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terms of no substance formed. We determine the activity coefficient as a function of temperature and pressure,
in reactions with or without interaction of a solvent, incorporating the error terms from Raoult’s Law and
Henry’s Law, if necessary. We compute the maximal reaction paths and apply the results to electrochemistry,
using the Nernst equation.

Keywords: Gibbs’ definition of chemical equilibrium; Activity coefficient; Electrochemistry; Nernst equation;
Maximal reaction paths.

MSC: 35Q40; 35Q60; 83A05.

1. Introduction

T his paper is divided into 12 sections. In §2, we give some basic definitions, and derive the Nernst
equation for the standard cell. We prove some results about the activity coefficient Q, assuming an

idealized law in the behavior of the activities and chemical potentials, µi = µ◦
i + RTln(ai), for 1 ≤ i ≤ c,

with c substances, which holds throughout the section. In Lemma 6, we use the van’t Hoff, Gibbs-Helmholtz
equations to find an expression for ∆G◦(T) along quasi-chemical equilibrium paths. In Lemma 7, we use an
entropy calculation to find ( ∂G

∂ξ )T,P and combine the result with Lemma 6 to calculate the activity coefficient Q.
In Lemma 11, we prove every straight line chemical equilibrium path is a dynamic equilibrium path, partially
confirming a speculation of Gibbs. The method of constant Q along a path implying dynamic equilibrium is
repeatedly used and generalized later in the paper. The question of the existence of feasible paths for a reaction,
given a curve in the temperature/pressure plane, is answered in Lemma 12 and again later generalized.

In §3, we consider ideal solutions and introduce a fixed error term from Raoult’s law. The results from
§2 generalize and in Lemma 19, we find the paths of maximal reaction, in the sense of maximizing extent ξ,
implicitly, in terms of temperature and pressure (T, P). We apply the results to electrochemistry in §4. In
§5, we consider dilute solutions, adding substance 0, and consider the definition of Q, involving the activity
a0, obtaining the formula for the activity coefficient in Lemma 24. In §6, we consider dilute solutions with
interaction of the solvent, in which the solvent is ideal and the solutes obey Henry’s law, introducing a new
fixed error term in Definition 6, and obtaining the maximal reaction paths in Lemma 31.

In §7, we introduce new fixed error terms from fugacity, in Definition 7. We alter the conventional
definition of Q to incorporate fugacity in the error term and obtain the paths of maximal reaction in Lemma
37. We apply the results to electrochemistry in §8, in particular the reaction in catalyzers, and give a strategy
for improving the efficiency of hydrogen and oxygen production from water in Remarks 8. In §9, we consider
the case when there is no interaction of the solvent, and in §9 and §10, we derive the main results quickly by
altering Q to ignore the activity a0. However, it an interesting but difficult exercise to try and derive the results
using the definition in §5. We suggest the results here could be used in maximizing ethanol production. We
gain apply the results to electrochemistry in §11, in particularly the standard cell.

In §12, we reconsider the assumption that ∆H◦(T) is constant, made throughout the paper. We show that
by increasing the mass of the mixture, in particularly the amount of solvent, we can make the error involved
here disappear in the limit. Finally, in §13, we consider independence and existence of paths.
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2. The idealized case

Definition 1. For c substances, we define the Gibbs energy G(T, P, n1, . . . , nc) by;

G = U + PV − TS,

where U is the internal energy, P is pressure, V is volume, T is temperature and S is entropy. We define the
enthalpy H(T, P, n1, . . . , nc) by;

H = U + PV = G + TS,

see [7] and [5]. We define the Gibbs energy at standard pressure G◦(T, n1, . . . , nc) = G(T, P◦, n1, . . . , nc), where
P◦ is the standard pressure. We define the chemical potentials, 1 ≤ i ≤ c, by;

µi(T, P) = (
∂G
∂ni

)T,P,n′ ,

where ni is the amount of substance i measured in moles, and T, P, n′ fixes the pressure, temperature and the
amount of every substance except substance i.

We consider an electrolyte as a solute in a dilute solution and define the activities ai, 1 ≤ i ≤ c, by;

a1 = γ1x1 ≃ 1,

ai =
γimi
m◦ , (2 ≤ i ≤ c),

where the molality mi =
ni
w1

, and w1 is the mass of the solvent, component 1, m◦ = 1, xi =
ni
n , n = ∑c

i=1 ni,
γi, 1 ≤ i ≤ c, are the activity coefficients, ci =

ni
V , c◦ = 1, and the activity quotient;

Q =
c

∏
i=1

aνi
i ,

where νi, for 1 ≤ i ≤ c are the stoichiometric coefficients.
We have, for a solute in a dilute solution, that µi = µ◦

i + RTln(ai), see [7], noting that µi is independent of

the amount of substance ni, and µ◦
i in the molality description is equal to µ

(m)
i , where mi is equal to m◦ = 1 in

a hypothetical solution.
We define ∆G◦(T) and ∆H◦(T) to be the changes in Gibbs energy and enthalpy at standard pressure P◦

and temperature T, for 1 mole of reaction, see [1]and [4].
We define the extent ξ(T, P) of a reaction by;

ni,0 + νiξ = ni,

where ni,0 = ni(initial). We assume that if;

hT,P,n1,0,...,nc,0(ξ) = G(T, P, n1,0 + ν1ξ, . . . , nc,0 + νcξ),

then
dhT,P,n1,0,...,nc,0

dξ (ξ) is independent of {n1,0, . . . , nc,0, } ⊂ R>0 and ξ ∈ R≥0, and define this as ( ∂G
∂ξ )|T,P.

We define chemical equilibrium by ( ∂G
∂ξ )|T,P = 0, and dynamic equilibrium by a path γ : [0, 1] →

(T, P, n1, . . . , nc), such that n′
i(t) = pr2+i(γ)

′(t) = 0, for 1 ≤ i ≤ c, so that no substance is formed.
We define E(T, P, n1, . . . , nc) to be the potential in the standard cell and E◦(T, n1, . . . , nc) =

E(T, P◦, n1, . . . , nc) to be the potential at P◦. We let F denote Faraday’s constant, R = NAk the gas constant,
where NAv is Avogadro’s constant and k is Boltzmann’s constant. We have that N = NAvn, where N is the
number of particles, n is the amount in moles. We define the electric potential ϕ by E = −▽ (ϕ), e is the charge
on an electron, zi is the valence of an ion.

Lemma 1. Let G be the Gibbs energy, please explain other variables, then we have

dG = −SdT + VdP +
c

∑
i=1

µidni.
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Proof. We have, by the definition of the chemical potential and the laws of differentials, that;

dG =
∂G
∂T P,n

dT +
∂G
∂P T,n

dP +
c

∑
i=1

∂G
∂ni T,P,n′

dni

=
∂G
∂T P,n

dT +
∂G
∂P T,n

dP +
c

∑
i=1

µidni. (1)

Fixing n, using G = U + PV − TS, the first law of thermodynamics, dU = dQ − PdV, the definition of entropy,
dQ = TdS, the product rule for differentials, and (1), we have that;

dU = TdS − PdV,

dG = dU + VdP + PdV − SdT − TdS

= (TdS − PdV) + VdP + PdV − SdT − TdS

= −SdT + VdP

=
∂G
∂T P,n

dT +
∂G
∂P T,n

dP, (2)

so that, from (2), and equating coefficients, ∂G
∂T P,n = −S, ∂G

∂P T,n = V. Substituting into (1), we obtain that;

dG = −SdT + VdP +
c

∑
i=1

µidni.

Definition 2. The electrical chemical equilibrium is defined by ( ∂G
∂ξ )T,P = 0, where G is the Gibbs energy

function for a charged and uncharged species.

Lemma 2 (The Nernst equation for the standard cell [7]). At electrical chemical equilibrium (T, P) and (T, P◦), we
have

E − E◦ = −RTln(Q)

2F
.

Proof. For c substances with c′ the number of the charged species, using Definition 1, we have that the
electrostatic potential energy;

Uel =
c′

∑
i=1

ϕ(xi)qi,

where qi = Niezi = NAniezi, {xi : 1 ≤ i ≤ c′} are the positions of the charged species, Ni is the number of
particles at xi. We have that;

U = Uchem + Uel ,

so that;

G(T, P, n1, . . . , nc) = U + PV − TS

= Uchem + Uel + PV − TS

= Uel + Gchem

=
c

∑
j=1

ϕ(xj)qj + Gchem

=
c

∑
j=1

ϕ(xj)NAnjezj + Gchem,
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so that;

µi = (
∂G
∂ni

)T,P

= (
∂(∑c

j=1 ϕ(xj)NAnjezj + Gchem)

∂ni
)T,P

= µi,chem, (c′ + 1 ≤ i ≤ c)

= µi,chem +
∂(ϕ(xi)NAniezi)

∂ni
, (1 ≤ i ≤ c′)

= µi,chem + ϕ(xi)NAezi

= µi,chem + ϕ(xi)Fzi. (3)

We consider the standard cell reaction H2(g) + 2AgCl(s) + 2e−(R) → 2HCl + 2Ag(s) + 2e−(L). At chemical
equilibrium, similarly to Lemma 5, generalized to a collection involving charged species, using (3), we have
that;

(
∂G
∂ξ

)T,P = ∑c
i=1νiµi

= 2µ(HCl) + 2µ(Ag)− µ(H2)− 2µ(AgCl) + 2µ(e−(L))− 2µ(e−(R))

= (
∂Gchem′

∂ξ
)T,P + 2µ(e−(L))− 2µ(e−(R))

= (
∂Gchem′

∂ξ
)T,P + ((2µchem(e−(L))− 2Fϕ(L))− (2µchem(e−(L))− 2Fϕ(R)))

= (
∂Gchem′

∂ξ
)T,P + 2F(ϕ(R)− ϕ(L))

= (
∂Gchem′

∂ξ
)T,P + 2EF = 0, (4)

where Gchem′ is the Gibbs energy restricted to the uncharged species. We have that;

(
∂Gchem′

∂ξ
)T,P◦ =

c

∑
i=c′+1

νiµ
◦
i

= (∆G◦
chem′ + RTln(Qchem′(T, P◦)))

= ∆G◦
chem′ , (5)

using the definition of Qchem′ in Definition 1, the fact that µi = µ◦
i + RTln(ai), µi = µ◦

i , for c′ + 1 ≤ i ≤ c, so
that Qchem′(T, P◦) = 1.

From (4),(5), we obtain;

2E◦F = −(
∂Gchem′

∂ξ
)T,P◦

= −∆G◦
chem′ . (6)

Similarly, we have that;

(
∂Gchem′

∂ξ
)T,P =

c

∑
i=c′+1

νiµi = (∆G◦
chem′ + RTln(Qchem′(T, P))), (7)

so from (4),(7), we obtain that;

2EF = −(
∂Gchem′

∂ξ
)T,P

= −(∆G◦
chem′ + RTln(Qchem′(T, P))). (8)
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Combining (8), (6), we obtain that;

2EF − 2E◦F = −(∆G◦
chem′ + RTln(Qchem′(T, P)))− (−∆G◦

chem′)

= −RTln(Qchem′(T, P)),

so that;

E − E◦ = −RTln(Qchem′(T, P))
2F

.

Lemma 3. [7] For the energy function G involving only an uncharged species;

(
∂G
∂ξ

)T,P = ∆G◦ + RTln(Q).

Proof. By Lemma 5, we have that;

(
∂G
∂ξ

)T,P =
c

∑
i=1

νiµi

∆G◦ =
c

∑
i=1

νiµ
◦
i . (9)

Using (9), the fact that µi = µ◦
i + RTln(ai), and Definition 1, we have that;

(
∂G
∂ξ

)T,P − ∆G◦ =
c

∑
i=1

νi(µi − µ◦
i )

=
c

∑
i=1

νi(µ
◦
i + RTln(ai)− µ◦

i )

=
c

∑
i=1

νiRTln(ai)

= RTln(
c

∏
i=1

aνi
i ) = RTln(Q).

Lemma 4. At electrical chemical equilibrium (T, P) and (T, P◦), and chemical equilibrium (T, P), we have

∆G◦ = 2F(E − E0).

Proof. By Lemma 2, we have that

E − E◦ = −RTln(Q)

2F
, (10)

and, by Lemma 3, we have that

0 = (
∂G
∂ξ

)T,P = ∆G◦ + RTln(Q). (11)

Rearranging (10) and (11), we obtain the result.
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Lemma 5. Let us take

(
∂G
∂ξ

)T,P =
c

∑
i=1

νiµi,

∆G◦ =
c

∑
i=1

νiµ
◦
i .

• At chemical equilibrium (T, P), ( ∂G
∂ξ )T,P = 0 and at (T, P0), ∆G◦ = 0.

• If chemical and electrical chemical equilibrium exists at (T, P◦) and (T, P), we have Q(T, P) = 1 and E = E◦.
Conversely, if Q(T, P) = 1 and chemical equilibrium exists at (T, P◦) then chemical equilibrium exists at (T, P).

• Chemical equilibrium exists at (T, P) iff Q(T, P) = e
−∆G◦

RT and we always have that Q(T, P◦) = 1.

Proof. For the first claim, using the definition of ξ, we have

dni = νidξ, (1 ≤ i ≤ c). (12)

By Lemma 1, fixing T and P, and using (12), we have

dG =
c

∑
i=1

µidni = (
c

∑
i=1

µiνi)dξ, (13)

so that;

(
∂G
∂ξ

)T,P =
c

∑
i=1

µiνi. (14)

The second claim from the first, as

∆G◦(T) =
∫ 1

0
(

∂G
∂ξ

)T,P◦

=
∫ 1

0
(

c

∑
i=1

νiµ
◦
i (T))dξ

=
c

∑
i=1

νiµ
◦
i (T)

∫ 1

0
dξ

=
c

∑
i=1

νiµ
◦
i (T).

Noting that ( ∂G
∂ξ )T,P◦ doesn’t vary with ξ. For the third claim, at chemical equilibrium, (T, P), noting again that

( ∂G
∂ξ )T,P doesn’t vary with ξ, and using (13) and (14), we have

dG = (
∂G
∂ξ

)T,P = 0, (independently of ξ). (15)

At chemical equilibrium T, P◦, using the first and second claims, and (15), we have

dG = (
∂G
∂ξ

)T,P◦ =
c

∑
i=1

νiµ
◦
i = ∆G◦ = 0.

For the second to last claim, and the first direction, we have, by Lemma 3, that RTln(Q) = 0, so that Q = 1,
and, by Lemma 2, that E − E◦ = − RTln(Q)

2F = 0. For the converse, we have by Lemma 3, using the fact that
Q(T, P) = 1;

(
∂G
∂ξ

)T,P = ∆G◦,

and, if chemical equilibrium exists at (T, P◦), then, as Q(T, P◦) = 1 we have

(
∂G
∂ξ

)T,P◦ = ∆G◦ + RTln(Q) = ∆G◦ = 0,
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so that ( ∂G
∂ξ )T,P = 0.

For the penultimate claim, in one direction, use Lemma 3, together with the fact that ( ∂G
∂ξ )T,P = 0 and

rearrange, the converse is also clear, by applying ln.
For the final claim, we have, by the definition of activities, that;

µi = µ◦
i + RTln(ai),

so that ai(T, P◦) = 1. Now use the definition of Q in Definition 1.

Lemma 6 (van’t Hoff,Gibbs-Helmholtz [7]). Along a chemical equilibrium path, we have

ln(
Q(T2)

Q(T1)
) =

1
R

∫ T2

T1

∆H◦

T2 dT

∆G◦(T2)

T2
− ∆G◦(T1)

T1
= −

∫ T2

T1

∆H◦

T2 dT.

In particularly, if ∆H◦ is temperature independent;

ln(
Q(T2)

Q(T1)
) = −∆H◦

R
(

1
T2

− 1
T1

)

∆G◦(T2)

T2
− ∆G◦(T1)

T1
= ∆H◦(

1
T2

− 1
T1

)

∆G◦(T1) =
T1

T2
∆G◦(T2)− (

T1

T2
− 1)∆H◦.

For c ∈ R, Let Dc intersect the line P = P◦ at (T1, P◦), then, for (T2, P) ∈ Dc, we have

Q(T2, P) = e
∆G◦(T1)−∆G◦(T2)

RT2 , (16)

c = ∆G◦(T1),

ln(
Q(T2)

Q(T1)
) = ln(Q(T2)) =

1
R

∫ T2

T1

∆H◦ − c
T2 dT,

∆G◦(T2)− ∆G◦(T1)

T2
= −

∫ T2

T1

∆H◦ − c
T2 dT,

and if ∆H◦ is temperature independent;

ln(
Q(T2)

Q(T1)
) = ln(Q(T2)) = −(

∆H◦ − c
R

)(
1
T2

− 1
T1

), (17)

∆G◦(T2)− ∆G◦(T1)

T2
= (∆H◦ − c)(

1
T2

− 1
T1

), (18)

∆G◦(T1) =
T1

T2
∆G◦(T2)− ∆H◦(

T1

T2
− 1). (19)

Proof. By Lemma 5, we have

∆G◦ =
c

∑
i=1

νiµ
◦
i ,

so that differentiating with respect to T;

d(∆G◦)

dT
=

c

∑
i=1

νi
dµ◦

i
dT

=
c

∑
i=1

νi(
∂µ◦

i
∂T

)P,n.

By Euler reciprocity, we have

(
∂µ◦

i
∂T

)P,n = −(
∂S◦

∂ni
)T,P,n′ = −S◦

i ,
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so that, noting S◦
i is independent of ni, so we can replace S◦

i by S◦
m,i, the absolute molar entropy of substance i,

and using thermodynamic arguments;

d(∆G◦)

dT
= −

c

∑
i=1

νiS
◦
i = −

c

∑
i=1

νiS
◦
m,i = −∆S◦. (20)

Using the product rule, (20) and the definition of enthalpy, we have

d
dT

(
∆G◦

T
) =

1
T

d(∆G◦)

dT
− 1

T2 ∆G◦ = −∆S◦

T
− ∆G◦

T2 = −∆(ST + G)◦

T2 = −∆H◦

T2 . (21)

By Lemma 5, along a chemical equilibrium path, we have that Q = e
−∆G◦

RT , so that ln(Q) = −∆G◦
RT . It follows

from (21) that;
dln(Q)

dT
=

d
dT

(
−∆G◦

RT
) =

∆H◦

RT2 .

It follows, integrating between T1 and T2, that;

ln(
Q(T2)

Q(T1)
) = ln(Q)(T2)− ln(Q)(T1)

=
−∆G◦(T2)

RT2
+

∆G◦(T1)

RT1

=
∫ T2

T1

dln(Q)

dT
dT

=
1
R

∫ T2

T1

∆H◦

T2 . (22)

So that, rearranging, we obtain the first claim. Using the fact, by Lemma 3, that;

ln(Q(T2)) = −∆G◦(T2)

RT2
,

ln(Q(T1)) = −∆G◦(T1)

RT1
,

we obtain, substituting into (22), canceling R, and performing the integration, if ∆H◦ is temperature
independent, that;

∆G◦(T2)

T2
− ∆G◦(T1)

T1
= −

∫ T2

T1

∆H◦

T2 = ∆H◦(
1
T2

− 1
T1

). (23)

For the fifth claim, rearrange (23). If Dc intersects the line P = P◦ at (T1, P◦), for the sixth (16) and seventh
claims, we have, using Lemma 3 and the fact from Lemma 5 that Q(T1, P◦) = 1;

(
∂G
∂ξ

)T2,P = ∆G◦(T2) + RT2ln(Q(T2, P))

= (
∂G
∂ξ

)T1,P◦

= ∆G◦(T1) + RT1ln(Q(T1, P◦))

= ∆G◦(T1) = c,

so that, again rearranging, we obtain the result. Along Dc, we have, using Lemma 3, that;

ln(Q) =
c − ∆G◦

RT
,
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so that, using the first part;

dln(Q)

dT
=

d
dT

(
c − ∆G◦

RT
)

=
−c
RT2 +

d
dT

(
−∆G◦

RT
)

=
∆H◦ − c

RT2 ,

so that, performing the integration, using the fact that Q(T1, P◦) = 1;

ln(Q(T2))− ln(Q(T1)) = ln(Q(T2)) =
1
R

∫ T2

T1

∆H◦ − c
T2 dT.

