(ε − 1) λδ (Ps, θ) rn

m} ≤ 2kBr2k
m [T (2rm, f )]k+1 . (36)

Since 0 < ε < 1 and λδ (Ps, θ) < 0, then by Lemma 5 and (36) we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from Equation (3), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Case 3. δ (Ps, θ) > δ (Pd, θ) and φ = θd

Subcase 3.1. δ (Ps, θ) > δ (Pd, θ) > 0. Because of ad,n ̸= bs,n, we suppose
∣∣ad,n

∣∣ < |bs,n| without loss
of generality. In this case, by (11) and (12), we have δ (Qs, θ) > δ

(
Qj, θ

)
> 0, δ (Qs, θ) > δ (Ps, θ) >

δ
(

Pj, θ
)
> 0. Then, 0 < c < 1. By Lemma 3, for any given ε with

0 < ε < min
1
2

{(
1 − c
1 + c

)
,

1
2

(
δ (Qs, θ)− δ (Ps, θ)

δ (Qs, θ) + δ (Ps, θ)

)}
,

where
c = max

{
cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d

}
, cs = 1,

there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such that for all z satisfying |z| = r /∈
[0, 1] ∪ E3, r → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0} are finite sets, we have (32) and (33) hold. By substituting (9), (10),
(32), (33) into (15), we obtain (34) for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3), rm → +∞ and
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arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3). Since 0 < ε < 1
2

(
1−c
1+c

)
, then by Lemma 5 and (34) we

obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from Equation (3), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 3.2. δ (Ps, θ) > 0 > δ (Pd, θ) . Because of ad,n ̸= bs,n, we suppose
∣∣ad,n

∣∣ < |bs,n| without loss of
generality. In this case, by (11) and (12), we have δ (Qs, θ) < δ

(
Qj, θ

)
< 0, δ (Qs, θ) < δ (Pd, θ) < 0 <

δ (Ps, θ). Then, 0 < c < 1. By Lemma 3, for any given ε
(

0 < ε < 1
2

(
1−c
1+c

))
, where

c = max
{

cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

, cs = 1,

there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such that for all z satisfying |z| = r /∈
[0, 1] ∪ E3, r → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0} are finite sets, we have∣∣∣As,1 (z) ePs(z) + As,2 (z) eQs(z)

∣∣∣ ≥ ∣∣∣As,2 (z) ePs(z)
∣∣∣− ∣∣∣As,1 (z) eQs(z)

∣∣∣
≥ exp {(1 − ε) δ (Ps, θ) rn} − exp {(1 − ε) δ (Qs, θ) rn}

≥ 1
2

exp {(1 − ε) δ (Ps, θ) rn} , (37)

∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)
∣∣∣ ≤ ∣∣∣Aj,1 (z) ePj(z)

∣∣∣+ ∣∣∣Aj,2 (z) eQj(z)
∣∣∣

≤ exp {(1 + ε) cδ (Ps, θ) rn}+ exp {(1 − ε) cδ (Qs, θ) rn}
≤ 2 exp {(1 + ε) cδ (Ps, θ) rn} , j = 0, 1, 2, ..., k − 1, j ̸= s. (38)

By substituting (9), (10), (37) and (38) into (15), by 0 < ε < 1
2

(
1−c
1+c

)
, for all z satisfying |z| = rm /∈

[0, 1] ∪ (E1 ∪ E2 ∪ E3), rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3), we obtain

exp
{
(1 − c)

2
δ (Ps, θ) rn

m

}
≤ 4kBr2s

m [T (2rm, f )]k+1 . (39)

Therefore, by Lemma 5 and (39) we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from Equation (3), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 3.3. 0 > δ (Ps, θ) > δ (Pd, θ) . Because of ad,n ̸= bs,n, we suppose
∣∣ad,n

∣∣ < |bs,n| without loss
of generality. In this case, by (11) and (12), we have δ (Qs, θ) < δ

(
Qj, θ

)
< 0, δ (Qs, θ) < δ (Pd, θ) <

δ (Ps, θ) < 0. Put
c′ = min

{
cj, c′j : j = 0, 1, ..., k − 1

}
.

