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Abstract: We consider Gibbs’ definition of chemical equilibrium and connect it with dynamic equilibrium, in
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using the Nernst equation.
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1. Introduction

his paper is divided into 12 sections. In §2, we give some basic definitions, and derive the Nernst
T equation for the standard cell. We prove some results about the activity coefficient Q, assuming an
idealized law in the behavior of the activities and chemical potentials, y1; = u? + RTIn(a;), for 1 < i < ¢,
with ¢ substances, which holds throughout the section. In Lemma 6, we use the van’t Hoff, Gibbs-Helmholtz
equations to find an expression for AG°(T) along quasi-chemical equilibrium paths. In Lemma 7, we use an
entropy calculation to find (%—?)T, p and combine the result with Lemma 6 to calculate the activity coefficient Q.
In Lemma 11, we prove every straight line chemical equilibrium path is a dynamic equilibrium path, partially
confirming a speculation of Gibbs. The method of constant Q along a path implying dynamic equilibrium is
repeatedly used and generalized later in the paper. The question of the existence of feasible paths for a reaction,
given a curve in the temperature/pressure plane, is answered in Lemma 12 and again later generalized.

In §3, we consider ideal solutions and introduce a fixed error term from Raoult’s law. The results from
§2 generalize and in Lemma 19, we find the paths of maximal reaction, in the sense of maximizing extent ¢,
implicitly, in terms of temperature and pressure (T,P). We apply the results to electrochemistry in §4. In
§5, we consider dilute solutions, adding substance 0, and consider the definition of Q, involving the activity
ag, obtaining the formula for the activity coefficient in Lemma 24. In §6, we consider dilute solutions with
interaction of the solvent, in which the solvent is ideal and the solutes obey Henry’s law, introducing a new
fixed error term in Definition 6, and obtaining the maximal reaction paths in Lemma 31.

In §7, we introduce new fixed error terms from fugacity, in Definition 7. We alter the conventional
definition of Q to incorporate fugacity in the error term and obtain the paths of maximal reaction in Lemma
37. We apply the results to electrochemistry in §8, in particular the reaction in catalyzers, and give a strategy
for improving the efficiency of hydrogen and oxygen production from water in Remarks 8. In §9, we consider
the case when there is no interaction of the solvent, and in §9 and §10, we derive the main results quickly by
altering Q to ignore the activity ag. However, it an interesting but difficult exercise to try and derive the results
using the definition in §5. We suggest the results here could be used in maximizing ethanol production. We
gain apply the results to electrochemistry in §11, in particularly the standard cell.

In §12, we reconsider the assumption that AH°(T) is constant, made throughout the paper. We show that
by increasing the mass of the mixture, in particularly the amount of solvent, we can make the error involved
here disappear in the limit. Finally, in §13, we consider independence and existence of paths.
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2. The idealized case

Definition 1. For ¢ substances, we define the Gibbs energy G(T, P, ny, ..., n.) by;
G=U+PV-TS,

where U is the internal energy, P is pressure, V is volume, T is temperature and S is entropy. We define the
enthalpy H(T, P, ny,...,n.) by;
H=U+PV=G+TS,

see [7] and [5]. We define the Gibbs energy at standard pressure G° (T, ny, ...,n.) = G(T, P°,ny,...,n.), where
P° is the standard pressure. We define the chemical potentials, 1 <i < ¢, by;

G
ui(T,P) = (aT/li)T,P,n’r
where 1; is the amount of substance i measured in moles, and T, P, n’ fixes the pressure, temperature and the
amount of every substance except substance i.

We consider an electrolyte as a solute in a dilute solution and define the activities a;, 1 <i < ¢, by;

ap =11x =21,

aiz%ol, (2<i<o),
m
where the molality m; = Z’Z—;, and w, is the mass of the solvent, component 1, m° = 1, x; = %, n=y:in,

7,1 <i <, are the activity coefficients, c; = %, ¢® =1, and the activity quotient;

C
Q=TTa",
i=1

where v;, for 1 < i < ¢ are the stoichiometric coefficients.

We have, for a solute in a dilute solution, that y1; = u + RTIn(a;), see [7], noting that y; is independent of
the amount of substance 7;, and y; in the molality description is equal to ‘ugm>, where m; is equal to m® = 1in
a hypothetical solution.