We have that, by Lemma 3;

ln(Q(T2)) =
c − ∆G◦(T2)

RT2
,

ln(Q(T1)) = 0,

so that;

ln(Q(T2)) = ln(Q(T2))− ln(Q(T1))

=
c − ∆G◦(T2)

RT2

=
∆G◦(T1)− ∆G◦(T2)

RT2

=
1
R

∫ T2

T1

∆H◦ − c
T2 dT

=
−1
R

(∆H◦ − c)(
1
T2

− 1
T1

),

and rearranging;

∆G◦(T2)− ∆G◦(T1)

T2
= (∆H◦ − c)(

1
T2

− 1
T1

) = (∆H◦ − ∆G◦(T1))(
1
T2

− 1
T1

),

so that, rearranging again;

∆G◦(T1)(
1
T1

+
1
T2

− 1
T2

) =
∆G◦(T1)

T1
=

∆G◦(T2)

T2
− ∆H◦(

1
T2

− 1
T1

),

to obtain;

∆G◦(T1) =
T1

T2
∆G◦(T2)− ∆H◦(

T1

T2
− 1).

Lemma 7. If there exists a component Dc, c ∈ R, which projects onto a closed bounded subinterval I of the line P = P◦,
not containing 0, and intersects P = P◦ at (T1, P◦) with T1 > 0, then for T2 ∈ I, ∆G◦ is linear, with

∆G◦(T2) = T2(
(∆G◦(T1)− ∆H◦)

T1
) + ∆H◦,

for T2 ∈ I. If ϵ ̸= 0, we have

(
dG
dξ

)T,P = λ + ϵln(P) + βT,

where {λ, ϵ, β} ⊂ R and {β, ϵ} can be effectively determined, and we have that the activity coefficient is given by;

Q(T2, P′) = e
ϵln( P′

P′◦ )

RT2 ,
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and the dynamic equilibrium paths are given by;

(
P′

P′◦ )
ϵ

RT2 = c,

for c ∈ R≥0, see Definition 1, while the quasi-chemical equilibrium paths are given by;

λ + ϵln(P′) + βT2 = c,

for c ∈ R. If ϵ = 0;

(
dG
dξ

)T,P = λ + βT + σln(T),

where {λ, β, σ} ⊂ R, and {β, σ} can be effectively determined. For every T1 > 0, there exists a straight line feasible
chemical path γ with pr12(γ) ⊂ (T = T1), which is both a dynamic and quasi-chemical equilibrium path, and
Q(T, P) = 1.

Proof. For the first claim, by Lemma 6, we have that

∆G◦(T2) =
T2

T1
∆G◦(T1)− ∆H◦(

T2

T1
− 1) = T2(

(∆G◦(T1)− ∆H◦)

T1
) + ∆H◦.

For the next claim, by Lemma 5 and the proof of Lemma 6, we have that

(
∂( dG

dξ )T,P

∂T
)P = (

∂(∑c
i=1 νiµi)

∂T
)P

=
c

∑
i=1

νi(
∂µi
∂T

)P

=
c

∑
i=1

νi(
∂µi
∂T

)P,n

= −
c

∑
i=1

νiSm,i. (24)

To compute Sm,i, we have by the first law of thermodynamics;

dQ = dU + dL = dU + pdV,

where L is the work done by the system, see [5]. We can assume that the liquid mixture is in thermal
equilibrium with a mixture of ideal gases in the vapour phase, and using the ideal gas law, the definition
of temperature for ideal gases, obtain the calculation of internal energy for the mixture;

U(T, P, n1, . . . , nc) =
c

∑
i=1

(
3
2

NAnikT − NAnimiρi),

where mi is the molecular mass of species i, ρi is the specific latent heat of evaporation of species i, which
we assume is independent of temperature T. By a result in [11], using the fact that entropy difference is
independent of path, see [9], we have that Q is independent of P. We then have;

dU =
c

∑
i=1

3
2

NAkTdni +
c

∑
i=1

3
2

NAknidT −
c

∑
i=1

NAmiρidni,

dQ =
c

∑
i=1

3
2

NAkTdni +
c

∑
i=1

3
2

NAknidT −
c

∑
i=1

NAmiρidni + dL,

dQ
T

=
c

∑
i=1

3
2

NAkdni +
c

∑
i=1

3
2

NAkni
dT
T

−
c

∑
i=1

NAmiρi
dni
T

+
g(T, n)dT

T
+

c

∑
i=1

hi(T, n)
dni
T

,

(
dQ
T

)n′ ,T,P =
3
2

NAkdni − NAmiρi
dni
T

+ hi(T, n)
dni
T

.
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It follows that

Sm,i =
∫

∆ni=1
(

dQ
T

)n′ ,T,P =
3
2

NAk − NAmiρi
T

+
ki(T)

T
. (25)

So that, from (24);

(
∂( dG

dξ )T,P

∂T
)P = −

c

∑
i=1

νi(
3
2

NAk − NAmiρi
T

)−
c

∑
i=1

νi
ki(T)

T

= −3
2

NAk(
c

∑
i=1

νi) +
NA
T

c

∑
i=1

νiµiρi −
c

∑
i=1

νi
ki(T)

T

= −3
2

NAk(
c

∑
i=1

νi) +
NA
T

c

∑
i=1

νiµiρi −
G(T)

T
. (26)

From (26), which is uniform P, we see that ( dG
dξ )T,P is of the form α(P) + βT + γln(T) −

∫ G(T)
T , (B), where

{β, γ} ⊂ R, and, assuming that ( dG
dξ )T,P is differentiable, α ∈ C1(R). By a similar calculation, we have that

(
∂( dG

dξ )T,P

∂P
)T = (

∂(∑c
i=1 νiµi)

∂P
)T

=
c

∑
i=1

νi(
∂µi
∂P

)T

=
c

∑
i=1

νi(
∂µi
∂P

)T,n

=
c

∑
i=1

νi(
∂V
∂ni

)T,P,n′

=
c

∑
i=1

νiVi

=
c

∑
i=1

νi
NAmi

κi(T, P)
, (27)

where κi is the density of substance i. We also have that

P(
c

∑
i=1

νi
NAmi

κi(T, P)
) = P(

c

∑
i=1

νiVi) = G(T), (dL = PdV), (28)

and from (27) and (28);

P(
∂( dG

dξ )T,P

∂P
)T = G(T) = Pα′(P),

so that G(T) = ϵ, α(P) = λ + ϵln(P), ( dG
dξ )T,P is of the form

α(P) + βT + γln(T)−
∫ G(T)

T
= λ + ϵln(P) + βT + γln(T)− ϵln(T)

= λ + ϵln(P) + βT + σln(T), (29)

where σ = γ − ϵ, {β, ϵ, λ, σ} ⊂ R.
If ϵ = 0, then ( dG

dξ )T,P is independent of P, and the components Dc are all straight line paths. In this case,
if Dc intersects the line P = P◦ at (T1, P◦), then, for all P > 0;

c = ∆G◦(T1) + RT1ln(Q(T1, P) = ∆G◦(T1),
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implies that RT1ln(Q(T1, P) = 0, so that Q(T1, P) = 1 and, by Lemmas 11 and 12, there exists a straight line
feasible chemical path γ with pr12(γ) ⊂ (T = T1), which is both a dynamic and quasi-chemical equilibrium
path. From (29), we have that

(
dG
dξ

)T,P = λ + βT + σln(T).

We have that, for any T1 > 0, we can find c ∈ R with λ + βT1 + σln(T1) = c, so that Dc defines a component
straight line path passing through (T1, P◦). Then we can apply the previous result.

If ϵ ̸= 0, for any c ∈ R, we can solve the equation;

λ + ϵln(P) + βT + σln(T) = c,

for any given T > 0 and an appropriate choice of P(T). In particularly, there exists a component Dc projecting
onto the line P = P0 and, by the first part, ∆G◦ is linear, with;

∆G◦(T2) = T2(
(∆G◦(T1)− ∆H◦)

T1
) + ∆H◦,

for an intersection at (T1, P◦). We also have, using (D), that

∆G◦(T2) = (
∂G
∂ξ

)T,P(T2, P◦) = λ + ϵln(P◦) + βT2 + σln(T2),

so that, equating coefficients;

σ = 0,

λ + ϵln(P◦) = ∆H◦,

β =
(∆G◦(T1)− ∆H◦)

T1
,

∆G◦(T1) = βT1 + ∆H◦,

∆G◦(T2) = βT2 + ∆H◦.

We can then, using Lemma 3, obtain a formula for the activity coefficient;

Q(T2, P′) = e
(( ∂G

∂ξ
)T,P |T2,P′ −∆G◦(T2))

RT2 e
(∆H◦−ϵln(P′◦)+ϵln(P′)+βT2−(βT2+∆H◦))

RT2 = e
ϵln( P′

P′◦ )

RT2 , (30)

as required. The claim about the coefficients being determined is clear from the proof. The determination of
the dynamical and quasi-chemical equilibrium lines, see Definition 1 and Lemma 13, follows from a simple
rearrangement of the formulas Q(T1, P′) = c, for some c ∈ R≥0, using (30), and ( dG

dξ )T,P = c, for some c ∈ R,
using (29), with σ = 0.

Lemma 8. With notation as in Lemma 7, if ϵ = 0, then if either;

(i) β > 0, σ > 0,
(ii) β < 0, σ < 0,

(iii) β > 0, σ < 0, λ − σ + σln(−σ
β ) ≤ 0,

(iv) β < 0, σ > 0, λ − σ + σln(−σ
β ) ≥ 0,

we can always find T0 > 0, defined as the solution to λ + βT + σln(T) = 0, such that T = T0 defines a chemical
equilibrium line.

Proof. By the proof of Lemma 7, if T0 is a solution to;

λ + βT + σln(T) = 0, (31)

then ( ∂G
∂ξ )T,P|T=T0 = 0, so that T = T0 defines a chemical equilibrium line. By considering limits at ∞ and

noting that the derivative β + σ
T of λ + βT + σln(T), is of a fixed sign in cases (i),(ii), so that λ + βT + σln(T)
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is monotonic, we can see there does exist a unique solution T0 in cases (i),(ii). In cases (iii),(iv), computing
limits at ∞ again, and noting that β + σ

T is increasing/decreasing, we have that, if the minimum/maximum T1

respectively of λ + βT + σln(T), given by the solution to;

β +
σ

T
= 0,

so that T1 = −σ
β , then, in case (iii), if;

λ + β(T1) + σln(T1) < 0,

iff λ − σ + σln(−σ
β ) < 0, there exist two possible solutions T0, with a unique solution if equality holds.

Similarly, then, in case (iv), if;

λ − σ + σln(
−σ

β
) > 0,

there exist at least two possible solutions T0, with again a unique solution if equality holds.

Lemma 9. If ϵ = 0, we have, for all T1 > 0, that;

(
∂G
∂ξ

)T,P|(T1,P1)
= (

∂G
∂ξ

)T,P|(T1,P◦
1 )

,

iff
E(T1, P1) = E(T1, P◦

1 ) = E◦(T1),

where G is the Gibbs energy function for the charged and uncharged species.

Proof. By (4) of Lemma 2, we have that

(
∂G
∂ξ

)T,P = (
∂Gchem′

∂ξ
)T,P + 2EF. (32)

By Lemma 7, we have that ( ∂Gchem′
∂ξ )T,P is independent of P, in particularly, we have that

(
∂Gchem′

∂ξ
)T1,P1 = (

∂Gchem′

∂ξ
)T1,P◦

1
, (33)

so that, combining (32) and (33), we obtain the result.

Lemma 10. For all T1 > 0, P1 > 0, we have

2F(E(T1, P1)− E◦(T1)) = (
∂G
∂ξ

)T,P|(T1,P1)
− (

∂G
∂ξ

)T,P|(T1,P◦
1 )
− RT1ln(Q(T1, P1)).

Proof. Following the proof of Lemma 2, we have that

(
∂G
∂ξ

)T,P|T1,P1 = (
∂Gchem′

∂ξ
)T,P|T1,P1 + 2E(T1, P1)F, (34)

2E◦(T1)F = (
∂G
∂ξ

)T,P|T1,P◦
1
− (

∂Gchem′

∂ξ
)T,P|T1,P◦

1

= (
∂G
∂ξ

)T,P|T1,P◦
1
− ∆G◦

chem′(T1). (35)

So from (34) and (35) and Lemma 3;

2E(T1, P1)F = (
∂G
∂ξ

)T,P|T1,P1 − (
∂Gchem′

∂ξ
)T,P|T1,P1

= (
∂G
∂ξ

)T,P|T1,P1 − (∆G◦
chem′(T1) + RT1ln(Qchem′(T1, P1))).
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2E(T1, P1)F − 2E◦(T1)F = (
∂G
∂ξ

)T,P|T1,P1 − (∆G◦
chem′(T1) + RT1ln(Qchem′(T1, P1)))− ((

∂G
∂ξ

)T,P|T1,P◦
1
− ∆G◦

chem′(T1))

= (
∂G
∂ξ

)T,P|T1,P1 − ((
∂G
∂ξ

)T,P|T1,P◦
1
− RT1ln(Qchem′(T1, P1)).

Definition 3 (Ideal solution). We let pr1 is the projection onto the first factor, pr12 be the projection onto the
first two factors, in coordinates (T, P, n1, . . . , nc). We define a feasible chemical path γ : [0, 1] → R2+c

>0 , such
that if ni(t) = pr2+i(t), for 1 ≤ i ≤ c, then

n′
i

νi
=

n′
j

νj
, for 1 ≤ i < j ≤ c,

where {ν1, . . . , νc} are the stoichiometric coefficients. If n(t) = ∑c
i=1 ni(t), and xi(t) = ai(t) = ni

n (t), then

Q(pr12(γ(t))) = ∏c
i=1 ai(t)νi and ni,0

n0
= fi(pr12(γ(0))), where fi = e

µi−µ◦i
RT , 1 ≤ i ≤ c, see §13. Note that n > 0

and the xi are well defined.
We define a chemical equilibrium path to be a feasible chemical path γ with the additional property that

chemical equilibrium exists at pr12(γ(t)), for t ∈ [0, 1]. We define a quasi-chemical equilibrium path to be a
feasible chemical path γ with the additional property that ( ∂G

∂ξ )T,P|pr12([0,1]) is constant. We define a dynamic
equilibrium path to be a feasible chemical path γ with the additional property that pr2+c(γ)

′(t) = 0, for
1 ≤ i ≤ c.

We define a straight line feasible path from (T, P◦) to (T, P) to be a map γ : [0, 1] → R2+c
≥0 such that

pr12γ(0) = (T, P◦), pr12γ(1) = (T, P), pr1(γ(t)) = T. We say that a point (T, P) is a simple dynamic
equilibrium point, if it lies on the locus Q(T, P) = 1.

Lemma 11. In an ideal solution, a straight line chemical equilibrium path from (T, P◦) to (T, P) is a dynamic
equilibrium path. Every (T, P◦) is a simple dynamic equilibrium point.

Proof. By Lemma 5, and the definition of activities for an ideal solution, we have that

1 = Q(T, P) =
c

∏
i=1

aνi
i =

c

∏
i=1

xνi
i , (36)

and n′
i

νi
=

n′
j

νj
, for 1 ≤ i, j ≤ c, ∑c

i=1 ni = n.
Using the relation (36), differentiating and using the facts that, for 1 ≤ i ≤ c − 1;

n′
i =

νin′
c

νc
, ni =

νinc

νc
+ di, (37)

we obtain that

(
c

∏
i=1

xνi
i )

′ =
c

∑
i=1

νix
νi−1
i x′i ∏

j ̸=i
x

νj
j =

c

∑
i=1

νix
νi−1
i x′i x

−νi
i =

c

∑
i=1

νix−1
i x′i

=
c

∑
i=1

νi
n
ni

(n′
in − nin′)

n2 =
c

∑
i=1

νi(
n′

i
ni

− n′

n
)

=
c−1

∑
i=1

ν2
i n′

c
νinc + νcdi

+
νcn′

c
nc

− λ(
∑c

i=1 n′
i

∑c
i=1 ni

)

=
c−1

∑
i=1

ν2
i n′

c
νinc + νcdi

+
νcn′

c
nc

− λ(
(∑c−1

i=1
νi
νc
+ 1)n′

c

(∑c−1
i=1

νi
νc
+ 1)nc + ∑c−1

i=1 di
) = 0, (38)

where λ = ∑c
i=1 νi. If ν′c ̸= 0, we obtain that

c−1

∑
i=1

ν2
i

νinc + νcdi
+

νc

nc
− λ(

(∑c−1
i=1

νi
νc
+ 1)

(∑c−1
i=1

νi
νc
+ 1)nc + ∑c−1

i=1 di
) = 0,
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so that;

c−1

∑
i=1

ν2
i nc(αnc + β)∏

j ̸=i
(νjnc + νcdj) + νc(αnc + β)

c−1

∏
i=1

(νinc + νcdi)− λnc

c−1

∏
i=1

(νinc + νcdi) = 0,

where α = ∑c−1
i=1

νi
νc
+ 1 and β = ∑c−1

i=1 di which we can write in the form;

c

∑
j=0

γjν
j
c = 0.

We have that

γc =
c−1

∑
i=1

ν2
i α ∏

j ̸=i
νj + ανc

c−1

∏
i=1

νi − λ
c−1

∏
i=1

νi

= αδ
c−1

∑
i=1

νi + αδνc − λδ

= δ(α(
c

∑
i=1

νi)− λ)

= δλ(α − 1).

Noting that δ ̸= 0 and α − 1 = ∑c−1
i=1

νi
νc

, we have that γc ̸= 0 iff ∑c−1
i=1 νi ̸= 0 and ∑c

i=1 νi ̸= 0. In this case,
we obtain a nontrivial polynomial relation p(nc) = 0, so that, by continuity and discreteness of roots, nc is a
constant and n′

c = 0. By the connecting relations (37), we obtain that n′
j = 0 as well, for ≤ j ≤ c − 1.

If ∑c
i=1 νi = 0 (G) then ∑c−1

i=1 νi ̸= 0, and, we have, from (36), that

c

∏
i=1

nνi
i = n∑c

i=1 νi = 1, (39)

and, following the calculation (38), we obtain

c−1

∑
i=1

ν2
i n′

c
νinc + νcdi

+
νcn′

c
nc

= 0,

so that, if n′
c ̸= 0;

c−1

∑
i=1

ν2
i

νinc + νcdi
+

νc

nc
= 0,

and, differentiating k times, for k ≥ 0, canceling n′
c if n′

c ̸= 0, and using the chain rule, we obtain the relations;

c−1

∑
i=1

νk+2
i

(νinc + νcdi)k+1 +
νc

nk+1
c

= 0.

Let gi =
1

νi+
νcdi
nc

= nc
νcni

< 0, for 1 ≤ i ≤ c − 1. Then, for k ≥ 0;

c−1

∑
i=1

νk+2
i gk+1

i + νc =
c−1

∑
i=1

νi(νigi)
k+1 + νc = 0. (40)

If gi = −1, then
nc

νcni
=

nc

νc(
νinc
νc

+ di)
=

nc

νinc + νcdi
= −1,

so that
nc = −(νinc + νcdi),

implies
(1 + νi)nc = νcdi.
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Then if n′
c ̸= 0, we must have that νi = −1, di = 0. Re-scaling each νi by a factor of 2, we still have the

conditions (36), (E), (G), so we can assume that |νi| ≥ 2, which is a contradiction. Hence, we can assume that
|gi| ̸= 1, for 1 ≤ i ≤ c − 1, so that taking the limit as k → ∞, with k even, so that νk+2

i > 0, gk+1
i < 0, for

1 ≤ i ≤ c − 1, we obtain a contradiction, and conclude that n′
c = 0, and n′

i = 0, for 1 ≤ i ≤ c − 1.
If for every c − 1 element subset Ij ⊂ {ν1, . . . νc}, 1 ≤ j ≤ c, we have that ∑i∈Ij

νi = 0, then clearly;

∑
1≤i≤c

νi = ∑
i∈Ij

νi + νj = νj, for 1 ≤ j ≤ c,

which we can exclude. It follows that there exists some j0, with 1 ≤ j0 ≤ c, such that ∑i∈Ij0
νi ̸= 0. Using nj0

as the pivot and following the above proof, replacing nc by nj0 , we can, without loss of generality, assume that
∑c−1

i=1 νi ̸= 0, and the proof is complete.
The second claim follows from the fact in Lemma 5 that Q(T, P◦) = 1.

Definition 4. For c ∈ R>0, we define Cc ⊂ R2 to be the zero locus of Q(T, P)− c. We define D ⊂ R2 to be the
condition of chemical equilibrium. We define Dc to be the zero locus of ( ∂G

∂ξ )T,P − c = 0 .

Lemma 12. For every smooth curve W ⊂ R2, there exists a locally feasible path γ : [0, 1] → R2+c with pr12(γ) ⊂ W.