By Lemma 3, for any given 0 < ε < 1, there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such
that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,
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where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0} are finite sets, we have∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)

∣∣∣ ≤ ∣∣∣Aj,1 (z) ePj(z)
∣∣∣+ ∣∣∣Aj,2 (z) eQj(z)

∣∣∣
≤ exp

{
(1 − ε) δ

(
Pj, θ

)
rn}+ exp

{
(1 − ε) δ

(
Qj, θ

)
rn}

≤ 2 exp
{
(1 − ε) c′δ (Ps, θ) rn} , j = 0, 1, 2, ..., k − 1. (40)

By substituting (9), (10) and (40) into (30), for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3), rm → +∞
and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

we obtain
1 ≤ 2kBr2k

m [T (2rm, f )]k+1 exp
{
(1 − ε) c′δ (Ps, θ) rn

m
}

which gives
exp

{
(ε − 1) c′δ (Ps, θ) rn

m
}
≤ 2kr2k

m B [T (2rm, f )]k+1 . (41)

By Lemma 5 and (41) we obtain

ρ ( f ) = lim sup
rm→+∞

log+ T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log+
2 T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from Equation (3), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.
II. δ (Ps, θ) < δ (Pd, θ). Here we also divide our proof in three subcases: (φ = θs) or (φ = θd) or (φ ̸= θs

and φ ̸= θd). Using the same reasoning as in I, we can also obtain ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

4. Proof of Theorem 4

First, we show that (4) can possess at most one exceptional transcendental meromorphic solution f0 of
finite order. In fact, if f∗ is another transcendental meromorphic solution of finite order of Equation (4),
then f0 − f∗ is of finite order. But f0 − f∗ is a transcendental meromorphic solution of the corresponding
homogeneous equation of (4). This contradicts Theorem 3. We assume that f is an infinite order meromorphic
solution of (4) whose poles are of uniformly bounded multiplicities. By Lemma 7 and Lemma 8, we have
λ ( f ) = λ ( f ) = ρ ( f ) = +∞ and λ2 ( f ) = λ2 ( f ) = ρ2 ( f ) ≤ n.

Now, we prove that ρ2 ( f ) ≥ n. By Lemma 3, there exists a set E1 ⊂ (1,+∞) having finite logarithmic
measure and a constant B > 0 such that for all z satisfying |z| = r /∈ [0, 1]⧹[E1, we have (9). Set

ρ1 = max
{

ρ (F) , ρ
(

Aj,i(z)
)

: j = 0, 1, ..., k − 1; i = 1, 2
}

.

By (4), it follows that the poles of f can only occur at the poles of F and Aj,i(z), j = 0, 1, ..., k − 1; i = 1, 2. Note
that the poles of f are of uniformly bounded multiplicities. Hence

λ

(
1
f

)
≤ max

{
ρ
(

Aj,i(z)
)

: j = 0, 1, ..., k − 1; i = 1, 2
}
= ρ1.

By Hadamard factorization theorem, we know that f can be written as f (z) = g(z)
d(z) , where g(z) and d(z) are

entire functions with

λ (d) = ρ (d) = λ

(
1
f

)
≤ ρ1 < ρ ( f ) = ρ (g) = +∞.