Proof. As W is smooth, we can choose a local parametrization δ : [0, 1] → W. Let ϵ(t) = Q(δ(t)) > 0 and
w = ∑c

i=1 νi. Without loss of generality, we can assume that pr12(γ(0)) = (T0, P0), see §13. We have that

c

∏
i=1

xνi
i (t) = ϵ(t), (41)

iff
c

∏
i=1

nνi
i (t) = ϵ(t)n∑c

i=1 νi (t),

iff
c−1

∏
i=1

nνi
i (t)n

νc
c (t) = ϵ(t)(

c

∑
i=1

ni)
∑c

i=1 νi (t),

iff
c−1

∏
i=1

(
νi
νc

nc + di)
νi (t)nνc

c (t) = ϵ(t)(
c

∑
i=1

ni)
∑c

i=1 νi (t),

iff
c−1

∏
i=1

(
νi
νc

nc + di)
νi (t)nνc

c (t) = ϵ(t)((
c−1

∑
i=1

νi
νc

+ 1)nc +
c−1

∑
i=1

di)
w(t).

Let di > 0, for 1 ≤ i ≤ c − 1, then
c

∏
i=1

xνi
i (t) = ϵ(t),

iff
c−1

∏
i=1

(
νi
νc

nc + di)
νi (t)nνc

c (t) = ϵ(t)((
c−1

∑
i=1

νi
νc

+ 1)nc + σ)w(t),

iff
c−1

∏
i=1

(
νi
νc

nc + di)
νi (t)nνc

c (t) = ϵ(t)(
w
νc

nc + σ)w(t),

where σ = ∑c−1
i=1 di > 0. Assume that w > 0, then we have that

c

∏
i=1

xνi
i (t) = ϵ(t),

iff
p

∏
i=1

(
νi
νc

nc + di)
νi = ϵ(t)(

w
νc

nc + σ)w(t)n−νc
c

c−1

∏
i=p+1

(
νi
νc

nc + di)
−νi ,
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iff
p

∏
i=1

(
νi
νc
)νi nκ

c + r(nc) = ϵ(t)[(
w
νc
)w

c−1

∏
i=p+1

(
νi
νc
)−νi nw−νc−λ

c + s(nc)],

iff
p

∏
i=1

(
νi
νc
)νi nκ

c + r(nc) = ϵ(t)[(
w
νc
)w

c−1

∏
i=p+1

(
νi
νc
)−νi nκ

c + s(nc)],

iff

αnκ
c + r(nc) = ϵ(t)(βnκ

c + s(nc)), (42)

where α = ∏
p
i=1(

νi
νc
)νi ̸= 0, β = ( w

νc
)w ∏c−1

i=p+1(
νi
νc
)−νi ̸= 0, λ = ∑c−1

i=p+1 νi, {r, s} ⊂ R[x] have degree less than κ,

r(0) = ∏
p
i=1 di > 0, s(0) = 0, as divisible by x−νc . Dividing (42) by nκ

c > 0, we obtain

α + r1(
1
nc

) = ϵ(t)(β + s1(
1
nc

)), (43)

where {r1, s1} ⊂ R[x] have degree κ, with r1(0) = s1(0) = 0, deg(r1) = κ and cκ = r(0) = ∏
p
i=1 di > 0 where

r1 = ∑κ
j=0 cjxj, deg(s1) ≤ κ + νc < κ, so that limx→∞

α+r1(x)
β+s1(x) = ∞.

Let v(x) = αxκ + r(x), w(x) = βxκ + s(x). Then, the roots vi of r(x), 1 ≤ i ≤ p, are given by vi = − diνc
νi

>

0, while the roots wi of w(x) are given by w0 = 0, wi = −diνc
νi

< 0, p + 1 ≤ i ≤ c − 1 and wc = −σνc
w . If

νi = w, for 1 ≤ i ≤ p, it would follow that w > ∑
p
i=1 νi = pw, which is a contradiction, as p ≥ 1. It follows

that we can choose i0 with 1 ≤ i0 ≤ p such that −νc
νi0

̸= −νc
w and

−νcdi0
νi0

̸= −νcdi0
w ,(1). Dividing by xκ doesn’t

effect the positive roots vi, 1 ≤ i ≤ p of r(x)
xκ = α + r1(

1
x ), and the positive roots of α + r1(x), are the positive

reciprocals v′i =
1
vi

, 1 ≤ i ≤ p. As limx→∞
α+r1(x)
β+s1(x) = ∞ and ϵ(0) > 0, we can choose v0 with q(v0) = ϵ(0) and

v0 > v′i, for 1 ≤ i ≤ p, where q(x) = α+r1(x)
β+si(x) . Then 1

v0
< 1

v′i
= vi, for 1 ≤ i ≤ p, and as νi

νc
< 0, νi

νc
1
v0

> νi
νc

vi,
νi
νc

1
v0

+ di >
νi
νc

vi + di = 0, for 1 ≤ i ≤ p. In particularly, as nc(0) = 1
v0

, we have, by the linking relations, that
ni(0) =

νi
νc

nc(0) + di =
νi
νc

1
v0

+ di > 0, for 1 ≤ i ≤ p. Moreover, as νi
νc

> 0, for i + 1 ≤ i ≤ c − 1, and 1
v0

> 0, we
have that

ni(0) =
νi
νc

nc(0) + di =
νi
νc

1
v0

+ di > 0, as well, for i + 1 ≤ i ≤ p − 1, (44)

By (43), we have that q( 1
nc
) = ϵ(t) and, by the above construction, it follows that q(v0) = ϵ(0). Consider

the real algebraic curve defined by θ(x, y) = q(x)− y − ϵ(0), so that θ(v0, 0) = 0. Computing the differential
(q′(x),−1), if q′(v0) ̸= 0, we see that the projection pry is un-ramified at (v0, 0), so that we can apply the
inverse function theorem, see [10], to obtain a real branch γ(y) with γ(0) = v0 and

θ(γ(y), y) = q(γ(y))− y − ϵ(0) = 0.

Replacing y with ϵ(t)− ϵ(0), and letting δ(t) = γ(ϵ(t)− ϵ(0)), we have that

θ(δ(t), ϵ(t)− ϵ(0)) = q(δ(t))− (ϵ(t)− ϵ(0))− ϵ(0) = q(δ(t))− ϵ(t) = 0.

1 As nc is mobile, the conditions that ni,0 = di +
νi
νc

nc,0, 1 ≤ i ≤ c − 1, (B), together with the requirement that n0 = (n1,0, . . . , nc,0)

lies in Ker(M) ∩ Rc
>0, see §13, places a 1 dimensional restriction on the tuple (d1, . . . dc−1), defined as prc−1(W), where W = V ∩

g−1(Ker(M)), V = {(d1, . . . dc−1, nc,0(d1, . . . dc−1)) : (d1, . . . dc−1) ∈ Rc−1}, and g(x1, . . . , xc) = (y1, . . . , yc) is the morphism defined
by;

yc = xc

yi = xi +
νi

νc
xc, (1 ≤ i ≤ c − 1)

determined by the conditions ((B)). Moreover, we can assume that prc−1(W) ∩ Rc−1 ̸= ∅. Moving the tuple (d1, . . . dc−1) along

prc−1(W), we can fine di0 > 0, and dj, 1 ≤ j ≤ c − 1, j ̸= i0, with dj > 0, so that
−νcdi0

νi0
̸= −νcσ

w and vi0 is the highest root of r(x), so

that the roots wi of w(x) do not coincide with the highest root vi0 of r(x).
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Then δ(t) > 0, and we can set nc = 1
δ(t) , with nc(0) = 1

v0
Using the linkage relations, we can define ni(t), for

1 ≤ i ≤ c − 1 from nc. As, by (44), we have that ni(0) > 0, for 1 ≤ i ≤ c, by continuity, for sufficiently small t,
we have that ni(t) > 0, for 1 ≤ i ≤ c as well.

If w < 0, we can take the reciprocal of the relation (41), replace νi by −νi and ϵ(t) by 1
ϵ(t) > 0, to get w > 0.

Reordering so that the pivot νc < 0, νi > 0, for 1 ≤ i ≤ p′, νi < 0, for p′ + 1 ≤ i ≤ c − 1, we can carry out the
above proof to get the result.

If w = 0, we can carry out the first calculation with β replaced by ∏c−1
i=p+1(

νi
νc
)−νi ̸= 0.

Lemma 13. A feasible path γ is a dynamic equilibrium path iff pr(γ12) ⊂ C f , for some f ∈ R>0, iff dQ
dt = 0. In

particular, for any feasible path γ in which pr12(γ) is fixed, we have dynamic equilibrium and dQ
dt = 0.

Proof. For the first claim, we have that f > 0 and if pr(γ12) ⊂ C f , we have that

c

∏
i=1

xνi
i = f ,

with the same linkage relations as Lemma 11. Now follow through Lemma 11, noting that differentiating
reduces the constant f to 0, as in the proof. Conversely, if pr(γ12) ̸⊂ C f , then we have that

(
c

∏
i=1

xνi
i )

′|0 = Q(γ(t))′|0 = (grad(Q)|γ(0) � γ′(0)) ̸= 0,

but, if γ is a dynamic equilibrium path, then clearly each ni is constant, 1 ≤ i ≤ c, n is constant and xi is
constant, so that x′i = 0, for 1 ≤ i ≤ c and (∏c

i=1 xνi
i )

′|0 = 0, which is a contradiction. For the second claim, if
pr(γ12) ⊂ Cc, for some c ∈ R, it follows from Definition 4 and the proof of Lemma 11, that Q is constant and
dQ
dt = 0. Conversely, if dQ

dt = 0, then Q is constant along pr(γ12), so that pr(γ12) ⊂ Cc, for some c ∈ R. The
final claim follows from the fact that Q depends only on the coordinates (T, P), so that dQ

dt = 0, and the first
claim.

Lemma 14. We have that the condition of chemical equilibrium defines a 1-dimensional curve D in the state space (T, P).
Similarly, the conditions that Q(T, P) = c define 1-dimensional curves Cc in (T, P), and if γ : [0, 1] → (T, P, n1, . . . nc)

is a path, such that pr12(γ) lies in Cc, then it must be a dynamic equilibrium path. Let D′ be a component of D, then
Q is constant along D′ iff ∆G◦

T is constant along D′. Let C′
c be a component of Cc, then ( ∂G

∂ξ )|T,P = 0 along C′
c iff

∆G◦
T = −Rln(c). Assuming that ∆G◦

T is non constant, we have that Q is constant along D′ iff pr1(D′) is a fixed
temperature T, and ( ∂G

∂ξ )|T,P = 0 along C′
c iff pr1(C′

c) is a fixed temperature T. The only feasible paths which are both
chemical and dynamic equilibrium paths are straight line chemical equilibrium paths. There exists a feasible dynamic
equilibrium path, with pr12(γ) ⊂ P = P◦.

Proof. For the first part, either use the fact that ( ∂G
∂ξ )|T,P only depends on (T, P) and differentiability properties,

or the result from Lemma 5 that chemical equilibrium is defined by Q(T, P)− e
−∆G◦

RT = 0, and the fact that ∆G◦

depends on T.
For the second part, either use differentiability properties of Q(T, P) or the fact from Lemma 5 that Q = 1

iff ( ∂G
∂ξ )|T,P − ∆G◦ = 0. The second claim is clear from Lemma 13.

For the third claim, we have, by Lemma 5, that along D′, Q = e
∆G◦
RT , so that clearly Q is constant along D′

iff ∆G◦
T is constant.
The fourth claim is clear by the fact that ( ∂G

∂ξ )|T,P − ∆G◦ = RTln(c) along C′
c.

The fifth and sixth claims follow immediately from the fact that ∆G◦
T is a function of T and is non constant.

For the seventh claim, if γ is a chemical and dynamic equilibrium path, then pr12(γ) ⊂ D, and, by Lemma
13, pr12(γ) ⊂ Cc, for some c ∈ R. It follows that Q is constant along the pr12(γ) ⊂ D′ for some component
D′, and then, by the fifth claim, pr1(γ) ⊂ pr1(D′) is a fixed temperature T, so that γ is a straight line chemical
equilibrium path.

For the final claim, we have that Q(T, P◦) = 1, by Lemma 11, so that P = P◦ lies in C1. It follows, by
Lemma 13, that a feasible path γ with pr12(γ) ⊂ P = P◦ is a dynamic equilibrium path.
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3. Ideal solutions

Remark 1. We have, using the phase rule for an ideal solution in equilibrium with its vapour, and using the
ideal gas law, see [8], that

µ
(g)
i = µ

◦(g)
i + RTln(

Pi
P◦ ),

µ
(sol)
i = µ

◦(sol)
i + RTln(

Pi
P◦ ). (45)

By the definition of an ideal solution, we have that

µi = µ∗
i + RTln(xi), (46)

where, by µ∗
i (T, P), we mean the chemical potential of substance i on its own, at temperature and pressure

(T, P). By Raoult’s law Pi = xiP∗
i , see [7], combined with (46), we obtain;

µi = µ∗
i + RTln(xi) = µ∗

i + RTln(
Pi
P∗

i
) = µ∗

i + RTln(
Pi
P◦ )− RTln(

P∗
i

P◦ ). (47)

Combining (45) and (47), we obtain that

µ∗
i = µi − RTln(

Pi
P◦ ) + RTln(

P∗
i

P◦ )

= (µ◦
i + RTln(

Pi
P◦ ))− RTln(

Pi
P◦ ) + RTln(

P∗
i

P◦ )

= µ◦
i + RTln(

P∗
i

P◦ ). (48)

Letting P∗
i = P◦, we obtain that µ∗

i (T, P′) = µ◦
i , (48), where (T, P′) is the temperature and pressure at which

the equilibrium pressure P′∗
i = P◦. From (46), the fact that µ∗

i (T, P) ≃ µ∗
i (T, P′) and (48), we obtain that

µi ≃ µ◦
i + RTln(xi), (49)

as a very good approximation. This avoids the contradiction that xi = 1 for a solution involving more than
one component, at P = P◦. To make the results here more precise, we need to compute the error term, but the
proof is still consistent if we allow that ni(T, P) → 0 as P → P◦, so that xi =

ni
n → 1, and xi is not defined at

P = P◦.
More specifically, we have that

µ∗
i (T, P) = µ∗

i (T, P′) + δ,

where δ = µ∗
i (T, P)− µ∗

i (T, P′), so that

µi = µ◦
i + RTln(xi) + δ.

For Raoult’s law, see [7], we also need an approximation. We have that, by the definition of an ideal
solution, the phase rule, Dalton’s law that each gas in a mixture of ideal gases behaves as if it were alone in the
container at the equilibrium pressures {Pi, P∗

i }, see [7], that

µi = µ∗
i + RTln(xi) = µ∗

i (T, P∗
i ) + RTln(xi) + ϵ = µ

◦(g)
i + RTln(

P∗
i

P◦ ) + RTln(xi) + ϵ = µ
◦(g)
i + RTln(

Pi
P◦ ),

so that

RTln(xi) = RTln(
Pi
P◦ )− RTln(

P∗
i

P◦ )− ϵ,

where ϵ = µ∗
i (T, P)− µ∗

i (T, P∗
i ), so that (47) becomes;

µi = µ∗
i + RTln(xi) = µ∗

i + RTln(
Pi
P◦ )− RTln(

P∗
i

P◦ )− ϵ. (50)
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Combining (45) and (50), we obtain that

µ∗
i = µi − RTln(

Pi
P◦ ) + RTln(

P∗
i

P◦ ) + ϵ

= (µ◦
i + RTln(

Pi
P◦ ))− RTln(

Pi
P◦ ) + RTln(

P∗
i

P◦ ) + ϵ

= µ◦
i + RTln(

P∗
i

P◦ ) + ϵ. (51)

Letting P∗
i = P◦ again, we obtain that

µ∗
i (T, P′) = µ◦

i + ϵ. (52)

From (46) and (52), we obtain that

µi = µ∗
i + RTln(xi) = µ∗

i (T, P′) + δ + RTln(xi) = µ◦
i + ϵ + δ + RTln(xi) = µ◦

i + RTln(xi) + γi,

where

γi = ϵ + δ = µ∗
i (T, P)− µ∗

i (T, P∗
i ) + µ∗

i (T, P)− µ∗
i (T, P′) = 2µ∗

i (T, P)− µ∗
i (T, P∗

i )− µ∗
i (T, P′) ≃ 0.

Using Lemma 1, we have that dG = −SdT + VdP, so that, if temperature is fixed, dG = VdP, then, for
the Gibbs energy function of substance i on it own, in the liquid phase;

µ∗
i (T, P)− µ∗

i (T, P∗
i ) =

G(T, P, n)− G(T, P∗
i , n)

n
=

1
n

∫ P

P∗
i

dG =
1
n

∫ P

P∗
i

VdP

=
1
n

∫ P

P∗
i

nNAmi
κi(T, P)

dP ≃
NAmi(P − P∗

i )

κ
= Vm,i(P − P∗

i ),

where κ(T, P) is the density of substance i in the liquid phase, and which we assume to be approximately
constant, and Vm.i is the molar volume. Similarly

µ∗
i (T, P)− µ∗

i (T, P′) ≃ NAmi(P − P′)

κ
= Vm,i(P − P′),

so that
γi(P) ≃ Vm,i(2P − P∗

i − P′) ≃ 0.

Now, we reformulate Lemmas 3, 5, 6 and 7 with this error term.

Lemma 15. In the ideal solution case, for the energy function G involving only c uncharged species;

(
∂G
∂ξ

)T,P = ∆G◦ + RTln(Q) + ϵ,

where ϵ(P) = ∑c
i=1 νiγi(P) ≃ 0 and γi(P) ≃ 0 is the error term for the i’th uncharged species in Remark 1.

Proof. By Lemma 5, we have that

(
∂G
∂ξ

)T,P =
c

∑
i=1

νiµi, ∆G◦ =
c

∑
i=1

νiµ
◦
i . (53)

Using (53), the fact that µi = µ◦
i + RTln(ai) + γi, and Definition 1, we have that

(
∂G
∂ξ

)T,P − ∆G◦ =
c

∑
i=1

νi(µi − µ◦
i ) =

c

∑
i=1

νi(µ
◦
i + RTln(ai) + γi − µ◦

i )

=
c

∑
i=1

νiRTln(ai) +
c

∑
i=1

νiγi = RTln(
c

∏
i=1

aνi
i ) +

c

∑
i=1

νiγi = RTln(Q) + ϵ.
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Lemma 16. For an ideal solution, we have, using the definition of ϵ(P) in Lemma 3, and the error terms γi(P), 1 ≤ i ≤ c
in Remark 1, that

(
∂G
∂ξ

)T,P =
c

∑
i=1

νiµi,

∆G◦ =
c

∑
i=1

νiµ
◦
i .

At chemical equilibrium (T, P), ( ∂G
∂ξ )T,P = 0 and at (T, P0), ∆G◦ = 0.

If chemical and electrical chemical equilibrium exists at (T, P◦) and (T, P), then Q(T, P) = e
−ϵ(P)

RT ≃ 1 and

E = E◦. Conversely, if Q(T, P) = e
−ϵ(P)

RT ≃ 1 and chemical equilibrium exists at (T, P◦) then chemical equilibrium
exists at (T, P).

Chemical equilibrium exists at (T, P) iff Q(T, P) = e
−∆G◦−ϵ(P)

RT .
We always have that Q(T, P◦) = e

−δ
RT ≃ 1, where δ = ϵ(P◦) = ∑c

i=1 νiγi(P◦).

Proof. For the first claim, we have, using the definition of ξ, that

dni = νidξ, (1 ≤ i ≤ c). (54)

By Lemma 1, fixing T and P, and using (54), we have that

dG =
c

∑
i=1

µidni = (
c

∑
i=1

µiνi)dξ, (55)

so that

(
∂G
∂ξ

)T,P =
c

∑
i=1

µiνi. (56)

The second claim follows from the first, as

∆G◦(T) =
∫ 1

0
(

∂G
∂ξ

)T,P◦ =
∫ 1

0
(

c

∑
i=1

νiµ
◦
i (T))dξ =

c

∑
i=1

νiµ
◦
i (T)

∫ 1

0
dξ =

c

∑
i=1

νiµ
◦
i (T),

noting that ( ∂G
∂ξ )T,P◦ doesn’t vary with ξ.

For the third claim, at chemical equilibrium, (T, P), noting again that ( ∂G
∂ξ )T,P doesn’t vary with ξ, and

using (55) and (56), we have that

dG = (
∂G
∂ξ

)T,P = 0, (independently of ξ). (57)

At chemical equilibrium (T, P◦), using the first and second claims, and (57), we have that

dG = (
∂G
∂ξ

)T,P◦ =
c

∑
i=1

νiµ
◦
i = ∆G◦ = 0.