For each sufficiently large |z| = r, let zr = reiθr be a point satisfying |g(zr)| = M(r, g). By Lemma 3, there exist
a constant δr (> 0) , a sequence {rm}m∈N , rm → +∞ and a set E2 of finite logarithmic measure such that the
estimation (10) holds for all z satisfying |z| = rm /∈ E2, rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]. Since |g(z)|
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is continuous in |z| = r, then there exists a constant r(> 0) such that for all z satisfying |z| = r sufficiently large
and arg z = θ ∈ [θr − δr, θr + δr] , we have

1
2
|g(zr)| < |g(z)| < 3

2
|g(zr)|. (42)

On the other hand, by Lemma 8, for a given ε (0 < ε < n − ρ1) , there exists a set E5 ⊂ (1,+∞) that has finite
linear measure and finite logarithmic measure such that when |z| = r /∈ [0, 1] ∪ E5, r → +∞, we have

|F (z)| ≤ exp
{

rρ1+ε
}

, |d (z)| ≤ exp
{

rρ1+ε
}

. (43)

Since |g(z)| = M(r, g) ≥ 1, from (43), we obtain∣∣∣∣ F (z)
f (z)

∣∣∣∣ = ∣∣∣∣d (z) F (z)
g (z)

∣∣∣∣ ≤ |d (z) F (z)|
M(r, g)

≤ exp
{

rρ1+ε
}

exp
{

rρ1+ε
}
= exp

{
2rρ1+ε

}
(44)

for |z| = r /∈ [0, 1] ∪ E5, r → +∞. Set ν = min {δr, λr} . Suppose that Aj,i(z), Pj(z), Qj(z)
aj,n, bj,n, (j = 0, 1, ..., k − 1; i = 1, 2) satisfy the hypotheses of Theorem 3. Set z = reiθ , as,n = |as,n| eiθs ,
ad,n =

∣∣ad,n
∣∣ eiθd , bs,n = |bs,n| eiφ, θs, θd, φ ∈ [0, 2π), θs ̸= θd, . For any given θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2),

we have δ (Ps, θ) ̸= 0, δ (Pd, θ) ̸= 0 and

δ (Ps, θ) > δ (Pd, θ) or δ (Ps, θ) < δ (Pd, θ) .

1. δ (Ps, θ) > δ (Pd, θ). Here we also divide our proof in three cases: (φ = θs) or (φ = θd) or (φ ̸= θs and
φ ̸= θd).

Case 1. δ (Ps, θ) > δ (Pd, θ) and (φ ̸= θs and φ ̸= θd).

Subcase 1.1. δ (Ps, θ) > δ (Pd, θ) > 0, δ (Qs, θ) > 0. If δ (Ps, θ) > 0, δ (Qs, θ) > 0, then we suppose
δ (Ps, θ) > δ (Qs, θ) without loss of generality. Set δ3 = max

{
δ
(

Pj, θ
)

, δ
(
Qj, θ

)
; j ̸= s

}
and H3 = {θ ∈

[0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)}, then 0 < δ3 < δ (Ps, θ) . Thus by Lemma 3, for any given ε

with

0 < ε < min
{

1
2

(
δ (Ps, θ)− δ3

δ (Ps, θ) + δ3

)
,

1
2

(
δ (Ps, θ)− δ (Qs, θ)

δ (Ps, θ) + δ (Qs, θ)

)
, n − ρ1

}
,

where
c = max

{
cj, c′j : j = 0, 1, ..., k − 1, j ̸= s

}
, cs = 1,

there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such that for all z satisfying |z| = r /∈
[0, 1] ∪ E3, r → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

we have (13) and (14) hold. From (4), we can write

∣∣∣As,1 (z) ePs(z) + As,2 (z) eQs(z)
∣∣∣ ≤ ∣∣∣∣ f

f (s)

∣∣∣∣
(∣∣∣∣ F (z)

f

∣∣∣∣+
∣∣∣∣∣ f (k)

f

∣∣∣∣∣+ k−1

∑
j=0,j ̸=s

{∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)
∣∣∣ ∣∣∣∣∣ f (j)

f

∣∣∣∣∣
})

.