For the second to last claim, and the first direction, we have, by Lemma 3, that RTln(Q) = −ϵ ≃ 0, so that

Q(T, P) = e
−ϵ(P)

RT ≃ 1, and, by Lemma 20, that E − E◦ = − RTln(Q)
2F − ϵ(P)

2F = ϵ(P)
2F − ϵ(P)

2F = 0. For the converse,

we have by Lemma 3, using the fact that Q(T, P) = e
−ϵ(P)

RT ≃ 1;

(
∂G
∂ξ

)T,P = ∆G◦ − ϵ(P) + ϵ(P) = ∆G◦,
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and, if chemical equilibrium exists at (T, P◦), then, as Q(T, P◦) = e
−ϵ(P◦)

RT we have that

(
∂G
∂ξ

)T,P◦ = ∆G◦ + RTln(Q(T, P◦) + ϵ(P◦) = ∆G◦ = 0,

so that ( ∂G
∂ξ )T,P = 0.

For the penultimate claim, in one direction, use Lemma 3, together with the fact that ( ∂G
∂ξ )T,P = 0 and

rearrange, the converse is also clear, applying ln.
For the final claim, we have, by the definition of activities, that

µi = µ◦
i + RTln(ai) + γi(P).

so that RTln(ai(T, P◦)) = −γi(P◦). Now use the definition of Q in Definition 1.

Lemma 17. Along a chemical equilibrium path, we have that

ln(
Q(T2)

Q(T1)
) =

1
R

∫ T2

T1

∆H◦

T2 dT ++
1
R
(

ϵ(P(T1))

T1
− ϵ(P(T2))

T2
),

∆G◦(T2)

T2
− ∆G◦(T1)

T1
= −

∫ T2

T1

∆H◦

T2 dT.

In particularly, if ∆H◦ is temperature independent

ln(
Q(T2)

Q(T1)
) = −∆H◦

R
(

1
T2

− 1
T1

) +
1
R
(

ϵ(P(T1))

T1
− ϵ(P(T2))

T2
),

∆G◦(T2)

T2
− ∆G◦(T1)

T1
= ∆H◦(

1
T2

− 1
T1

),

∆G◦(T1) =
T1

T2
∆G◦(T2)− (

T1

T2
− 1)∆H◦.

For c ∈ R, let Dc intersect the line P = P◦ at (T1, P◦), then, for (T2, P) ∈ Dc, we have that

Q(T2, P) = e
∆G◦(T1)−∆G◦(T2)−ϵ(P(T2))

RT2 , (58)

c = ∆G◦(T1),

ln(
Q(T2)

Q(T1)
) = ln(Q(T2)) =

1
R

∫ T2

T1

∆H◦ − c
T2 dT − (

ϵ(P(T2))

RT2
− ϵ(P(T1))

RT1
),

∆G◦(T2)− ∆G◦(T1)

T2
= −

∫ T2

T1

∆H◦ − c
T2 dT,

and if ∆H◦ is temperature independent;

ln(
Q(T2)

Q(T1)
) = ln(Q(T2)) = −(

∆H◦ − c
R

)(
1
T2

− 1
T1

)− (
ϵ(P(T2))

RT2
− ϵ(P(T1))

RT1
), (59)

∆G◦(T2)− ∆G◦(T1)

T2
= (∆H◦ − c)(

1
T2

− 1
T1

), (60)

∆G◦(T1) =
T1

T2
∆G◦(T2)− ∆H◦(

T1

T2
− 1). (61)

Proof. By Lemma 5, we have that

∆G◦ =
c

∑
i=1

νiµ
◦
i ,

so that differentiating with respect to T;

d(∆G◦)

dT
=

c

∑
i=1

νi
dµ◦

i
dT

=
c

∑
i=1

νi(
∂µ◦

i
∂T

)P,n.
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By Euler reciprocity, we have that

(
∂µ◦

i
∂T

)P,n = −(
∂S◦

∂ni
)T,P,n′ = −S◦

i ,

so that, noting S◦
i is independent of ni, so we can replace S◦

i by S◦
m,i, the absolute molar entropy of substance i,

and using thermodynamic arguments;

d(∆G◦)

dT
= −

c

∑
i=1

νiS
◦
i == −

c

∑
i=1

νiS
◦
m,i = −∆S◦. (62)

Using the product rule, (62) and the definition of enthalpy, we have that

d
dT

(
∆G◦

T
) =

1
T

d(∆G◦)

dT
− 1

T2 ∆G◦ = −∆S◦

T
− ∆G◦

T2 = −∆(ST + G)◦

T2 = −∆H◦

T2 . (63)

By Lemma 16, along a chemical equilibrium path, we have that Q = e
−∆G◦−ϵ(P)

RT , so that ln(Q) = −∆G◦−ϵ(P)
RT . It

follows from (63) that

dln(Q)

dT
=

d
dT

(
−∆G◦

RT
)− d

dT
(

ϵ(P)
RT

) =
∆H◦

RT2 − d
dT

(
ϵ(P)
RT

).

It follows, integrating between T1 and T2, and using the fundamental theorem of calculus, that

ln(
Q(T2)

Q(T1)
) = ln(Q)(T2)− ln(Q)(T1)

=
∫ T2

T1

dln(Q)

dT
dT

=
1
R

∫ T2

T1

[
∆H◦

T2 − d
dT

(
ϵ(P)
RT

)]dT

=
−∆H◦

RT2
+

∆H◦

RT1
− (

ϵ(P(T2))

RT2
− ϵ(P(T1))

RT1
), (64)

so that, rearranging, we obtain the first claim. Using the fact, by Lemma 15, that

ln(Q(T2)) =
−∆G◦(T2)− ϵ(P(T2))

RT2
,

ln(Q(T1)) =
−∆G◦(T1)− ϵ(P(T1))

RT1
,

we obtain, substituting into (64), canceling R, and performing the integration, if ∆H◦ is temperature
independent, that

−∆G◦(T2)− ϵ(P(T2))

RT2
− −∆G◦(T1)− ϵ(P(T1))

RT1
=

−∆H◦

RT2
+

∆H◦

RT1
− (

ϵ(P(T2))

RT2
− ϵ(P(T1))

RT1
),

so that

∆G◦(T2)

T2
− ∆G◦(T1)

T1
= ∆H◦(

1
T2

− 1
T1

). (65)

For the fifth claim, rearrange (65). If Dc intersects the line P = P◦ at (T1, P◦), for the sixth (58) and seventh

claims, we have, using Lemma 3 and the fact from Lemma 16 that Q(T1, P◦) = e
−δ
RT1 ;

(
∂G
∂ξ

)T2,P = ∆G◦(T2) + RT2ln(Q(T2, P)) + ϵ(P(T2)) = (
∂G
∂ξ

)T1,P◦

= ∆G◦(T1) + RT1ln(Q(T1, P◦)) + ϵ(P(T1))

= ∆G◦(T1) + RT1ln(Q(T1, P◦)) + ϵ(P◦)

= ∆G◦(T1)− δ + ϵ(P◦)

= ∆G◦(T1) = c,
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so that, again rearranging, we obtain the result. Along Dc, we have, using Lemma 3, that

ln(Q(T)) =
c − ∆G◦(T)− ϵ(P(T))

RT
,

so that, using the first part;

dln(Q)

dT
=

d
dT

(
c − ∆G◦(T)− ϵ(P(T))

RT
) =

−c
RT2 +

d
dT

(
−∆G◦(T)

RT
)− d

dT
(

ϵ(P(T))
RT

) =
∆H◦ − c

RT2 − d
dT

(
ϵ(P(T))

RT
),

so that, performing the integration, using the fact that Q(T1, P◦) = e
−δ
RT1 ;

ln(Q(T2))− ln(Q(T1)) = ln(Q(T2)) +
δ

RT1

=
1
R

∫ T2

T1

[
∆H◦ − c

T2 − d
dT

(
ϵ(P(T))

RT
)]dT

=
1
R

∫ T2

T1

∆H◦ − c
T2 dT − (

ϵ(P(T2))

RT2
− ϵ(P(T1))

RT1
).

We have that, by Lemma 15;

ln(Q(T2)) =
c − ∆G◦(T2)− ϵ(P(T2))

RT2
,

ln(Q(T1)) = − δ

RT1
,

so that

ln(Q(T2))− ln(Q(T1)) =
c − ∆G◦(T2)− ϵ(P(T2))

RT2
+

δ

RT1

=
∆G◦(T1)− ∆G◦(T2)− ϵ(P(T2))

RT2
+

δ

RT1

=
1
R

∫ T2

T1

[
∆H◦ − c

T2 − (
ϵ(P(T2))

RT2
− ϵ(P(T1))

RT1
)

=
−1
R

(∆H◦ − c)(
1
T2

− 1
T1

)− (
ϵ(P(T2))

RT2
− δ

RT1
),

so that, canceling R and the the error terms;

∆G◦(T2)− ∆G◦(T1)

T2
= (∆H◦ − c)(

1
T2

− 1
T1

) = (∆H◦ − ∆G◦(T1))(
1
T2

− 1
T1

),

so that, rearranging again;

∆G◦(T1)(
1
T1

+
1
T2

− 1
T2

) =
∆G◦(T1)

T1
=

∆G◦(T2)

T2
− ∆H◦(

1
T2

− 1
T1

),

to obtain;

∆G◦(T1) =
T1

T2
∆G◦(T2)− ∆H◦(

T1

T2
− 1).

Lemma 18. If there exists a component Dc, c ∈ R, which projects onto a closed bounded subinterval I of the line
P = P◦, not containing 0, and intersects P = P◦ at (T1, P◦), with T1 > 0, then, for T2 ∈ I, ∆G◦ is linear, with;

∆G◦(T2) = T2(
(∆G◦(T1)− ∆H◦)

T1
) + ∆H◦, for T2 ∈ I.

If ϵ ̸= 0, have that; ( dG
dξ )T,P = λ + ϵln(P) + βT where {λ, ϵ, β} ⊂ R and {β, ϵ} can be effectively determined,

and we have that the activity coefficient is given by; Q(T1, P′) = e
ϵln( P′

P′◦ )−ϵ(P′)
RT1 and the dynamic equilibrium paths are
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given by; ( P′
P′◦ )

ϵ
RT1 = ceϵ(P′) for c ∈ R≥0, see Definition 1, while the quasi-chemical equilibrium paths are given by;

λ + ϵln(P′) + βT1 = c for c ∈ R.
If ϵ = 0; ( dG

dξ )T,P = λ + βT + σln(T) where {λ, β, σ} ⊂ R, and {β, σ} can be effectively determined. The

activity coefficient Q is given by; Q(T1, P′) = e
−ϵ(P′)

RT1 .

The dynamic equilibrium paths are given by; e
−ϵ(P′)

RT1 = c for c ∈ R≥0, see Definition 1, while the quasi-chemical
equilibrium paths are given by; λ + ϵln(P′) + βT1 = c for c ∈ R.

Proof. For the first claim, by Lemma 17, we have that

∆G◦(T2) =
T2

T1
∆G◦(T1)− ∆H◦(

T2

T1
− 1) = T2(

(∆G◦(T1)− ∆H◦)

T1
) + ∆H◦.

For the next claim, by Lemma 16 and the proof of Lemma 7, we have that

(
∂( dG

dξ )T,P

∂T
)P = (

∂(∑ νiµi)

∂T
)P = ∑ νi(

∂µi
∂T

)P = ∑ νi(
∂µi
∂T

)P,n = −∑ νiSm,i. (66)

Again, to compute Sm,i, we have by the first law of thermodynamics;

dQ = dU + dL = dU + pdV,

where L is the work done by the system. We can assume that the liquid mixture is in thermal equilibrium with
a mixture of ideal gases in the vapour phase, and using the ideal gas law, the definition of temperature for
ideal gases, obtain the calculation of internal energy for the mixture;

U(T, P, n1, . . . , nc) =
c

∑
i=1

(
3
2

NAnikT − NAnimiρi),

where mi is the molecular mass of species i, ρi is the specific latent heat of evaporation of species i, which
we assume is independent of temperature T. By a result in [11], using the fact that entropy difference is
independent of path, we have that Q is independent of P. We then have

dU =
c

∑
i=1

3
2

NAkTdni +
c

∑
i=1

3
2

NAknidT −
c

∑
i=1

NAmiρidni,

dQ =
c

∑
i=1

3
2

NAkTdni +
c

∑
i=1

3
2

NAknidT −
c

∑
i=1

NAmiρidni + dL,

dQ
T

=
c

∑
i=1

3
2

NAkdni +
c

∑
i=1

3
2

NAkni
dT
T

−
c

∑
i=1

NAmiρi
dni
T

+
g(T, n)dT

T
+

c

∑
i=1

hi(T, n)
dni
T

,

(
dQ
T

)n′ ,T,P =
3
2

NAkdni − NAmiρi
dni
T

+ hi(T, n)
dni
T

.

It follows that

Sm,i =
∫

∆ni=1
(

dQ
T

)n′ ,T,P =
3
2

NAk − NAmiρi
T

+
ki(T)

T
. (67)

So that, from (66)

(
∂( dG

dξ )T,P

∂T
)P = −

c

∑
i=1

νi(
3
2

NAk − NAmiρi
T

)−
c

∑
i=1

νi
ki(T)

T

= −3
2

NAk(
c

∑
i=1

νi) +
NA
T

c

∑
i=1

νiµiρi −
c

∑
i=1

νi
ki(T)

T

= −3
2

NAk(
c

∑
i=1

νi) +
NA
T

c

∑
i=1

νiµiρi −
G(T)

T
. (68)
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From (68), which is uniform P, we see that ( dG
dξ )T,P is of the form

α(P) + βT + γln(T)−
∫ G(T)

T
, (69)

where {β, γ} ⊂ R, and, assuming that ( dG
dξ )T,P is differentiable, α ∈ C1(R). By a similar calculation, we have

that

(
∂( dG

dξ )T,P

∂P
)T = (

∂(∑ νiµi)

∂P
)T =

c

∑
i=1

νi(
∂µi
∂P

)T =
c

∑
i=1

νi(
∂µi
∂P

)T,n =
c

∑
i=1

νi(
∂V
∂ni

)T,P,n′ =
c

∑
i=1

νiVi =
c

∑
i=1

νi
NAmi

κi(T, P)
,

(70)

where κi is the density of substance i. We also have that

P(
c

∑
i=1

νi
NAmi

κi(T, P)
) = P(

c

∑
i=1

νiVi) = G(T), (dL = PdV), (71)

and from (70),(69) and (71), we have that

P(
∂( dG

dξ )T,P

∂P
)T = G(T) = Pα′(P),

so that G(T) = ϵ, α(P) = λ + ϵln(P), ( dG
dξ )T,P is of the form;

α(P) + βT + γln(T)−
∫ G(T)

T
= λ + ϵln(P) + βT + γln(T)− ϵln(T) = λ + ϵln(P) + βT + σln(T), (72)

where σ = γ − ϵ, {β, ϵ, λ, σ} ⊂ R.
If ϵ = 0, then ( dG

dξ )T,P is independent of P, and the components Dc are all straight line paths. In this case,
if Dc intersects the line P = P◦ at (T1, P◦), then, for all P > 0;

c = ∆G◦(T1) + RT1ln(Q(T1, P) + ϵ(P) = ∆G◦(T1),

implies that RT1ln(Q(T1, P) = −ϵ(P), so that

Q(T1, P) = e
−ϵ(P)

RT1 . (73)

From (72), we have that

(
dG
dξ

)T,P = λ + βT + σln(T). (74)

The calculation of the dynamical and chemical equilibrium paths follows easily, from the equations Q = c, for
c ∈ R≥0 and ( dG

dξ )T,P = c, for c ∈ R, using (73) and (74).
If ϵ ̸= 0, for any c ∈ R, we can solve the equation;

λ + ϵln(P) + βT + σln(T) = c,

for any given T > 0 and an appropriate choice of P(T). In particularly, there exists a component Dc projecting
onto the line P = P0. Calculating limits at {+∞,−∞}, we have that for β > 0, σ > 0 or β < 0, σ < 0, we can
solve the equation;

λ + ϵln(P◦) + βT + σln(T) = c, (75)
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for T. If β > 0, σ < 0 or β < 0, σ > 0, observing that (βT + σln(T))′ = β + σ
T , (βT + σln(T))′′ = − σ

T2 , so there
exists a min/max at T = −σ

β , we have that, if

− σ + σln(
−σ

β
) ≤ c − λ − ϵln(ln(P◦)),

− σ + σln(
−σ

β
) ≥ c − λ − ϵln(ln(P◦)),

we can again solve the Eq. (75) for T, so that, for an appropriate choice of c, there exists an intersection of the
component Dc with the line P = P◦.

By the first part, ∆G◦ is linear, with;

∆G◦(T2) = T2(
(∆G◦(T1)− ∆H◦)

T1
) + ∆H◦,

for an intersection at (T1, P◦). We also have, using (72), that

∆G◦(T2) = (
∂G
∂ξ

)T,P(T2, P◦) = λ + ϵln(P◦) + βT2 + σln(T2),

so that, equating coefficients;

σ = 0,

λ + ϵln(P◦) = ∆H◦,

β =
(∆G◦(T1)− ∆H◦)

T1
,

∆G◦(T1) = βT1 + ∆H◦.

We can then, using Lemma 15, obtain a formula for the activity coefficient;

Q(T1, P′) = e
(( ∂G

∂ξ
)T,P |T1,P′ −∆G◦(T1))−ϵ(P′)

RT1 = e
(∆H◦−ϵln(P′◦)+ϵln(P′)+βT1−(βT1+∆H◦))−ϵ(P′)

RT1 = e
ϵln( P′

P′◦ )−ϵ(P′)
RT1 , (76)

as required. The claim about the coefficients being determined is clear from the proof. The determination of
the dynamical and quasi-chemical equilibrium lines, see Definitions 1 and Lemma 13, follows from a simple
rearrangement of the formulas Q(T1, P′) = c, for some c ∈ R≥0, using (76), and ( dG

dξ )T,P = c, for some c ∈ R,
using (72), with σ = 0.

Lemma 19. Let notation be as in Lemma 7, then if ϵ ̸= 0, with Q(T, P) = ( P
P◦ )

ϵ
RT e

−ϵ(P)
RT , then, using the definition of

grad in [2];

grad(Q)(T, P) = (
−ϵln( P

P◦ ) + ϵ(P)
RT2 (

P
P◦ )

ϵ
RT e

−ϵ(P)
RT ,

ϵ
P − ϵ′(P)

RT
(

P
P◦ )

ϵ
RT e

−ϵ(P)
RT ).

In particular the paths of maximal reaction, for the region |grad(Q)(T, P)| > 1, Q(T, P) > 0, are given by∫ ϵPln( P
P◦ )−Pϵ(P)

Pϵ′(P)−ϵ
dP = − T2

2 + c for c ∈ R.

If ϵ(P) = 0; then grad(Q)(T, P) = (
−ϵln( P

P◦ )
RT2 ( P

P◦ )
ϵ

RT , ϵ
RTP (

P
P◦ )

ϵ
RT ) and the paths of maximal reaction, for the

region |grad(Q)(T, P)| > 1, Q(T, P) > 0, are given by P2( ln(P)
2 − ln(P◦)

2 − 1
4 ) +

T2

2 = c for c ∈ R.

If ϵ = 0, with Q(T, P) = e
−ϵ(P)

RT , then grad(Q)(T, P) = ( ϵ(P)
RT2 e

−ϵ(P)
RT ,− ϵ′(P)

RT e
−ϵ(P)

RT ) and the paths of maximal

reaction, for the region |grad(Q)(T, P)| > 1, Q(T, P) > 0, are given by
∫ ϵ(P)

ϵ′(P)dP = −T2

2 + c for c ∈ R.

Proof. The determination of grad(Q)(T, P) = ( ∂Q
∂T , ∂Q

∂P ) is a simple application of the chain rule and the
formula for Q. By the definition of the extent ξ of a reaction, see Definition 1, we have that, for 1 ≤ i ≤ c;

ni(t) = νiξ(t) + ni,0,

n(t) =
c

∑
j=1

ni(t) =
c

∑
i=1

(νiξ(t) + ni,0) = αξ(t) + β,
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where α = ∑c
i=1 νi and β = ∑c

i=1 ni,0, so that

xi(t) =
ni(t)
n(t)

=
νiξ(t) + ni,0

αξ(t) + β
.