(45)
By substituting (9), (10), (13), (14) and (44) into (45), for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3),
rm → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

we have

exp {(1 − ε) δ (Ps, θ) rn
m} ≤ 4 (k + 1) Br2s

m [T (2rm, f )]k+1 exp
{

2rρ1+ε
}

exp {(1 + ε) δ3rn
m} . (46)

Since 0 < ε < min
{

1
2

(
δ(Ps ,θ)−δ3
δ(Ps ,θ)+δ3

)
, n − ρ1

}
, then by Lemma 5 and (46), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞
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and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

By Lemma 6 and from (4), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 1.2. δ (Ps, θ) > δ (Pd, θ) > 0, δ (Qs, θ) < 0. We have δ (Qs, θ) < δ (Ps, θ) and δ (Qs, θ) <

δ
(
Qj, θ

)
< 0 < δ (Ps, θ) . Put

d = max
{

cj : j = 0, 1, ..., k − 1, j ̸= s
}

, ds = 1

By Lemma 3, for any given ε (0 < ε < min
{

1
2

(
1−d
1+d

)
, n − ρ1

}
), there is a set E3 ⊂ [1,+∞) having finite

logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)} are finite sets, we have (17) and (18) hold. By
substituting (9), (10), (17), (18) and (44) into (45) for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3),
rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3), we get

exp {(1 − ε) δ (Ps, θ) rn
m} ≤ 4 (k + 1) Br2k

m [T (2rm, f )]k+1 exp
{

2rρ1+ε
}

exp {(1 + ε) d δ (Ps, θ) rn
m} . (47)

Since 0 < ε < min
{

1
2

(
1−d
1+d

)
, n − ρ1

}
, by Lemma 5 and (47), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from (4), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 1.3. δ (Ps, θ) > 0 > δ (Pd, θ) , δ (Qs, θ) > 0. We suppose δ (Ps, θ) > δ (Qs, θ) without loss of
generality. By Lemma 3, for any given ε (0 < ε < min

{
1
2

(
1−ν
1+ν

)
, 1

2

(
δ(Ps ,θ)−δ(Qs ,θ)
δ(Ps ,θ)+δ(Qs ,θ)

)
, n − ρ1

}
), where

ν = max
{

cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

, νs = 1,

there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such that for all z satisfying |z| = r /∈
[0, 1] ∪ E3, r → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)} are finite sets, we have (20) and (21) hold. By
substituting (9), (10), (20), (21) and (44) into (45) for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3),
rm → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3),

we get

exp {(1 − ε) δ (Ps, θ) rn
m} ≤ 4 (k + 1) Br2s

m [T (2rm, f )]k+1 exp
{

2rρ1+ε
}

exp {(1 + ε) νδ (Ps, θ) rn
m} . (48)

Since 0 < ε < min
{

1
2

(
1−ν
1+ν

)
, n − ρ1

}
, then by Lemma 5 and (48), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞
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and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, then by Lemma 6 and from (4), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 1.4. δ (Ps, θ) > 0 > δ (Pd, θ) , δ (Qs, θ) < 0. We have δ (Ps, θ) > δ
(

Pj, θ
)

> 0, δ (Qs, θ) <

δ
(
Qj, θ

)
< 0, then δ (Qs, θ) < δ (Ps, θ) . Put

ν′ = max
{

cj : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

, ν′s = 1.

By Lemma 3, for any given ε (0 < ε < min
{

1
2

(
1−ν′
1+ν′

)
, n − ρ1

}
), there is a set E3 ⊂ [1,+∞) having finite

logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)} are finite sets, we have (3.16) and (3.17) hold.
By substituting (9), (10), (23), (24) and (44) into (45) for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3),
rm → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

we have

exp {(1 − ε) δ (Ps, θ) rn
m} ≤ 4 (k + 1) Br2k

m [T (2rm, f )]k+1 exp
{

2rρ1+ε
}

exp
{
(1 + ε) ν′ δ (Ps, θ) rn

m
}

. (49)

Since 0 < ε < min
{

1
2

(
1−ν′
1+ν′

)
, n − ρ1

}
, then by Lemma 5 and (49), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from (4), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 1.5. 0 > δ (Ps, θ) > δ (Pd, θ) , δ (Qs, θ) > 0. We have δ (Pd, θ) < δ (Ps, θ) < 0 < δ (Qs, θ) . Put

d′ = max
{

c′j : j = 0, 1, ..., k − 1, j ̸= s
}

, d′s = 1.

By Lemma 3, for any given ε (0 < ε < min
{

1
2

(
1−d′
1+d′

)
, n − ρ1

}
), there is a set E3 ⊂ [1,+∞) having finite

logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)}
and H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)} are finite sets, we have (26) and (27) hold.
Using a similar proof as that of Subcase 1.5 of Theorem 3, by (45), we can obtain for all z satisfying
|z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3), rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]

exp {(1 − ε) δ (Qs, θ) rn
m} ≤ 4 (k + 1) Br2s

m [T (2rm, f )]k+1 exp
{

2rρ1+ε
}

exp
{
(1 + ε) d′δ (Qs, θ) rn

m
}

. (50)

Since 0 < ε < min
{

1
2

(
1−d′
1+d′

)
, n − ρ1

}
, by Lemma 5 and (50), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞
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and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from (4), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 1.6. 0 > δ (Ps, θ) > δ (Pd, θ) , δ (Qs, θ) < 0. Set

λ = min
{

cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

.

By Lemma 3, for any given ε (0 < ε < min
{

1
2 , n − ρ1

}
), there is a set E3 ⊂ [1,+∞) having finite

logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and arg z =

θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) , where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0},
H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0, δ (Qs, θ) = δ (Ps, θ)}
are finite sets, we have (29) holds. From (4), we have

1 ≤
∣∣∣∣ f

f (k)

∣∣∣∣
(∣∣∣∣ F (z)

f (z)

∣∣∣∣+ k−1

∑
j=0

{∣∣∣Aj,1 (z) ePj(z) + Aj,2 (z) eQj(z)
∣∣∣ ∣∣∣∣∣ f (j)

f

∣∣∣∣∣
})

. (51)

By substituting (9), (10), (29) and (44) into (51) for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3),
rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3), we get

1 ≤ 2 (k + 1) Br2k
m [T (2rm, f )]k+1 exp

{
2rρ1+ε

}
exp {(1 − ε) λδ (Ps, θ) rn

m}

which gives
exp {(ε − 1) λδ (Ps, θ) rn

m} ≤ 2 (k + 1) Br2k
m exp

{
2rρ1+ε

}
[T (2rm, f )]k+1 . (52)

Since 0 < ε < min
{

1
2 , n − ρ1

}
and δ (Ps, θ) < 0, by Lemma 5 and (52), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from (4), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Case 2. δ (Ps, θ) > δ (Pd, θ) and φ = θs.

Subcase 2.1. δ (Ps, θ) > δ (Pd, θ) > 0. Because of as,n ̸= bs,n, we suppose |as,n| < |bs,n| without loss
of generality. In this case, by (11) and (12), we have δ (Qs, θ) > δ

(
Qj, θ

)
> 0, δ (Qs, θ) > δ (Ps, θ) >

δ
(

Pj, θ
)
> 0. Put

c = max
{

cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

, cs = 1.

Then, 0 < c < 1. By Lemma 3, for any given ε with

0 < ε < min
{

1
2

(
1 − c
1 + c

)
,

1
2

(
δ (Qs, θ)− δ (Ps, θ)

δ (Qs, θ) + δ (Ps, θ)

)
, n − ρ1

}
,

there is a set E3 ⊂ [1,+∞) having finite logar measure such that for all z satisfying |z| = r /∈ [0, 1] ∪
E3, r → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,

where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0} are finite sets, we have (32) and (33) hold. By substituting (9), (10),
(32), (33) and (44) into (45), we obtain for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3), rm → +∞ and
arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3)

exp {(1 − ε) δ (Qs, θ) rn
m} ≤ 4 (k + 1) Br2s

m [T (2rm, f )]k+1 exp
{

2rρ1+ε
}

exp {(1 + ε) cδ (Qs, θ) rn
m} . (53)
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Since 0 < ε < min
{