It follows that for a feasible path γ;

c

∏
i=1

xνi
i (t) = Q(γ12(t)) =

c

∏
i=1

(
νiξ(t) + ni,0

αξ(t) + β
)νi =

∏c
i=1(νiξ(t) + ni,0)

νi

(αξ(t) + β)c = Gγ(ξ(t)),

where Gγ(x) = ∏c
i=1(νix+ni,0)

νi

(αx+β)c . We have that ξ(0) = 0, and, as we can assume that β > 0, we have that

G′
γ(0) =

∑c
i=1 νi(∏j ̸=i nj,0)

βc −
c ∏c

j=1 nj,0

βc+1

=
1

βc+1 (β(
c

∑
i=1

νi(∏
j ̸=i

nj,0)− c
c

∏
j=1

nj,0))

=
∏c

j=1 nj,0

βc+1 (β
∑c

i=1 νi

ni,0
− c)

=
∏c

j=1 nj,0

βc+1 (ninit
∑c

i=1 νi

ni,0
− c)

=
∏c

j=1 nj,0

βc+1 (
c

∑
i=1

νi
xi,init

− c)

=
∏c

j=1 nj,0

βc+1 ((
c

∑
i=1

νilog(xi))
′
init − c)

=
∏c

j=1 nj,0

βc+1 (log(
c

∏
i=1

xνi
i )

′
init − c)

=
∏c

j=1 nj,0

βc+1 (log(Q(γ12(t)))′|0 − c)

=
∏c

j=1 nj,0

βc+1 (
grad(Q) � γ′

12(0)
Q(γ12(0))

− c),

so that;

G′
γ(0) = 0, iff

grad(Q) � γ′
12(0)

Q(γ12(0))
= c,

which we can exclude by an appropriate parametrization of the feasible path γ, without altering the direction
of γ′

12(0). By the inverse function theorem, we can invert Gγ locally, to obtain that ξ(t) = (G−1
γ ◦ Q)(γ12(t)).

Then

ξ ′(0) = (G−1
γ )′|Q(T0,P0)

grad(Q)(T0, P0) � γ′
12(0)

=
grad(Q)(T0, P0) � γ′

12(0)
G′

γ(0)

= grad(Q)(T0, P0) � γ′
12(0)

βc+1

∏c
j=1 nj,0

Q(γ12(0))
grad(Q) � γ′

12(0)− cQ(γ12(0))

=
α1β1[grad(Q)(T0, P0) � γ′

12(0)]
grad(Q)(T0, P0) � γ′

12(0)− cβ1
,

where γ12(0) = (T0, P0), α1(T0, P0) =
βc+1

∏c
j=1 nj,0

, β1(T0, P0) = Q(γ12(0)).
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Writing γ′
12(0) = λ(cos(θ), sin(θ)), we have that

ξ ′(0) =
λα1β1[

∂Q
∂T |(T0,P0)

cos(θ) + ∂Q
∂P |(T0,P0)

sin(θ)]

λ[ ∂Q
∂T |(T0,P0)

cos(θ) + ∂Q
∂P |(T0,P0)

sin(θ)]− cβ1
= h(λ, θ) =

λα1β1r(θ)
λr(θ)− cβ1

,

where r(θ) = ∂Q
∂T |(T0,P0)

cos(θ) + ∂Q
∂P |(T0,P0)

sin(θ). We have that ∂h
∂λ = α1β1r(θ)

λr(θ)−cβ1
− λα1β1r2(θ)

(λr(θ)−cβ1)2 , so that ∂h
∂λ =

0 iff α1β1r(θ)(λr(θ) − cβ1) − λα1β1r2(θ) = 0 iff −cα1β2
1r(θ) = 0, so that, as α1 ̸= 0, Q(T0, P0) ̸= 0, and

(cos(θ), sin(θ)) is not tangent to the dynamic equilibrium path at (T0, P0), then h(λ, θ) is monotonic in λ.

∂h
∂θ

=
λα1β1r′(θ)
λr(θ)− cβ1

− λ2α1β1r′(θ)
(λr(θ)− cβ1)2 ,

so that ∂h
∂θ = 0 iff λα1β1r′(θ)(λr(θ)− cβ1)− λ2α1β1r′(θ) = 0 iff λα1β1(λr(θ)− cβ1)− λ2α1β1 = 0 iff r(θ) =

λ2α1β1+cλα1β2
1

λ2α1β1
= 1 + cβ1

λ .

If |1 + cβ1
λ | ≤ |grad(Q)(T0, P0)|, and |grad(Q)(T0, P0)| > 1, we can solve r(θ) = 1 + cβ1

λ , for λ > 0, so that,
when r(θ(λ)) = 1 + cβ1

λ ;

h(λ, θ(λ)) =
λα1β1(1 +

cβ1
λ )

λ(1 + cβ1
λ )− cβ1

=
λα1β1 + cα1β2

1
λ

= α1β1 +
cα1β2

1
λ

= α1β1(1 +
cβ1

λ
),

so a maximum/minimum occurs when |1 + cβ1
λ | = |grad(Q)(T0, P0)|, in which case (cos(θ), sin(θ)) is parallel

to grad(Q)(T0, P0), and perpendicular to the tangent of the level curve of Q, through (T0, P0). We, therefore,
have to solve the paired differential equation;

dT
dt

=
−ϵln( P(t)

P◦ ) + ϵ(P(t))
RT(t)2 (

P(t)
P◦ )

ϵ
RT(t) e

−ϵ(P(t))
RT(t) ,

dP
dt

=

ϵ
P(t) − ϵ′(P(t))

RT(t)
(

P(t)
P◦ )

ϵ
RT(t) e

−ϵ(P(t))
RT(t) ,

so that
dP
dT

=
dP
dt
dT
dt

=

ϵ
P −ϵ′(P)

RT ( P
P◦ )

ϵ
RT e

−ϵ(P)
RT

−ϵln( P
P◦ )+ϵ(P)
RT2 ( P

P◦ )
ϵ

RT e
−ϵ(P)

RT

=
T( ϵ

P − ϵ′(P))
−ϵln( P

P◦ ) + ϵ(P)
.

Separating variables, we obtain that
ϵln( P

P◦ )− ϵ(P)
ϵ′(P)− ϵ

P
dP = −TdT,

which has an implicit solution given by

∫
ϵPln( P

P◦ )− Pϵ(P)
Pϵ′(P)− ϵ

dP = −T2

2
+ c,

for c ∈ R. By a result due to [3], we have that these implicit solutions are integral curves for grad(Q) as
required. If ϵ(P) = 0, then ϵ′(P) = 0 and the implicit solutions are given by

∫
Pln(

P
P◦ )dP = −T2

2
+ c,
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for c ∈ R. We have, integrating by parts, that∫
Pln(

P
P◦ ) =

∫
Pln(P)− Pln(P◦)

=
P2ln(P)

2
−

∫ P
2
− P2ln(P◦)

2

=
P2ln(P)

2
− P2

4
− P2ln(P◦)

2

= P2(
ln(P)

2
− ln(P◦)

2
− 1

4
),

so that the implicit solutions are given by

P2(
ln(P)

2
− ln(P◦)

2
− 1

4
) +

T2

2
= c,

for c ∈ R as required. The determination of grad(Q)(T, P) when ϵ = 0 is again a simple application of the
chain rule. As before, we compute

dP
dT

=
−ϵ′(P)

RT e
−ϵ(P)

RT

ϵ(P)
RT2 e

−ϵ(P)
RT

=
−ϵ′(P)T

ϵ(P)
,

so that, separating variables;
ϵ(P)
ϵ′(P)

dP = −TdT,

and the implicit solutions are given by ∫
ϵ(P)
ϵ′(P)

dP =
−T2

2
+ c.

Remark 2. The fact that, in the case ϵ(P) = 0, the paths of maximal reaction depend on an arbitrary choice of
P◦ suggest that some approximation is needed in the formula;

µi(T, P) = µ◦
i (T) + RTlog(xi(T, P))

for ideal solutions. Of course, once P◦ is fixed, ϵ(P) depends on this choice of P◦ as well.

4. Electrochemistry with error terms and ideal solution

We consider the reaction H2(g) + 2AgCl(s) + 2e−(R) → 2HCl + 2Ag(s) + 2e−(L), for the standard cell,
even though the uncharged species probably don’t form an ideal solution. The reader can easily reformulate
the results in the context of an ideal solution, by just changing the electron count, see §8.

Lemma 20 (The Nernst equation for the standard cell). At electrical chemical equilibrium (T, P) and (T, P◦);

(E − E◦)(T, P) = −RTln(Q(T, P))
2F

− ϵ(P)
2F

.

Proof. For c substances, with c′ the number of the charged species, using Definition 1, we have that the
electrostatic potential energy;

Uel =
c′

∑
i=1

ϕ(xi)qi,

where qi = Niezi = NAniezi and where {xi : 1 ≤ i ≤ c′} are the positions of the charged species, Ni is the
number of particles at xi. We have that

U = Uchem + Uel ,
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so that

G(T, P, n1, . . . , nc) = U + PV − TS

= Uchem + Uel + PV − TS

= Uel + Gchem

=
c

∑
j=1

ϕ(xj)qj + Gchem

=
c

∑
j=1

ϕ(xj)NAnjezj + Gchem,

so that

µi = (
∂G
∂ni

)T,P

= (
∂(∑c

j=1 ϕ(xj)NAnjezj + Gchem)

∂ni
)T,P

= µi,chem, (c′ + 1 ≤ i ≤ c)

= µi,chem +
∂(ϕ(xi)NAniezi)

∂ni
, (1 ≤ i ≤ c′)

= µi,chem + ϕ(xi)NAezi

= µi,chem + ϕ(xi)Fzi. (77)

We consider the standard cell reaction H2(g) + 2AgCl(s) + 2e−(R) → 2HCl + 2Ag(s) + 2e−(L). At electrical
chemical equilibrium, similarly to Lemma 5, generalized to a collection involving charged species, using (77),
we have that

(
∂G
∂ξ

)T,P = ∑c
i=1νiµi

= 2µ(HCl) + 2µ(Ag)− µ(H2)− 2µ(AgCl) + 2µ(e−(L))− 2µ(e−(R))

= (
∂Gchem′

∂ξ
)T,P + 2µ(e−(L))− 2µ(e−(R))

= (
∂Gchem′

∂ξ
)T,P + ((2µchem(e−(L))− 2Fϕ(L))− (2µchem(e−(L))− 2Fϕ(R)))

= (
∂Gchem′

∂ξ
)T,P + 2F(ϕ(R)− ϕ(L))

= (
∂Gchem′

∂ξ
)T,P + 2EF = 0, (78)

where Gchem′ is the Gibbs energy restricted to the uncharged species. By Lemmas 15 and 16, we have that

(
∂Gchem′

∂ξ
)T,P◦ =

c

∑
i=c′+1

νiµ
◦
i

= (∆G◦
chem′ + RTln(Qchem′(T, P◦)) + ϵ(P◦))

= (∆G◦
chem′ − ϵ(P◦)) + ϵ(P◦))

= ∆G◦
chem′ . (79)

From (78) and (79), we obtain

2E◦F = −(
∂Gchem′

∂ξ
)T,P◦ = −∆G◦

chem′ . (80)
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Similarly, we have that

(
∂Gchem′

∂ξ
)T,P =

c

∑
i=c′+1

νiµi = (∆G◦
chem′ + RTln(Qchem′(T, P)) + ϵ(P)), (81)

so from (78) and (81), we obtain that

2EF = −(
∂Gchem′

∂ξ
)T,P = −(∆G◦

chem′ + RTln(Qchem′(T, P)) + ϵ(P)). (82)

Combining (82) and (80), we obtain that

2EF − 2E◦F = −(∆G◦
chem′ + RTln(Qchem′(T, P)) + ϵ(P))− (−∆G◦

chem′) = −RTln(Qchem′(T, P))− ϵ(P),

so that

E − E◦ = −RTln(Qchem′(T, P))
2F

− ϵ(P)
2F

.

Lemma 21. At electrical chemical equilibrium (T, P) and (T, P◦), and chemical equilibrium (T, P), we have

∆G◦ = 2F(E − E0).

Proof. By Lemma 20, we have that

E − E◦ = −RTln(Q)

2F
− ϵ(P)

2F
, (83)

and, by Lemma 15, we have that

0 = (
∂G
∂ξ

)T,P = ∆G◦ + RTln(Q) + ϵ(P). (84)

Rearranging (83) and (84), we obtain the result.

Lemma 22. If ϵ = 0, we have, for all T1 > 0, that

(
∂G
∂ξ

)T,P|(T1,P1)
= (

∂G
∂ξ

)T,P|(T1,P◦
1 )

,

iff
E(T1, P1) = E(T1, P◦

1 ) = E◦(T1),

where G is the Gibbs energy function for the charged and uncharged species.

Proof. By (78) of Lemma 20, we have that

(
∂G
∂ξ

)T,P = (
∂Gchem′

∂ξ
)T,P + 2EF. (85)

By Lemma 18, we have that ( ∂Gchem′
∂ξ )T,P is independent of P, in particularly, we have that

(
∂Gchem′

∂ξ
)T1,P1 = (

∂Gchem′

∂ξ
)T1,P◦

1
, (86)

so that, combining (85) and (86), we obtain the result.

Lemma 23. We have, for all T1 > 0, P1 > 0, that

2F(E(T1, P1)− E◦(T1)) = (
∂G
∂ξ

)T,P|(T1,P1)
− (

∂G
∂ξ

)T,P|(T1,P◦
1 )
− RT1ln(Q(T1, P1))− ϵ(P1).
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Proof. Following the proof of Lemma 20, we have that

(
∂G
∂ξ

)T,P|T1,P1 = (
∂Gchem′

∂ξ
)T,P|T1,P1 + 2E(T1, P1)F, (87)

2E◦(T1)F = (
∂G
∂ξ

)T,P|T1,P◦
1
− (

∂Gchem′

∂ξ
)T,P|T1,P◦

1
= (

∂G
∂ξ

)T,P|T1,P◦
1
− ∆G◦

chem′(T1), (88)

so from (87), (88) and Lemma 15, we have

2E(T1, P1)F = (
∂G
∂ξ

)T,P|T1,P1 − (
∂Gchem′

∂ξ
)T,P|T1,P1

= (
∂G
∂ξ

)T,P|T1,P1 − (∆G◦
chem′(T1) + RT1ln(Qchem′(T1, P1)) + ϵ(P1)),

2E(T1, P1)F − 2E◦(T1)F = (
∂G
∂ξ

)T,P|T1,P1 − (∆G◦
chem′(T1) + RT1ln(Qchem′(T1, P1)) + ϵ(P1))

− ((
∂G
∂ξ

)T,P|T1,P◦
1
− ∆G◦

chem′(T1))

= (
∂G
∂ξ

)T,P|T1,P1 − ((
∂G
∂ξ

)T,P|T1,P◦
1
− RT1ln(Qchem′(T1, P1))− ϵ(P1).

5. Dilute solutions

Definition 5. As mentioned in Definition 1, we can consider an electrolyte as a solute in a dilute solution.
Sometimes the solvent is involved in an electrolytic reaction, for example;

2H2O + 4e−(R) → O2 + 2H2 + 4e−(L), (89)

and sometimes not, as in the standard cell, where we can consider H2O as the solvent not involved in the
reaction. In Lemmas 2 to 10, for the standard cell, we can replace Q defined as ∏c

i=1 aνi
i by a0(∏c

i=1 aνi
i ),

considering H2O as substance 0.
We ideally have that

µi = µ◦
i + RTln(ai), 0 ≤ i ≤ c, (90)

when we define the activities ai, for 0 ≤ i ≤ c, which, when (90) holds, involves a contradiction.

Lemma 24. In Lemmas 2 to 10, for the standard cell, and considering a dilute solution with no interaction of the solvent,
replacing Q defined as ∏c

i=1 aνi
i by a0(∏c

i=1 aνi
i ). If we assume without approximation that µi = µ◦

i + RTln(ai),
0 ≤ i ≤ c, then, the Lemma 2 reduces to

E − E◦ = −RTln(Q)

2F
+

RTln( a0(T,P)
a0(T,P◦) )

2F

and Lemma 3 reduces to
(

∂G
∂ξ

)T,P = ∆G◦ + RTln(
Q

a0(T, P)
)

where ∆G◦ is the Gibbs energy change for 1 mole of reaction without the solvent.
The Lemma 4 reduces to

∆G◦ = 2F(E − E◦) + RTln(a0(T, P◦)),

and Lemma 5 remains same with the modification that if chemical and electrical equilibrium exist at (T, P◦) and (T, P),
Q(T, P) = a0(T, P) and E − E◦ = − RTln(a0(T,P◦))

2F . Conversely, if Q(T, P) = a0(T,P)
a0(T,P◦) and chemical equilibrium exists

at (T, P◦) then chemical equilibrium exists at (T, P). Also, chemical equilibrium exists at (T, P) iff Q(T, P) = a0e
−∆G◦

RT .
Moreover, we always have that Q(T, P◦) = 1.
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The Lemma 6 remains same with the modification that along a chemical equilibrium path, we have that;

ln(
Q(T2)

Q(T1)
) =

1
R

∫ T2

T1

∆H◦

T2 dT + ln(
a0(T2, P2)

a0(T1, P1)
),

and, if ∆H◦ is temperature independent;

ln(
Q(T2)

Q(T1)
) = −∆H◦

R
(

1
T2

− 1
T1

) + ln(
a0(T2, P2)

a0(T1, P1)
).

For c ∈ R, if Dc intersect the line P = P◦ at (T1, P◦), then, for (T2, P) ∈ Dc, we have that

Q(T2, P) = e
∆G◦(T1)−∆G◦(T2)

RT2 a0(T1, P◦)
−T1
T2 a0(T2, P), (91)

c = ∆G◦(T1)− RT1ln(a0(T1, P◦),

ln(
Q(T2)

Q(T1)
) = ln(Q(T2)) =

1
R

∫ T2

T1

∆H◦ − c
T2 dT + ln(

a0(T2, P)
a0(T1, P◦)

),

∆G◦(T2)− ∆G◦(T1)

T2
= −

∫ T2

T1

∆H◦ − c
T2 dT + R(1 − T1

T2
)ln(a0(T1, P◦)),

and if ∆H◦ is temperature independent;

ln(
Q(T2)

Q(T1)
) = ln(Q(T2)) = −(

∆H◦ − c
R

)(
1
T2

− 1
T1

) + ln(
a0(T2, P)
a0(T1, P◦)

), (92)

∆G◦(T2)− ∆G◦(T1)

T2
= (∆H◦ − c)(

1
T2

− 1
T1

) + R(1 − T1

T2
)ln(a0(T1, P◦)), (93)

to obtain ∆G◦(T1) =
T1
T2

∆G◦(T2)− ∆H◦( T1
T2

− 1) again.

The Lemma 7 remains same with the modification that if ϵ ̸= 0; Q(T2, P′) = e
ϵln( P′

P′◦ )

RT2 a0(T2, P′) and the dynamic
equilibrium paths are given by a0(T2, P′)( P′

P′◦ )
ϵ

RT2 = c for c ∈ R≥0, while if ϵ = 0, Q(T2, P′) = a0(T2,P′)
a0(T2,P′◦) , the

dynamic equilibrium lines are given by a0(T2,P′)
a0(T2,P′◦) = c for c ∈ R≥0 and the quasi-chemical equilibrium lines are given by

λ + βT2 + σln(T2) = c for c ∈ R.

Proof. Following the proof of Lemma 5, we note that for Gibbs function G with c + 1 species, including the
solvent, substance 0, as dn0 = 0, that

dG =
c

∑
i=0

µidni =
c

∑
i=1

µidni,

so the first three claims in Lemma 5 go through as before. Going through the proof of Lemma 3, we then obtain
that

(
∂G
∂ξ

)T,P = ∆G◦ + RTln(
c

∏
i=1

aνi
i ) = ∆G◦ + RTln(

∏c
i=0 aνi

i
a0(T, P)

) = ∆G◦ + RTln(
Q

a0(T, P)
).