1
2

(
1−c
1+c

)
, n − ρ1

}
, then by Lemma 5 and (53) we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from (4), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 2.2. δ (Ps, θ) > 0 > δ (Pd, θ) . Because of as,n ̸= bs,n, we suppose |as,n| < |bs,n| without loss
of generality. In this case, by (11) and (12) we have δ (Qs, θ) > δ

(
Qj, θ

)
> 0, δ (Qs, θ) > δ (Ps, θ) >

δ
(

Pj, θ
)
> 0. Put

c = max
{

cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

, cs = 1.

Using the same reasoning as in Subcase 2.1 , we can also obtain ρ ( f ) = +∞ and ρ2 ( f ) = n.

Subcase 2.3. 0 > δ (Ps, θ) > δ (Pd, θ) . We have δ (Qs, θ) < δ
(
Qj, θ

)
< δ (Ps, θ) < 0, δ (Ps, θ) < δ

(
Pj, θ

)
<

0. Put
λ = min

{
cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d

}
.

By Lemma 3, for any given ε (0 < ε < min
{

1
2 , n − ρ1

}
), there is a set E3 ⊂ [1,+∞) having finite

logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and arg z = θ ∈
[θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) , where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈
[0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0} are finite sets, we have (35) holds. By
(9), (10), (35), (44) and (51), we have for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3) , rm → +∞ and
arg z = θ ∈ [θr − δr, θr + δr]⧹(H1 ∪ H2 ∪ H3),

1 ≤ 2 (k + 1) Br2k
m [T (2rm, f )]k+1 exp

(
2rρ1+ε

)
exp {(1 − ε) λδ (Ps, θ) rn

m} ,

which gives
exp {(ε − 1) λδ (Ps, θ) rn

m} ≤ 2 (k + 1) Bkr2k
m exp

(
2rρ1+ε

)
[T (2rm, f )]k+1 . (54)

Since 0 < ε < n − ρ1 and δ (Ps, θ) < 0, then by Lemma 5 and (54), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from (4), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Case 3. δ (Ps, θ) > δ (Pd, θ) and φ = θd.

Subcase 3.1. δ (Ps, θ) > δ (Pd, θ) > 0. Because of ad,n ̸= bs,n, we suppose
∣∣ad,n

∣∣ < |bs,n| without loss
of generality. In this case, by (11) and (12), we have δ (Qs, θ) > δ

(
Qj, θ

)
> 0, δ (Qs, θ) > δ (Ps, θ) >

δ
(

Pj, θ
)
> 0. Then, 0 < c < 1. By Lemma 3, for any given ε with

0 < ε < min
{

1
2

(
1 − c
1 + c

)
,

1
2

(
δ (Qs, θ)− δ (Ps, θ)

δ (Qs, θ) + δ (Ps, θ)

)
, n − ρ1

}
,

where
c = max

{
cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d

}
, cs = 1,

there is a set E3 ⊂ [1,+∞) having finite logarithmic measure such that for all z satisfying |z| = r /∈
[0, 1] ∪ E3, r → +∞ and

arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) ,
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where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and
H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0} are finite sets, we have (32) and (33) hold. By substituting (9), (10),
(32), (33) and (44) into (45), we obtain

exp {(1 − ε) δ (Qs, θ) rn
m} ≤ 4 (k + 1) Br2s

m [T (2rm, f )]k+1 exp
(
2rρ1+ε

)
exp {(1 + ε) cδ (Qs, θ) rn

m} (55)

for all z satisfying |z| = rm /∈ [0, 1] ∪ (E1 ∪ E2 ∪ E3), rm → +∞ and arg z = θ ∈
[θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) . Since 0 < ε < min

{
1
2

(
1−c
1+c

)
, n − ρ1

}
, then by Lemma 5 and (55),

we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from (4), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 3.2. δ (Ps, θ) > 0 > δ (Pd, θ) . Because of ad,n ̸= bs,n, we suppose
∣∣ad,n