Going back through the proof of Lemma 5, we obtain that RTln( Q
a0(T,P) ) = 0, so that Q(T, P) = a0(T, P). Going

through the proof of Lemma 2, using the fact that µi = µ◦
i + RTln(ai), for 0 ≤ i ≤ c, so that Q(T, P◦) = 1, we

have that

(
∂Gchem′

∂ξ
)T,P◦ = ∆G◦

chem′ + RTln(Qchem′(T, P◦)

= ∆G◦
chem′ + RTln(

Q
a0(T, P◦)

)

= ∆G◦
chem′ − RTln(a0(T, P◦)), (94)

where Gchem′ is the Gibbs energy restricted to the uncharged species without the solvent. Using (4), from
Lemma 2 and (94), we obtain

2E◦F = −∆G◦
chem′ + RTln(a0(T, P◦)). (95)
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Similarly, we obtain

(
∂Gchem′

∂ξ
)T,P = ∆G◦

chem′ + RTln(Qchem′(T, P) = ∆G◦
chem′ + RTln(

Q
a0(T, P)

),

so that, from (4), from Lemma 2;

2EF = −(∆G◦
chem′ + RTln(

Q
a0(T, P)

)). (96)

Combining (96) and (91), we obtain

2EF − 2E◦F = −(∆G◦
chem′ + RTln(

Q
a0(T, P)

))− (−∆G◦
chem′ + RTln(a0(T, P◦)))

= −RTln(
Q

a0(T, P)
)− RTln(a0(T, P◦)) = −RTln(Q) + RTln(

a0(T, P)
a0(T, P◦)

),

which gives the result.of Lemma 2. Going back through the proof of Lemma 5 again, we then have that

E − E◦ = −RTln(Q)

2F
+

RTln( a0(T,P)
a0(T,P◦) )

2F
= −RTln(a0(T, P))

2F
+

RTln( a0(T,P)
a0(T,P◦) )

2F
= −RTln(a0(T, P◦))

2F
.

For the converse claim, we have by the modification of Lemma 3, and the facts that Q(T, P) = a0(T,P)
a0(T,P◦) ,

Q(T, P◦) = 1, ( ∂G
∂ξ )T,P◦ = 0, that

(
∂G
∂ξ

)T,P = ∆G◦ + RTln(
Q

a0(T, P)
) = ∆G◦ − RTln(a0(T, P◦)),

and
(

∂G
∂ξ

)T,P◦ = ∆G◦ + RTln(
Q

a0(T, P◦)
) = 0.

So that we have chemical equilibrium at (T, P). For the penultimate claim of Lemma 5, rearrange the formula
from the modification of Lemma 3, with the definition of chemical equilibrium;

(
∂G
∂ξ

)T,P = ∆G◦ + RTln(
Q

a0(T, P)
) = 0.

The last claim is clear from µi = µ◦
i + RTln(ai), for 0 ≤ i ≤ c.

For Lemma 4, we have by the modification of Lemma 2, that

E − E◦ = −RTln(Q)

2F
+

RTln( a0(T,P)
a0(T,P◦) )

2F
,

and, by the modification of Lemma 3, that

0 = (
∂G
∂ξ

)T,P = ∆G◦ + RTln(Q)− RTln(a0(T, P)),

so that

∆G◦ = RTln(a0(T, P))− RTln(Q)

= RTln(a0(T, P)) + 2F(E − E◦)− RTln(
a0(T, P)
a0(T, P◦)

)

= 2F(E − E◦) + RTln(a0(T, P◦)).
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For the modification of Lemma 6, the first part of the proof goes through with the chemical potentials
µi, 1 ≤ i ≤ c, defined relative to the Gibbs energy including the solvent. By the modification of Lemma 5, we

have that Q = a0e
−∆G◦

RT along a chemical equilibrium path, so that

ln(Q) =
−∆G◦

RT
+ ln(a0(T, P)). (97)

It follows that
dln(Q)

dT
=

d
dT

(
−∆G◦

RT
) +

d
dT

(ln(a0(T, P))) =
∆H◦

RT2 +
d

dT
(ln(a0(T, P))).

It follows, integrating between T1 and T2, using (97) and the fundamental theorem of calculus, that

ln(
Q(T2)

Q(T1)
) = ln(Q)(T2)− ln(Q)(T1)

=
−∆G◦(T2)

RT2
+

∆G◦(T1)

RT1
+ ln(a0(T2, P2))− ln(a0(T1, P1))

=
∫ T2

T1

dln(Q)

dT
dT

=
1
R

∫ T2

T1

∆H◦

T2 +
∫ T2

T1

d
dT

(ln(a0(T, P)))dT

=
1
R

∫ T2

T1

∆H◦

T2 + ln(a0(T2, P2))− ln(a0(T1, P1)). (98)

So that, rearranging, we obtain the first claim. Using the fact, by the modification of Lemma 3, that

ln(Q(T2)) = −∆G◦(T2)

RT2
+ ln(a0(T2, P2)),

ln(Q(T1)) = −∆G◦(T1)

RT1
+ ln(a0(T1, P1)).

We obtain, substituting into (98), canceling R, and performing the integration, if ∆H◦ is temperature
independent, that

∆G◦(T2)

T2
− ∆G◦(T1)

T1
= −

∫ T2

T1

∆H◦

T2 = ∆H◦(
1
T2

− 1
T1

). (99)

For the fifth claim, rearrange (99). If Dc intersects the line P = P◦ at (T1, P◦), for the sixth and seventh claims,
we have, using the modification of Lemma 3 and the fact from Lemma 5 that Q(T1, P◦) = 1;

(
∂G
∂ξ

)T2,P = ∆G◦(T2) + RT2ln(Q(T2, P))− RT2ln(a0(T2, P))

= (
∂G
∂ξ

)T1,P◦

= ∆G◦(T1) + RT1ln(Q(T1, P◦))− RT1ln(a0(T1, P◦))

= ∆G◦(T1)− RT1ln(a0(T1, P◦)) = c.

So that, again rearranging, we obtain the result. Along Dc, we have, using Lemma 3, that

ln(Q) =
c − ∆G◦

RT
+ ln(a0(T, P)),

so that, using the first part;

dln(Q)

dT
=

d
dT

(
c − ∆G◦

RT
) +

d
dT

(ln(a0(T, P)))

=
−c
RT2 +

d
dT

(
−∆G◦

RT
) +

d
dT

(ln(a0(T, P)))

=
∆H◦ − c

RT2 +
d

dT
(ln(a0(T, P))),
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so that, performing the integration, using the fact that Q(T1, P◦) = 1;

ln(Q(T2))− ln(Q(T1)) = ln(Q(T2)) =
1
R

∫ T2

T1

∆H◦ − c
T2 dT + ln(a0(T2, P2))− ln(a0(T1, P◦)).

We have that, by the modification of Lemma 3;

ln(Q(T2)) =
c − ∆G◦(T2)

RT2
+ ln(a0(T2, P)),

ln(Q(T1)) = 0,

so that, using the formula for c;

ln(Q(T2)) = ln(Q(T2))− ln(Q(T1))

=
c − ∆G◦(T2)

RT2
+ ln(a0(T2, P))

=
∆G◦(T1)− RT1ln(a0(T1, P◦))− ∆G◦(T2)

RT2
+ ln(a0(T2, P))

=
1
R

∫ T2

T1

∆H◦ − c
T2 dT + ln(a0(T2, P2))− ln(a0(T1, P◦))

=
−1
R

(∆H◦ − c)(
1
T2

− 1
T1

) + ln(a0(T2, P2))− ln(a0(T1, P◦)),

and rearranging;

∆G◦(T1)− RT1ln(a0(T1, P◦))− ∆G◦(T2)

RT2
=

−1
R

(∆H◦ − c)(
1
T2

− 1
T1

)− ln(a0(T1, P◦)),

∆G◦(T2)− ∆G◦(T1)

T2
+

RT1ln(a0(T1, P◦))

T2
= (∆H◦ − c)(

1
T2

− 1
T1

) + Rln(a0(T1, P◦)),

∆G◦(T2)− ∆G◦(T1)

T2
= (∆H◦ − c)(

1
T2

− 1
T1

) + Rln(a0(T1, P◦))− RT1ln(a0(T1, P◦))

T2

= (∆H◦ − (∆G◦(T1)− RT1ln(a0(T1, P◦))))(
1
T2

− 1
T1

) + Rln(a0(T1, P◦))− RT1ln(a0(T1, P◦))

T2

= (∆H◦ − ∆G◦(T1))(
1
T2

− 1
T1

) + RT1ln(a0(T1, P◦))(
1
T2

− 1
T1

) + (R − RT1

T2
)ln(a0(T1, P◦))

= (∆H◦ − ∆G◦(T1))(
1
T2

− 1
T1

) + ln(a0(T1, P◦))(RT1(
1
T2

− 1
T1

) + (R − RT1

T2
))

= (∆H◦ − ∆G◦(T1))(
1
T2

− 1
T1

),

so that, rearranging again;

∆G◦(T1)(
1
T1

+
1
T2

− 1
T2

) =
∆G◦(T1)

T1
=

∆G◦(T2)

T2
− ∆H◦(

1
T2

− 1
T1

),

to obtain;

∆G◦(T1) =
T1

T2
∆G◦(T2)− ∆H◦(

T1

T2
− 1).

For the modification of Lemma 7, be careful to use the restricted summation for c substances, in the

calculation of (
∂( ∂G

∂ξ )T,P

∂T )P. while the calculation for dU involves c + 1 substances, including the solvent. If
ϵ = 0, we have that

c = ∆G◦(T2) + RT2ln(Q(T2, P′))− RT2ln(a0(T2, P′)) = ∆G◦(T2)− RT2ln(a0(T2, P′◦)),
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so that rearranging,

Q(T2, P′) =
a0(T2, P′)

a0(T2, P′◦)
,

and the claims about dynamic and quasi-chemical equilibrium lines follows from Q = c and ( ∂G
∂ξ )T,P = c, for

c ∈ R≥0 and c ∈ R respectively. If ϵ ̸= 0, we use the modification of Lemma 3, to obtain the formula for the
activity coefficient;

Q(T2, P′) = e
( ∂G

∂ξ
)T,P |T2,P′−∆G◦(T2)+RT2 ln(a0(T2,P′))

RT2 = e
ϵln( P′

P′◦ )

RT2 a0(T2, P′).

Again, the determination of the dynamical and quasi-chemical equilibrium lines follows again from
rearrangement of Q = c and ( ∂G

∂ξ )T,P = c, for c ∈ R≥0 and c ∈ R respectively.

Lemma 25. In Lemmas 2 to 10, for the case of a reaction like (89) in Definition 5, and considering a dilute solution
with interaction of the solvent, replacing Q defined as ∏c

i=1 aνi
i by ∏c

i=0 aνi
i . If we assume without approximation that

µi = µ◦
i + RTln(ai), 0 ≤ i ≤ c, then the proofs go through as before, with the modification that we have c + 1 rather

than c substances.

Remark 3. In the case of a solvent with no interaction, if we define the activities by ai = xi, 0 ≤ i ≤ c, with
the definition of Q as a0 ∏1≤i≤c aνi

i , then we need to modify the proofs of Lemmas 11 and 13. This is done in
Lemma 44. For the existence of a feasible path, where we require that the n0 term is fixed, see Remark 5, we
need to change Lemma 12. Letting d0 > 0 denote the fixed molar amount of the solvent, we obtain the relation,
modifying the proof of Lemma 12;

d0

c−1

∏
i=1

(
νi
νc

nc + di)
νi (t)nνc

c (t) = ϵ(t)((
c−1

∑
i=1

νi
νc

+ 1)nc +
c−1

∑
i=0

di)
w(t),

where w = 1 + ∑c
i=1 νi.

In the w > 0 case, absorb the constant d0 into ϵ(t), by setting ϵ1(t) =
ϵ(t)
d0

> 0, and redefine σ = ∑c−1
i=0 di.

Then use the proof of Lemma 12, noting that if νi = w, for 1 ≤ i ≤ p, then w = 1 + ∑c
i=1 νi > ∑

p
i=1 νi =

∑
p
i=1 w = pw which is a contradiction again. If w < 0, then use reciprocality again to reduce to w > 0,

replacing d0 with 1
d0

> 0. The w = 0 case is again similar, using the w > 0 calculation.

6. Dilute solutions with Henry’s law for solutes, Raoult’s law for the solvent and interaction of
the solvent

Definition 6. As mentioned in Definition 1, we can consider an electrolyte as a solute in a dilute solution and
define the activities ai, 0 ≤ i ≤ c, by

a0 = x0 ≃ 1,

ai = xi, (1 ≤ i ≤ c),

and define

Q = a0

c

∏
i=1

aνi
i ≃

c

∏
i=1

aνi
i , (no interaction of the solvent)

Q =
c

∏
i=0

aνi
i , (interaction of the solvent),

We ideally have that µi = µ◦
i + RTln(ai), 0 ≤ i ≤ c, which involves a contradiction. By Henry’s Law, we have

that Pi = kixi, 1 ≤ i ≤ c, so that, by Henry’s Law, phase equilibrium and the ideal gas law;

µ
(sol)
i = µ

(g)◦
i + RTln(

Pi
P◦ ) = µ

(g)◦
i + RTln(

kixi
P◦ ) = µ

(H)◦
i + RTln(xi), (100)

where

µ
(H)◦
i = µ

(g)◦
i + RTln(

ki
P◦ ). (101)
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From (100), we obtain that

µ◦
i = µ

(H)◦
i + RTln(xi(T, P◦)), (102)

and, for 1 ≤ i ≤ c;

µi = µ◦
i − RTln(xi(T, P◦)) + RTln(xi) = µ◦

i + RTln(xi) + κ(T), (103)

where, from phase equilibrium and (101) and (102);

κ(T) = −RTln(xi(T, P◦)) = µ
(H)◦
i − µ◦

i = µ
(g)◦
i + RTln(

ki
P◦ )− µ

(sol)◦
i = RTln(

ki
P◦ ).

We can use Raoult’s law for the solvent as P0 = P∗
0 x0, see [7]. Then, using equilibrium with an ideal gas

mixture;

µ
(sol)
0 = µ

◦(g)
0 + RTln(

P0

P◦ ) = µ
◦(g)
0 + RTln(

P∗
0 x0

P◦ ),

µ
◦(g)
0 + RTln(x0) + RTln(

P∗
0

P◦ ) = µ∗
0(T, P∗

0 ) + RTln(x0) = µ∗
0(T, P) + RTln(x0) + θ(T, P), (104)

where θ(T, P) = µ∗
0(T, P∗

0 )− µ∗
0(T, P) ≃ 0 so that

RTln(x0) = RTln(
Pi
P◦ )− RTln(

P∗
i

P◦ ),

and

µ0 = µ∗
0 + RTln(x0) + θ = µ∗

0 + RTln(
P0

P◦ )− RTln(
P∗

0
P◦ ) + θ. (105)

We also have, using the phase rule for the solvent in equilibrium with an ideal gas mixture, that

µ
(g)
0 = µ

◦(g)
0 + RTln(

P0

P◦ ),

µ
(sol)
0 = µ

◦(sol)
0 + RTln(

P0

P◦ ). (106)

Combining (106) and (105), we obtain that

µ∗
0 = µ0 − RTln(

P0

P◦ ) + RTln(
P∗

0
P◦ )− θ

= (µ◦
0 + RTln(

P0

P◦ ))− RTln(
P0

P◦ ) + RTln(
P∗

0
P◦ )− θ

= µ◦
0 + RTln(

P∗
0

P◦ )− θ. (107)

Letting P∗
0 = P◦, we obtain that µ∗

0(T, P′) = µ◦
0 − θ, for the corresponding P′, (105).

From (104) and (105), we obtain that

µ0 = µ∗
0 + RTln(x0) + θ

= µ∗
0(T, P′) + δ + RTln(x0) + θ

= µ◦
0 − θ + δ + RTln(x0) + θ

= µ◦
0 + RTln(x0) + δ,

where δ = µ∗
0(T, P)− µ∗

0(T, P′) ≃ 0.
Using the same calculation as before, we have that

µ0 = µ◦
0 + RTln(x0) + γ(P).
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Lemma 26. In the case of dilute solutions, with interaction of the solvent, a feasible path γ is a dynamic equilibrium
path iff pr(γ12) ⊂ Cc, for some c ∈ R>0 iff dQ

dt = 0.

Proof. We have that

c

∏
i=0

aνi
i =

c

∏
i=0

xνi
i = Q = c = f ,

where xi =
ni
n . Now follow through the proof of Lemma 11, as we are differentiating, the proof works with a

constant f > 0.

We reformulate Lemmas 15 to 19 in this context, assuming Henry’s law for the solutes and the solvent an
ideal solution.

Lemma 27. In the dilute solution case, with interaction of the solvent, for the energy function G involving c + 1
uncharged species;

(
∂G
∂ξ

)T,P = ∆G◦ + RTln(Q) + ϵ,

where ϵ(T, P) = ν0γ0(P) + ∑c
i=1 νiκi(T) ≃ 0, γ0(P) ≃ 0 and κi(T) ≃ 0 are the error term for the i’th uncharged

species in Definition 6, 1 ≤ i ≤ c.

Proof. The proof is clear from Lemma 15.

Lemma 28. For a dilute solution, with interaction of the solvent, we have, using the definition of ϵ(T, P) in Lemma 27,
the error term γ0(P) and the error terms κi(T), 1 ≤ i ≤ c in Definition 5, that the same results as Lemma 16 hold,
replacing ϵ(P) with ϵ(T, P) and δ with ϵ(T, P◦) = ν0γ0(P◦) + ∑c

i=1 νiκi(T).

Proof. The proof is clear from the proof of Lemma 16.

Lemma 29. For a dilute solution, with interaction of the solvent, we have the same result as Lemma 17 hold, replacing
ϵ(P(T)) by ϵ(T, P(T)) along the quasi-chemical equilibrium lines.

Proof. The proof is clear from the proof of Lemma 17.

Lemma 30. For a dilute solution, with interaction of the solvent, we have the same results as Lemma 18 hold, replacing
ϵ(P′) by ϵ(T1, P′). In particularly, if ϵ ̸= 0, we have that

Q(T, P) = e
ϵln( P

P◦ )−ϵ(T,P)
RT ,

and, if ϵ = 0, we have that

Q(T, P) = e
−ϵ(T,P)

RT .

Proof. The proof is clear from the proof of Lemma 18.

Lemma 31. For a dilute solution, with interaction of the solvent, we have that, if ϵ ̸= 0;

grad(Q)(T, P) = ((
−ϵln( P

P◦ )

RT2 +
ϵ(T, P)

RT2 −
∂ϵ
∂T (T, P)

RT
)(

P
P◦ )

ϵ
RT e

−ϵ(T,P)
RT , (

ϵP◦

RTP
−

∂ϵ
∂P (T, P)

RT
)(

P
P◦ )

ϵ
RT e

−ϵ(T,P)
RT ),

and, if ϵ = 0;

grad(Q)(T, P) = ((
ϵ(T, P)

RT2 −
∂ϵ
∂T (T, P)

RT
)e

−ϵ(T,P)
RT ,

− ∂ϵ
∂P (T, P)

RT
e
−ϵ(T,P)

RT ).
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The paths of maximal reaction in the region |grad(Q)(T, P)| > 1, Q(T, P) > 0, are given by implicit solutions to the
differential equations;

dP
dT

=
ϵTP◦ − PT ∂ϵ

∂P (T, P)

(−ϵPln( P
P◦ ) + Pϵ(T, P)− PT ∂ϵ

∂T (T, P))
,

dP
dT

=
−T ∂ϵ

∂P (T, P)

ϵ(T, P)− T ∂ϵ
∂T (T, P)

,

respectively.

Proof. The computation of grad(Q) in both cases is a simple application of the chain and product rules.
Following the method of Lemma 19, noting the claim about maximal reaction is still valid with the same
definition of Q, if ϵ ̸= 0, we compute

dP
dT

=
( ϵP◦

RTP −
∂ϵ
∂P (T,P)

RT )( P
P◦ )

ϵ
RT e

−ϵ(T,P)
RT

(
−ϵln( P

P◦ )
RT2 + ϵ(T,P)

RT2 −
∂ϵ
∂T (T,P)

RT )( P
P◦ )

ϵ
RT e

−ϵ(T,P)
RT

=
ϵTP◦ − PT ∂ϵ

∂P (T, P)

(−ϵPln( P
P◦ ) + Pϵ(T, P)− PT ∂ϵ

∂T (T, P))
,

and, if ϵ = 0;

dP
dT

=

− ∂ϵ
∂P (T,P)

RT e
−ϵ(T,P)

RT

( ϵ(T,P)
RT2 −

∂ϵ
∂T (T,P)

RT )e
−ϵ(T,P)

RT

=
−T ∂ϵ

∂P (T, P)

ϵ(T, P)− T ∂ϵ
∂T (T, P)

.

7. Dilute solutions with Fugacity and interaction of the solvent

Definition 7. As mentioned in Definition 1, we can consider an electrolyte as a solute in a dilute solution and
define the activities ai, 0 ≤ i ≤ c, by;

a0 = γ0x0 ≃ 1,

ai = γixi, 1 ≤ i ≤ c.

We can define the activity coefficient Q = a0 ∏c
i=1 aνi

i ≃ ∏c
i=1 aνi

i , but we will adopt a new convention, see
below;

We have that µi = µ◦
i + RTln(ai), 0 ≤ i ≤ c, which involves the contradiction with the definition of

activity for ideal solutions. By the approximation of Henry’s Law for the solutes, we have that Pi = kixiγi,
1 ≤ i ≤ c, (convention (II)), see [7], so that, by the approximation of Henry’s Law, phase equilibrium and the
gas law with fugacity δi;

µ
(sol)
i = µ

(g)◦
i + RTln(

δiPi
P◦ )

= µ
(g)◦
i + RTln(

kixiγi
P◦ ) + RTln(δi(T, P))

= µ
(H)◦
i + RTln(γixi) + RTln(δi(T, P)), (108)

where

µ
(H)◦
i = µ

(g)◦
i + RTln(

ki
P◦ ). (109)

From (108), we obtain that;

µ◦
i = µ

(H)◦
i + RTln(γixi(T, P◦)) + RTln(δi(T, P◦), (110)

and, for 1 ≤ i ≤ c;

µi = µ◦
i − RTln(γixi(T, P◦))− RTln(δi(T, P◦) + RTln(γixi) + RTln(δi(T, P)) = µ◦

i + RTln(γixi) + κ(T, P),
(111)
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where, from phase equilibrium and (109) and (110);

κ(T, P) = −RTln(γixi(T, P◦)) + RT(ln(δi(T, P))− ln(δi(T, P◦))

= µ
(H)◦
i − µ◦

i + RTln(δi(T, P◦)) + RTln(
δi(T, P)
δi(T, P◦)

)

= µ
(g)◦
i + RTln(

ki
P◦ )− µ

(sol)◦
i + RTln(δi(T, P))

= RTln(
ki
P◦ ) + RTln(δi(T, P))

= RTln(
kiδi(T, P)

P◦ ).

We can measure the correction in Raoult’s law for the solvent by P0 = γ0P∗
0 x0, (convention I), see [7]. Then,

using the gas law with fugacity δ0, and the correction σ for the difference of the chemical potential between a
gas in a non ideal mixture and on its own, we have, at equilibrium, that

µ
(sol)
0 = µ

◦(g)
0 + RTln(

δ0P0

P◦ ) = µ
◦(g)
0 + RTln(

δ0γ0P∗
0 x0

P◦ ),

µ
◦(g)
0 + RTln(γ0x0) + RTln(

δ0P∗
0

P◦ ) = µ0(T, P∗
0 ) + RTln(γ0x0)

= µ∗
0(T, P∗

0 ) + σ(T, P∗
0 ) + RTln(γ0x0)

= µ∗
0(T, P) + RTln(γ0x0) + θ(T, P), (112)

where θ(T, P) = µ∗
0(T, P∗

0 )− µ∗
0(T, P) + σ(T, P∗

0 ), so that

RTln(γ(0)x0) = RTln(
δ0P0

P◦ )− RTln(
δ0P∗

0
P◦ ),

and

µ0 = µ∗
0 + RTln(γ0x0) + θ = µ∗

0 + RTln(
δ0P0

P◦ )− RTln(
δ0P∗

0
P◦ ) + θ. (113)

We also have, using the phase rule for the solvent in equilibrium, that

µ
(g)
0 = µ

◦(g)
0 + RTln(

δ0P0

P◦ ),

µ
(sol)
0 = µ

◦(sol)
0 + RTln(

δ0P0

P◦ ). (114)

Combining (114) and (113), we obtain that

µ∗
0 = µ0 − RTln(

δ0P0

P◦ ) + RTln(
δ0P∗

0
P◦ )− θ

= (µ◦
0 + RTln(

δ0P0

P◦ ))− RTln(
δ0P0

P◦ ) + RTln(
δ0P∗

0
P◦ )− θ

= µ◦
0 + RTln(

δ0P∗
0

P◦ )− θ. (115)

Letting δ0P∗
0 = P◦, we obtain that µ∗

0(T, P′) = µ◦
0 − θ, for the corresponding P′, (113).

From (112) and (113), we obtain that

µ0 = µ∗
0 + RTln(γ0x0) + θ

= µ∗
0(T, P′) + δ + RTln(γ0x0) + θ

= µ◦
0 − θ + δ + RTln(γ0x0) + θ

= µ◦
0 + RTln(γ0x0) + δ,

where δ = µ∗
0(T, P)− µ∗

0(T, P′) ≃ 0.
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Using the same calculation as before, we have that µ0 = µ◦
0 + RTln(γ0x0) + λ(P). We can define a new

activity coefficient by Z = ∏c
i=0 bνi

i , where

b0 = x0,

bi = xi, 1 ≤ i ≤ c.

From the above, we have that

µ0(T, P) = µ◦
0 + RTln(x0) + RTln(γ0(T, P)) + δ0(P) = µ◦

0 + RTln(b0) + ϕ0(T, P)

and, for 1 ≤ i ≤ c;

µi(T, P) = µ◦
i + RTln(xi) + RTln(γi(T, P)) + κi(T) = µ◦

i + RTln(bi) + ψi(T, P).

Lemma 32. In the case of dilute solutions, with interaction of the solvent, a feasible path γ is a dynamic equilibrium
path iff pr(γ12) ⊂ C f , for some f ∈ R>0 iff dZ

dt = 0.

Proof. We have that
c

∏
i=0

aνi
i =

c

∏
i=0

xνi
i = Z = f .

Now copy the proof of Lemma 26.

We reformulate Lemmas 15 to 19 in this context, assuming the approximation to Henry’s law for the
solutes and the approximation to Raoult’s law for the solvent.

Lemma 33. In the dilute solution case, with interaction of the solvent, for the energy function G involving c + 1
uncharged species;

(
∂G
∂ξ

)T,P = ∆G◦ + RTln(Z) + ϵ(T, P),

where ϵ(T, P) = ν0ϕ0(T, P) + ∑c
i=1 νiψi(T, P), and ϕ0 is the error term for the solvent in Definition 7, and ψi, for

1 ≤ i ≤ c are the error terms for the solutes in Definition 7.

Proof. The proof is clear from Lemma 15.

Lemma 34. For a dilute solution, with interaction of the solvent, we have, using the definition of ϵ(T, P) in Lemma 33,
the error term ϕ0(T, P) and the error terms ψi(T, P), 1 ≤ i ≤ c in Definition 7, that the same results as Lemma 16 hold,
replacing ϵ(P) with ϵ(T, P) and δ with ϵ(T, P◦) = ν0ϕ0(T, P◦) + ∑c

i=1 νiψi(T, P◦).

Proof. The proof is clear from the proof of Lemma 16.

Lemma 35. For a dilute solution, with interaction of the solvent, we have the same result as Lemma 17 hold, replacing
ϵ(P(T)) by ϵ(T, P(T)) along the quasi-chemical equilibrium lines.

Proof. The proof is again clear from the proof of Lemma 17

Lemma 36. For a dilute solution, with interaction of the solvent, we have the same results as Lemma 18 hold, replacing
ϵ(P′) by ϵ(T1, P′). In particularly, if ϵ ̸= 0, we have that

Z(T, P) = e
ϵln( P

P◦ )−ϵ(T,P)
RT ,

and, if ϵ = 0, we have that

Z(T, P) = e
−ϵ(T,P)

RT .

Proof. The proof is again clear from the proof of Lemma 18.
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Lemma 37. For a dilute solution, with interaction of the solvent, we have that, if ϵ ̸= 0;

grad(Z)(T, P) = ((
−ϵln( P

P◦ )

RT2 +
ϵ(T, P)

RT2 −
∂ϵ
∂T (T, P)

RT
)(

P
P◦ )

ϵ
RT e

−ϵ(T,P)
RT , (

ϵP◦

RTP
−

∂ϵ
∂P (T, P)

RT
)(

P
P◦ )

ϵ
RT e

−ϵ(T,P)
RT ),

and, if ϵ = 0;

grad(Z)(T, P) = ((
ϵ(T, P)

RT2 −
∂ϵ
∂T (T, P)

RT
)e

−ϵ(T,P)
RT ,

− ∂ϵ
∂P (T, P)

RT
e
−ϵ(T,P)

RT ).

The paths of maximal reaction in the region |gradZ(T, P)| > 1, Z(T, P) > 0, are given by implicit solutions to the
differential equations;

dP
dT

=
ϵTP◦ − PT ∂ϵ

∂P (T, P)

(−ϵPln( P
P◦ ) + Pϵ(T, P)− PT ∂ϵ

∂T (T, P))
,

dP
dT

=
−T ∂ϵ

∂P (T, P)

ϵ(T, P)− T ∂ϵ
∂T (T, P)

.

respectively.

Proof. The proof is the same as Lemma 31, replacing Q by Z, noting that Z is defined the same way in terms
of activities.

8. Electrochemistry with error terms, Fugacity and interaction of the solvent

Using the new error term ϵ(T, P) and the activity coefficient Z from Section 7, we have the following
results;

Lemma 38 (The Nernst equation for Catalyzers). At electrical chemical equilibrium (T, P) and (T, P◦);

(E − E◦)(T, P) = −RTln(Z(T, P))
4F

− ϵ(T, P)
4F

.

Proof. Just follow the proof of Lemma 20, replacing ϵ(P) with ϵ(T, P) and use the fact that the catalyzer
reaction 2H2O + 4e−(R) → O2 + 2H2 + 4e−(L) occurs with 4 electrons rather than 2.

Lemma 39. At electrical chemical equilibrium (T, P) and (T, P◦), and chemical equilibrium (T, P);

∆G◦ = 4F(E − E0).

Proof. Follow the proof of Lemma 21, replacing ϵ(P) with ϵ(T, P), noting the remark in Lemma 38.

Lemma 40. If ϵ = 0, we have, for all T1 > 0, that

(
∂G
∂ξ

)T,P|(T1,P1)
= (

∂G
∂ξ

)T,P|(T1,P◦
1 )

,

iff
E(T1, P1) = E(T1, P◦

1 ) = E◦(T1),

where G is the Gibbs energy function for the charged and uncharged species.

Proof. Follow the proof of Lemma 22, replacing the result there that ( ∂Gchem′
∂ξ )T,P is independent of P, with the

corresponding same result in Lemma 36.

Lemma 41. We have, for all T1 > 0, P1 > 0, that

4F(E(T1, P1)− E◦(T1)) = (
∂G
∂ξ

)T,P|(T1,P1)
− (

∂G
∂ξ

)T,P|(T1,P◦
1 )
− RT1ln(Z(T1, P1))− ϵ(T1, P1). (116)
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Proof. Follow the proof of Lemma 23, replacing ϵ(P) with ϵ(T, P).

Remark 4. The result of Lemma 41 combined with the determination of the activity coefficient Z in Lemma
36 and the error term ϵ(T, P) in Lemma 33 can be use to determine the unknown quantity ( ∂G

∂ξ )T,P. We
can measure the potential difference between the cathode and anode along the dynamical equilibrium paths
provided by Lemma 36 and then use the formula (116) in Lemma 41. Once this is determined, we then alter
the power supply, in accordance with (116), to push the reaction along the paths of maximal reaction given in
Lemma 37. This should improve the efficiency of the production of hydrogen and oxygen, in the case of the
electrolyzer reaction, given by 2H2O + 4e−(R) → O2 + 2H2 + 4e−(L).

9. Dilute solutions with Henry’s law for solutes, Raoult’s law for the solvent and no solvent
interaction

As mentioned in Definition 1, we can consider an electrolyte as a solute in a dilute solution and define the
activities ai, 0 ≤ i ≤ c, by

a0 = x0 ≃ 1,

ai = xi, 1 ≤ i ≤ c.

We can either define the activity coefficient by W = ∏c
i=1 aνi

i or, use the more conventional definition Q =

a0 ∏c
i=1 aνi

i ≃ ∏c
i=1 aνi

i . We will consider both cases.

Remark 5. In the first case, if a0 is assumed constant, we have to redefine a feasible path by using coordinates

(T, P, n0, n1, . . . , nc) and letting γ : [0, 1] → R3+c
>0 , such that if ni(t) = pr3+i(t), for 0 ≤ i ≤ c, then n′

i
νi

=
n′

j
νj

, for

1 ≤ i < j ≤ c where {ν1, . . . , νc} are the stoichiometric coefficients. If n(t) = ∑c
i=0 ni(t), and xi(t) = ai(t) =

ni
n (t), 0 ≤ i ≤ c, then Q(pr12(t)) = ∏

p
i=1 ai(t)νi and n0 > 0 is a fixed constant. Note that n > 0 and the xi are

well defined, 0 ≤ i ≤ c. The existence of feasible paths follows easily from the proof of Lemma 12, where we
are free to take any n0 > 0.

Lemma 42. In the case of dilute solutions, with no interaction of the solvent, a feasible path γ is a dynamic equilibrium
path iff pr(γ12) ⊂ C f , for some f ∈ R>0 iff dW

dt = 0.

Proof. We have that

W =
c

∏
i=1

aνi
i =

c

∏
i=1

xνi
i = f . (117)

If γ is a feasible path, then pr12(γ) ⊂ W>0, otherwise, we could find (T, P), with xi(T, P) ≤ 0, contradicting
the fact that ni > 0, n > 0. It follows that f > 0. With f > 0, follow through the proof of Lemma 11, replacing
β with ∑c

i=0 di, where d0 = n0. Clearly n′
0 = 0 so we obtain the first direction. The rest of the proof follows

from Lemma 13, using the additional fact that n′
0 = 0.

Lemma 43. In the case of dilute solutions, with no interaction of the solvent, and a0 assumed constant, a feasible path γ

is a dynamic equilibrium path iff pr(γ12) ⊂ Cc, for some c ∈ R>′ iff dQ
dt = 0.

Proof. We have that
c

∏
i=1

aνi
i =

Q
a0

=
c

∏
i=1

xνi
i =

c
a0

= d.

If γ is a feasible path, then pr12(γ) ⊂ Q>0, otherwise, we could find (T, P), with xi(T, P) ≤ 0, contradicting
the fact that ni > 0, for 0 ≤ i ≤ c, n > 0. It follows that c > 0, d > 0. With d > 0, follow through the proof of
Lemma 11 again, getting the other directions from Lemma 13.

Lemma 44. In the case of dilute solutions, with no interaction of the solvent, a feasible path γ is a dynamic equilibrium
path iff pr(γ12) ⊂ C f , for some f ∈ R>0 iff dQ

dt = 0.
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Proof. With the same caveat as in Lemma 43, we have that

a0

c

∏
i=1

aνi
i = x0

c

∏
i=1

xνi
i =

c

∏
i=0

xµi
i = Q = f , (118)

where xi =
ni
n , µ0 = 1, µi = νi, 1 ≤ i ≤ c. Now, using the relation (118), differentiating and using the facts that,

for 1 ≤ i ≤ c − 1; n′
i =

µin′
c

µc
, ni =

µinc
µc

+ di, n′
0 = 0 and n0 = d0, we obtain that

(
c

∏
i=0

xµi
i )′ =

c

∑
i=0

µix
µi−1
i x′i ∏

j ̸=i
x

µj
j = f

c

∑
i=0

µix
µi−1
i x′i x

−µi
i = f

c

∑
i=0

µix−1
i x′i = 0,

so that

c

∑
i=0

µi
n
ni

(n′
in − nin′)

n2 =
c

∑
i=0

µi(
n′

i
ni

− n′

n
)

=
c−1

∑
i=1

µ2
i n′

c
νinc + µcdi

+
µcn′

c
nc

− λ(
∑c

i=0 n′
i

∑c
i=0 ni

)

=
c−1

∑
i=1

µ2
i n′

c
µinc + µcdi

+
µcn′

c
nc

− λ(
(∑c−1

i=1
µi
µc

+ 1)n′
c

(∑c−1
i=1

νi
νc
+ 1)nc + ∑c−1

i=0 di
)

= 0, (119)

where λ = ∑c
i=0 µi = 1 + ∑c

i=1 νi.
Following the proof of Lemma 11, replacing β with ∑c−1

i=0 di, we have, if ∑c−1
i=1 µi = ∑c−1

i=1 νi ̸= 0 and
λ = 1 + ∑c

i=1 µi = 1 + ∑c
i=1 νi ̸= 0, then n′

i = 0, for 1 ≤ i ≤ c, and clearly we have that n′
0 = 0. Similarly, if

λ = ∑c
i=0 µi = 1 + ∑c

i=1 νi = 0, we obtain the relation ∏c
i=0 nµi

i = f .
Again, following the proof of Lemma 11, if n′

c ̸= 0, we obtain the relation;

c−1

∑
i=1

µ2
i

µinc + µcdi
+

µc

nc
=

c−1

∑
i=1

ν2
i

νinc + νcdi
+

νc

nc
= 0,

and, by the proof there, we obtain that n′
i = 0, for 1 ≤ i ≤ c. As n′

0 = 0, we obtain the result. We are left with
the case ∑c−1

i=1 µi = ∑c−1
i=1 νi = 0. As in the proof of Lemma 11, we can assume this choosing the appropriate

pivot. The other directions in the Lemma follow from a simple modification of Lemma 13.

Lemma 45. In Lemmas 2 to 10, for the standard cell, and considering a dilute solution with no interaction of the
solvent, replacing Q defined as ∏c

i=1 aνi
i and with the same definition of W, if we assume without approximation that

µi = µ◦
i + RTln(ai), 1 ≤ i ≤ c, then the same results as Lemma 24, setting a0(T, P) = 1, with the caveat that in the

final claim W = 1 and any path is a dynamical equilibrium line.

Proof. The proof is clear.

Lemma 46. In Lemmas 2 to 10, for the standard cell, and considering a dilute solution with no interaction of the
solvent, replacing Q defined as ∏c

i=1 aνi
i by a0(∏c

i=1 aνi
i ) = x0(∏c

i=1 aνi
i ) and if we assume without approximation that

µi = µ◦
i + RTln(ai), 0 ≤ i ≤ c, then the same results as Lemma 24, with the new definition of a0(T, P) = x0(T, P).

Proof. The proof is clear.

In this context, assuming Henry’s law for the solutes and the solvent an ideal solution, we reformulate
Lemmas 15 to 19.

Lemma 47. In the dilute solution case, with no interaction of the solvent, for the energy function G involving c + 1
uncharged species, including the solvent, we have

(
∂G
∂ξ

)T,P = ∆G◦ + RTln(W) + ϵ,
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where ϵ(T, P) = ∑c
i=1 νiκi(T) ≃ 0 and κi(T) ≃ 0 are the error terms for the i’th uncharged species in Definition 6,

1 ≤ i ≤ c.

Proof. The proof is clear from Lemma 15 and the fact that, as dn0 = 0;

dG =
c

∑
i=0

µidni =
c

∑
i=1

µidni,

so that ( ∂G
∂ξ )T,P = ∑c

i=1 νiµi and ∆G◦ = ∑c
i=1 νiµ

◦
i .

Lemma 48. For a dilute solution, with no interaction of the solvent, using the definition of ϵ(T) = ∑c
i=1 νiκi(T), where

the error terms κi(T), 1 ≤ i ≤ c occur in Definition 6, the same results as Lemma 16 hold, replacing ϵ(P) with ϵ(T) and
δ with ϵ(T) = ∑c

i=1 νiκi(T) and using W instead of Q.

Proof. The proof is clear from the proof of Lemma 16 and using the observation from Lemma 47.

Lemma 49. For a dilute solution, with no interaction of the solvent, the same result as Lemma 17 holds, replacing
ϵ(P(T)) by ϵ(T) along the quasi-chemical equilibrium lines, and using W instead of Q.

Proof. The proof is again clear from the proof of Lemma 17.

Lemma 50. For a dilute solution, with no interaction of the solvent, the same results as Lemma 18 hold, replacing ϵ(P′)

by ϵ(T1). In particularly, if ϵ ̸= 0, we have W(T, P) = e
ϵln( P

P◦ )−ϵ(T)
RT , and, if ϵ = 0, we have W(T, P) = e

−ϵ(T)
RT .

Proof. The proof is clear from the proof of Lemma 18.