∣∣ < |bs,n| without loss of
generality. In this case, by (11) and (12), we have δ (Qs, θ) < δ

(
Qj, θ

)
< 0, δ (Qs, θ) < δ (Pd, θ) < 0 <

δ (Ps, θ). Then, 0 < c < 1. By Lemma 3, for any given ε
(

0 < ε < min
{

1
2

(
1−c
1+c

)
, n − ρ1

})
, where

c = max
{

cj, c′j : j = 0, 1, ..., k − 1, j ̸= s, j ̸= d
}

, cs = 1,

there is a set E3 ⊂ [1,+∞) having finite logar measure such that for all z satisfying |z| = r /∈ [0, 1] ∪
E3, r → +∞ and arg z = θ ∈ [θr − δr, θr + δr] ⧹H1 ∪ H2 ∪ H3, where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) =

0, δ (Pd, θ) = 0}, H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0} are finite
sets, we have (37) and (38) hold. Substituting (9), (10), (37), (38) and (44) into (45), we obtain for all z
satisfying |z| = rm /∈ [0, 1]∪ (E1 ∪ E2 ∪ E3), rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3)

exp {(1 − ε) δ (Ps, θ) rn
m} ≤ 4 (k + 1) Br2s

m [T (2rm, f )]k+1 exp {(1 + ε) cδ (Ps, θ) rn
m} . (56)

Since 0 < ε < min
{

1
2

(
1−c
1+c

)
, n − ρ1

}
, then by Lemma 5 and (56), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from (4), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.

Subcase 3.3. 0 > δ (Ps, θ) > δ (Pd, θ) . Because of ad,n ̸= bs,n, we suppose
∣∣ad,n

∣∣ < |bs,n| without loss
of generality. In this case, by (11) and (12), we have δ (Qs, θ) < δ

(
Qj, θ

)
< 0, δ (Qs, θ) < δ (Pd, θ) <

δ (Ps, θ) < 0. Put
c′ = min

{
cj, c′j : j = 0, 1, ..., k − 1

}
.

By Lemma 3, for any given ε (0 < ε < min
{

1
2 , n − ρ1

}
), there is a set E3 ⊂ [1,+∞) having finite

logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, r → +∞ and arg z = θ ∈
[θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3) , where H1 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0, δ (Pd, θ) = 0}, H2 = {θ ∈
[0, 2π) : δ (Ps, θ) = δ (Pd, θ)} and H3 = {θ ∈ [0, 2π) : δ (Qs, θ) = 0} are finite sets, we have (40) holds. By
substituting (9), (10), (40) and (44) into (51), we obtain for all z satisfying |z| = rm /∈ [0, 1]∪ (E1 ∪ E2 ∪ E3) ,
rm → +∞ and arg z = θ ∈ [θr − δr, θr + δr]⧹ (H1 ∪ H2 ∪ H3)

1 ≤ 2 (k + 1) Br2k
m [T (2rm, f )]k+1 exp

(
2rρ1+ε

)
exp

{
(1 − ε) c′δ (Ps, θ) rn

m
}

which gives
exp

{
(ε − 1) c′δ (Ps, θ) rn

m
}
≤ 2 (k + 1) Br2k

m [T (2rm, f )]k+1 exp
(
2rρ1+ε

)
. (57)
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By Lemma 5 and (57), we obtain

ρ ( f ) = lim sup
rm→+∞

log T (rm, f )
log rm

= +∞

and

ρ2 ( f ) = lim sup
rm→+∞

log log T (rm, f )
log rm

≥ n.

In addition, by Lemma 6 and from (4), we have ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.
II. δ (Ps, θ) < δ (Pd, θ). Here we also divide our proof in three subcases: (φ = θs) or (φ = θd) or (φ ̸= θs

and φ ̸= θd). Using the same reasoning as in I, we can obtain ρ2 ( f ) ≤ n, so ρ2 ( f ) = n.
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