Lemma 51. For a dilute solution, with no interaction of the solvent, we have that, if ϵ ̸= 0;

grad(W)(T, P) = ((
−ϵln( P

P◦ )

RT2 +
ϵ(T)
RT2 −

dϵ
dT (T)

RT
)(

P
P◦ )

ϵ
RT e

−ϵ(T)
RT , (

ϵP◦

RTP
)(

P
P◦ )

ϵ
RT e

−ϵ(T)
RT ),

and, if ϵ = 0;

grad(W)(T, P) = ((
ϵ(T)
RT2 −

dϵ
dT (T)

RT
)e

−ϵ(T)
RT , 0).

The paths of maximal reaction in the region |grad(W)(T, P)| > 1, W(T, P) > 0, are given by implicit solutions to the
differential equations;

dP
dT

=
ϵTP◦

(−ϵPln( P
P◦ ) + Pϵ(T)− PT dϵ

dT (T))
dP
dT

= 0,

respectively.

Proof. The computation follows easily from the proof of Lemma 31, replacing ϵ(P, T) by ϵ(T). We also note
that in the proof of maximal reaction, see Lemma 19, we have to change β to ∑c+1

i=0 ni,0, where ni,0 is the fixed
molar amount of the solvent. This effects α1 but we still have that α1 ̸= 0 and the rest of the proof remains
unchanged.

Remark 6. We can also formulate versions of Lemmas 47 to 51 for the activity coefficient Q instead of W,
mentioned in the introduction to the §9. However, although the proof should go through, it is more difficult,
and left as an exercise for the reader, combining the methods of §3 and §5. However, it seems unnecessary
when we can derive the main results with the coefficient W.
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10. Dilute solutions with Fugacity and no solvent interaction

We can define activity coefficients either by W = ∏c
i=1 bνi

i , or the more conventional Z = b0 ∏c
i=1 bνi

i where

b0 = x0,

bi = xi, 1 ≤ i ≤ c.

We refer to the introductions of §7 and §9 with the Remark 5. We will again consider both cases.

Lemma 52. In the case of dilute solutions, with no interaction of the solvent, a feasible path γ is a dynamic equilibrium
path iff pr(γ12) ⊂ C f , for some f ∈ R>0 iff dW

dt = 0.

Proof. The proof is similar to the proof of Lemma 42.

Lemma 53. In the case of dilute solutions, with no interaction of the solvent, and b0 assumed constant, a feasible path γ

is a dynamic equilibrium path iff pr(γ12) ⊂ C f , for some f ∈ R>0 iff dZ
dt = 0.

Proof. We have that
c

∏
i=1

bνi
i =

Z
b0

=
c

∏
i=1

xνi
i =

f
b0

= d.

The remaining proof is similar to the proof of Lemma 43.

Lemma 54. In the case of dilute solutions, with no interaction of the solvent, a feasible path γ is a dynamic equilibrium
path iff pr(γ12) ⊂ C f , for some f ∈ R>0 iff dZ

dt = 0.

Proof. We have that

b0

c

∏
i=1

bνi
i = x0

c

∏
i=1

xνi
i = Z = f .

The remaining proof is similar to the proof of Lemma 44.

Lemma 55. In Lemmas 2 to 10, for the standard cell, and considering a dilute solution with no interaction of the solvent,
replacing Q defined as ∏c

i=1 aνi
i by the definition of W, and assuming without approximation that µi = µ◦

i + RTln(bi),
1 ≤ i ≤ c, then the same results as Lemma 24 can be obtained by setting a0(T, P) = 1, with the same caveat as Lemma
45.

Proof. The proof follows from the proof of the Lemma 45.

Lemma 56. In Lemmas 2 to 10, for the standard cell, and considering a dilute solution with no interaction of the
solvent, replacing Q defined as ∏c

i=1 aνi
i by Z = b0(∏c

i=1 bνi
i ) = x0(∏c

i=1 bνi
i ) and assuming without approximation

that µi = µ◦
i + RTln(bi), 0 ≤ i ≤ c, then the same results as Lemma 24 can be obtained with the new definition of

b0(T, P) = x0(T, P) replacing a0(T, P) in the Lemma 46.

Proof. The proof follows from the proof of the Lemma 46.

In this context, assuming the approximation to Henry’s law for the solutes and the approximation to
Raoult’s law for the solvent, we reformulate Lemmas 15 to 19.

Lemma 57. In the dilute solution case, with no interaction of the solvent, for the energy function G involving c + 1
uncharged species, we have

(
∂G
∂ξ

)T,P = ∆G◦ + RTln(W) + ϵ(T, P),

where ϵ(T, P) = ∑c
i=1 νiψi(T, P), and ψi, for 1 ≤ i ≤ c are the error terms for the solutes in Definition 7.

Proof. The proof is clear from Lemma 15, with the same observation as in Lemma 47.
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Lemma 58. For a dilute solution, with no interaction of the solvent, using the definition of ϵ(T, P) in Lemma 57 and
the error terms ψi(T, P), 1 ≤ i ≤ c in Definition 7, the same results as Lemma 16 hold, replacing ϵ(P) with ϵ(T, P) and
δ with ϵ(T, P◦) = ∑c

i=1 νiψi(T, P◦) and using W instead of Q.

Proof. The proof is clear from the proof of Lemma 16 and Lemma 57.

Lemma 59. For a dilute solution, with no interaction of the solvent, the same results as Lemma 17 hold, replacing
ϵ(P(T)) by ϵ(T, P(T)) along the quasi-chemical equilibrium lines.

Proof. The proof is clear from the proof of Lemma 17 and Lemma 58.

Lemma 60. For a dilute solution, with no interaction of the solvent, the same results as Lemma 18 hold, replacing ϵ(P′)

by ϵ(T1, P′). In particularly, if ϵ ̸= 0, we have that

W(T, P) = e
ϵln( P

P◦ )−ϵ(T,P)
RT ,

and, if ϵ = 0, we have that

W(T, P) = e
−ϵ(T,P)

RT .

Proof. The proof is clear from the proof of Lemma 18 and Lemma 59.

Lemma 61. For a dilute solution, with no interaction of the solvent, we have that, if ϵ ̸= 0;

grad(W)(T, P) = ((
−ϵln( P

P◦ )

RT2 +
ϵ(T, P)

RT2 −
∂ϵ
∂T (T, P)

RT
)(

P
P◦ )

ϵ
RT e

−ϵ(T,P)
RT , (

ϵP◦

RTP
−

∂ϵ
∂P (T, P)

RT
)(

P
P◦ )

ϵ
RT e

−ϵ(T,P)
RT ),

and, if ϵ = 0;

grad(Z)(W, P) = ((
ϵ(T, P)

RT2 −
∂ϵ
∂T (T, P)

RT
)e

−ϵ(T,P)
RT ,

− ∂ϵ
∂P (T, P)

RT
e
−ϵ(T,P)

RT ).

The paths of maximal reaction in the region |gradW(T, P)| > 1, W(T, P) > 0, are given by implicit solutions to the
differential equations;

dP
dT

=
ϵTP◦ − PT ∂ϵ

∂P (T, P)

(−ϵPln( P
P◦ ) + Pϵ(T, P)− PT ∂ϵ

∂T (T, P))
,

dP
dT

=
−T ∂ϵ

∂P (T, P)

ϵ(T, P)− T ∂ϵ
∂T (T, P)

,

respectively.

Proof. The proof is the same as Lemma 31, using W instead of Z, noting that the error term ϵ(T, P) depends
on P, unlike Lemma 51.

Remark 7. We can formulate Lemmas 57 to 61 using Q instead of W, see Remark 6. The results of the section
might be useful in the production of ethanol, using H2O as the solvent, by varying the temperature and
pressure of the reaction, C6H12O6 → 2C2H5OH + 2CO2, see [6] as well.

11. Electrochemistry with error terms, Fugacity and no interaction of the solvent

Using the new error term ϵ(T, P) and the activity coefficient W from §10, we have following results;

Lemma 62 (The Nernst equation for the standard cell). At electrical chemical equilibrium (T, P) and (T, P◦) for
the standard cell, we have

(E − E◦)(T, P) = −RTln(W(T, P))
2F

− ϵ(T, P)
2F

.

Proof. Using the proof of Lemma 20, replacing ϵ(P) with the error term ϵ(T, P) from §10, noting that for the
Gibbs function involving c+ 1 species, including the solvent, ( ∂G

∂ξ )T,P = ∑c
i=1 νiµi, we get the desired result.
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Lemma 63. At electrical chemical equilibrium (T, P) and (T, P◦), and chemical equilibrium (T, P), we have

∆G◦ = 2F(E − E0).

Proof. Following the proof of Lemma 21, replacing ϵ(P) with ϵ(T, P), we get our desired result.

Lemma 64. If ϵ = 0, we have, for all T1 > 0,

(
∂G
∂ξ

)T,P|(T1,P1)
= (

∂G
∂ξ

)T,P|(T1,P◦
1 )

,

iff
E(T1, P1) = E(T1, P◦

1 ) = E◦(T1),

where G is the Gibbs energy function for the c + 1 charged and uncharged species.

Proof. The result can be obtained by following the proof of Lemma 22, replacing the result there that
(

∂Gchem′
∂ξ )T,P is independent of P, with the corresponding result in Lemma 60.

Lemma 65. We have, for all T1 > 0, P1 > 0, that

2F(E(T1, P1)− E◦(T1)) = (
∂G
∂ξ

)T,P|(T1,P1)
− (

∂G
∂ξ

)T,P|(T1,P◦
1 )
− RT1ln(Z(T1, P1))− ϵ(T1, P1). (120)

Proof. The result follows by following the proof of Lemma 23 and replacing ϵ(P) with ϵ(T, P).

Remark 8. The result of Lemma 65 combined with the determination of the activity coefficient W in Lemma
60 and the error term ϵ(T, P) in Lemma 57 can be used to determine the unknown quantity ( ∂G

∂ξ )T,P. We
can measure the potential difference between the cathode and anode along the dynamical equilibrium paths
provided by Lemma 60 and then use the formula (120) in Lemma 65. Once this is determined, we then alter
the power supply, in accordance with (120), to push the reaction along the paths of maximal reaction given in
Lemma 61. This should improve the efficiency of the production of hydrogen, in the case of the reaction, given
by H2 + 2AgCl + 2e−(R) → 2HCl + 2Ag + 2e−(L), where we use water H2O as a solvent with no interaction.

12. The constant change in enthalpy assumption

Lemma 66. We can assume that ∆H◦ is constant.

Proof. We have, by the definition of enthalpy, the laws of differentials, the first law of thermodynamics, with
dP = 0, that

dH = dU + PdV + VdP = dU + PdV = (dQ − PdV) + PdV = dQ,

where Q is the internal energy including work, or heat. From this calculation, as any internal energy
change dU and change in volume dV is unaffected by adding a solvent not involved in the reaction, and by
re-establishing the pressure of the original reaction, it is clear that ∆H◦(T) = ∆H◦,solv(T), where ∆H◦,solv(T)
is calculated by adding a solvent not involved in the reaction at the same pressure P◦. As in Kirchoff’s Law of
Thermodynamics, we have that;

∆H◦,solv(T) = ∆H◦,solv(T0) +
∫ T

T0

d(∆H◦,solv(T))
dT

dT

= ∆H◦,solv(T0) +
∫ T

T0

d(∆Qsolv(T))
dT

dT

= ∆H◦,solv(T0) +
∫ T

T0

Csolv(T)dT

= ∆H◦(T0) +
∫ T

T0

Csolv(T)dT, (121)
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where Csolv(T) = ∆( dQsolv
dT )(T) is the change in the heat capacity of the mixture, after one mole of reaction.

If we confine ourselves to a small temperature range, we can, therefore assume that ∆H◦ is approximately
temperature independent. However, we can also add solvent to the reaction, to lower the magnitude of
Csolv(T), as the heat capacity before and after the reaction would approach that of the solvent, and extend
the temperature range of the reaction. More precisely, we have, by the law of mixtures for heat capacities, the
fact that mmix,solv is conserved during 1 mole of reaction, that

Csolv(T) = C f in,solv(T)− Cin,solv(T)

=
1

mmix,solv
(

c

∑
i=0

mi, f inCi, f in(T)−
c

∑
i=1

mi,inCi,in(T))

=
NA

mmix,solv
(

c

∑
i=0

ni, f inmi,molecCi, f in(T)−
c

∑
i=0

ni,inmi,molecCi,in(T))

=
NA

mmix,solv
(

c

∑
i=0

ni, f inmi,molecmi, f inSCi(T)−
c

∑
i=0

ni,inmi,molecmi,inSCi(T))

=
N2

A
mmix,solv

(
c

∑
i=0

n2
i, f inm2

i,molecSCi(T)−
c

∑
i=0

n2
i,inm2

i,molecSCi(T))

=
N2

A
mmix,solv

(
c

∑
i=0

(ni,in − νi)
2m2

i,molecSCi(T)−
c

∑
i=0

n2
i,inm2

i,molecSCi(T))

= − 2
mmix,solv

(
c

∑
i=1

νimi,inmi,molSCi(T)) +
1

mmix,solv
(

c

∑
i=1

ν2
i m2

i,molSCi(T))

= θ(T) + v(T), (122)

where ν0 = 0 and νi, for 1 ≤ i ≤ c are the stochiometric coefficients for the original reaction, (2).
Using the fact that mi,in

mmix,solv
→ 0, for 1 ≤ i ≤ c, by increasing the mass of the solvent not involved in the

reaction, we have that θ(T) → 0, and, similarly, v(T) → 0 as mmix → ∞ with {mi,in, mi, f in, mi,molec, mi,mol}
denoting the initial, final, molecular and molar masses of substance i respectively, {Ci, SCi, Cin, C f in} denoting
the heat capacities of substance i, the specific heat capacities of substance i, the initial heat capacity of the
mixture and the final heat capacity of the mixture respectively. In particular, we see that, as mmix,solv → ∞,
which we can achieve, by increasing the solvent not involved in the reaction, Csolv(T) → 0. We then have, by
(M), (N), that

∆H◦(T) = ∆H◦(T0) +
∫ T

T0

(θ(S) + v(S))dS → ∆H◦(T0),

as we can make the convergence uniform on the interval (T0, T), given that the specific heat capacities SCi(S)
are bounded on (T0, T), for 1 ≤ i ≤ c.

13. Independence of path and existence

Lemma 67. If λ ̸= 0, see Lemma 7, then no substance is formed in a loop. With the assumption that ∆Hcirc is constant,
we have that λ = ∆H◦ − ϵln(P◦). If Dc is a quasi-chemical equilibrium line in the theoretical limit, which we have
computed, intersecting P = P◦ at (T1, P◦), and projecting onto an interval (T1, T2), with T1 < T2, then, making
w(T1, T2) ≃ 0, see §12, for the mass of the mixture sufficiently large, we have that λ(T1, T2) ≃ ∆H◦,re f (T1, T2) −
ϵ(T1, T2)ln(P◦), where ϵ((T1, T2)) can be effectively determined.

Proof. Suppose that an amount of substance ξ is formed in a loop. We have, by Lemma 1, that

dG = −SdT + VdP +
c

∑
i=1

µidni, (123)

2 During the paper, we denoted by substance 0 a solvent either involved or not involved in the reaction. Here, we are relabeling the
reaction to include this solvent in the original mixture consisting of substances indexed by 1 ≤ i ≤ c. We are assuming that it is
possible to add a solvent not involved in the reaction within a certain time range, even though it might be involved within the original
mixture.
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and, by the definition of enthalpy in Definition 1, that

dH = d(U + PV) = dU + PdV + VdP, (124)

d(G + TS) = dG + TdS + SdT. (125)

We then have that, for a closed path γ, using (123), (124), (125), the definition of entropy as dS = dQ
T and the

first law of thermodynamics, dQ = dU + pdV, the calculation of ( ∂G
∂ξ )(T,P) as follows;

∫
γ
(dG + SdT − VdP) =

∫
γ
((dH − TdS − SdT) + SdT − VdP)

=
∫

γ
(dH − TdS − VdP)

=
∫

γ
(dH − dQ − VdP)

=
∫

γ
((dU + PdV + VdP)− dQ − VdP)

=
∫

γ
(dU + PdV − dQ)

=
∫

γ
((dQ − PdV) + PdV − dQ)

= 0,

∫
γ
(

c

∑
i=1

µidni) =
∫

γ
(

c

∑
i=1

µiνidξ

=
∫

γ
(

∂G
∂ξ

)(T,P)dξ

=
∫

γ
(λ + ϵln(P) + βT + σln(T))dξ

=
∫

γ
(λ + ϵln(P) + βT + σln(T))dξ

= λξ +
∫

γ
(ϵln(P)θ(P)dP + (βT + σln(T))ϕ(T)dT), (126)

where θ(P) = θ1(P) along γ1, θ1(P)dP = dξ|γ1 , θ(P) = θ2(P) along γ2, θ2(P)dP = dξ|γ2 , ϕ(T) = ϕ1(T) along
γ1, ϕ1(T)dT = dξ|γ1 , ϕ(T) = ϕ2(T) along γ2, ϕ2(T)dT = dξ|γ2 .

Now, by Stokes Theorem;

∫
γ
(ϵln(P)θ(P)dP + βTϕ(T)dT) =

∫ ∫
R
(

∂((βT + σln(T))ϕ(T))
∂P

− ∂(ϵln(P)θ(P))
∂T

)dTdP = 0, (127)

and, by (126), ξ = 0, if λ ̸= 0. The second claim, with the assumption that ∆H◦ is constant, follows from
the proof of Lemma 7, and in later sections, when we introduce error terms. The next claim follows easily as
w(T1, T2) ≃ 0, see §12, and the computation of λ without the error term w(T1, T2). The computation of ϵ(T1, T2)

is given in Lemma 7.

H1 We take it as reasonable then, that if there are 2 distinct feasible paths between (T0, P0) and (T, P), with a
given initial condition (n1,0, . . . nc,0) at (T0, P0), then the extent of the reaction ξ determined by the paths
{γ1, γ2} should be the same.

If this were not the case, then reversing one of the paths, we could obtain a reaction extent at (T0, P0) along
a loop γ. Even if λ = 0, using the slight variation in the volume of liquids along a reaction path, and the
fact that we return to the original pressure P0 in a loop, we would have ∆H =

∫
γ dH =

∫
γ d(U + VP) =∫

γ dU + PdV + VdP =
∫

γ dU + dL + VdP = ∆U + ∆L +
∫

γ VdP ≃ ∆U + ∆L + V0
∫

γ dP = ∆U + ∆L = ∆Q.
If ∆H is large, this would mean that ∆Q ̸= 0, which means that there is a change in heat, contradicting the

fact that the temperature T0 is unchanged. If ∆H is small, with ∆H =
∫

γ VdP, then, by generic considerations
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of bond energies, the amount of substance ξ formed by the reaction would also be quite small. If H1 holds for
a single pair {A, B}, then it holds for all pairs {C, D}, as we can compose with reactions from A to C and D to

B. If follows that if we define fi(T, P) = e
µi(T,P)−µ◦i (T)

RT > 0, for 1 ≤ i ≤ c, so that fi(T, P) = xi(T, P) = ni(T,P)
n(T,P) ,

then, by the definition of extent;

ξ =
ni − ni,0

νi
,

ni = νiξ + ni,0, 1 ≤ i ≤ c),

we must have that

xi =
ni
n

=
νiξ + ni,0

∑c
i=1(νiξ + ni,0)

=
νiξ + ni,0

λξ + n0
= fi, 1 ≤ i ≤ c,

where λ = ∑c
i=1 νi, so that

νiξ + ni,0 = (λξ + n0) fi,

ξ =
ni,0 − n0 fi

κ fi − νi
, 1 ≤ i ≤ c,

so that, for 1 ≤ i ≤ j ≤ c, we have

ni,0 − n0 fi

κ fi − νi
=

nj,0 − n0 fi

κ f j − νi
= ξ. (128)

As all the steps are reversible, the requirement (128) at (T, P), for all (n1,0, . . . , nc,0) satisfying ni,0
n0

= fi(T0, P0),
so that

ξ(T0, P0) = 0 (129)

is equivalent to H1. We impose the condition that Ker(M) ∩Rc
>0 ̸= ∅, where

Mii = fi(T0, P0)− 1, 1 ≤ i ≤ c,

Mij = fi(T0, P0), 1 ≤ i < j ≤ c,

so that there exists at least one choice (n1,0, . . . , nc,0) ∈ Rc
>0 satisfying (129). With this requirement there do

exist feasible paths between any 2 pairs (A, B), see Lemma 12. If not, there is no feasible path involving a
reaction from A = (T0, P0), which seems physically unreasonable.

The same arguments apply when we incorporate error terms into the functions { fi : 1 ≤ i ≤ p} or extend
the functions to a set { fi : 0 ≤ i ≤ p}, when we consider a solvent.
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