We define AG°(T) and AH°(T) to be the changes in Gibbs energy and enthalpy at standard pressure P°
and temperature T, for 1 mole of reaction, see [1]and [4].

We define the extent (T, P) of a reaction by;

nio+vi¢ = n,

where n; = n;(initial). We assume that if;

WT,puyg,meg(6) = G(T, Pnyg + 118, ..o fieo + vel),

Aht,pny g,
then % (¢) is independent of {ny,...,nc0, } C R and § € R>o, and define this as (%—%) T p.

We define chemical equilibrium by (%—g) rp = 0, and dynamic equilibrium by a path v : [0,1] —
(T,P,ny,...,nc),such that n}(t) = proyi(y)'(t) = 0, for 1 < i < ¢, so that no substance is formed.

We define E(T,P,ny,...,n;) to be the potential in the standard cell and E°(T,ny,...,n.) =
E(T,P° ny,...,n:) to be the potential at P°. We let F denote Faraday’s constant, R = N4k the gas constant,
where Ny, is Avogadro’s constant and k is Boltzmann’s constant. We have that N = N4,n, where N is the
number of particles, 7 is the amount in moles. We define the electric potential p by E = — v/ (¢), e is the charge
on an electron, z; is the valence of an ion.

Lemma 1. Let G be the Gibbs energy, please explain other variables, then we have

c
dG = —SdT + VAP + Y_ y;dn;.
i=1
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Proof. We have, by the definition of the chemical potential and the laws of differentials, that;

dG oG £ G

dG=— dT+— dP e dn;
aT Pn + aP Tn +Z; ani T,P,]’l/ nl
oG oG

C
=2 4T+ 4P dn;. 1
5T+ 3P 1 +l;141 n; ©)

Fixing n, using G = U 4 PV — T§, the first law of thermodynamics, dU = dQ — PdV, the definition of entropy,
dQ = TdS, the product rule for differentials, and (1), we have that;

dU = TdS — PdV,

dG = dU + VdP + PdV — SdT — TdS
— (TdS — PdV) + VdP + PdV — SdT — TdS
= —SdT + VdP

dG oG
= ﬁp,ndT + ﬁT,ndP' (2)

so that, from (2), and equating coefficients, g—CT; Py = -5, g%T,n = V. Substituting into (1), we obtain that;

Cc
dG = —SdT + VAP + Y _ pdn;.
i=1

O

Definition 2. The electrical chemical equilibrium is defined by (%)T,p = 0, where G is the Gibbs energy

function for a charged and uncharged species.

Lemma 2 (The Nernst equation for the standard cell [7]). At electrical chemical equilibrium (T, P) and (T, P°), we
have

_ RTIn(Q)

E—E° =
2F

Proof. For ¢ substances with ¢’ the number of the charged species, using Definition 1, we have that the
electrostatic potential energy;

Uy =) ¢(Xi)qi,
i=1
where q; = Njez; = Nanjez;, {X; : 1 < i < '} are the positions of the charged species, N; is the number of
particles at x;. We have that;
U = Ueper + Uer,

so that;

G(T,P,m,...,ne) = U+PV —TS
= chem+uel+PV_TS
= Ue + Gepem

c
= Z ‘P(Ej)qj + Genem
=1

c
= Z 47(?]‘)NA7/£]‘€Z]‘ + Genems
=1



Open ]. Math. Sci. 2023, 7, 35-88 38

so that;
G
Hi = (%)T,P
I(Lj—1 ¢(x))Nanjez; + Genem)
= ( 3 )T,
1

= Wi chemr (C/ +1<i< C)

= Michem + W’ (1 <i< C,)
i

= Michem + P(X;)Naez;
= Wichem + ¢(X;) Fz;. 3)

We consider the standard cell reaction H,(g) +2AgCI(s) +2e~ (R) — 2HCI +2Ag(s) +2e~ (L). At chemical
equilibrium, similarly to Lemma 5, generalized to a collection involving charged species, using (3), we have
that;

G
(TC)T'P =Y vk

=2u(HCI) +2u(Ag) — u(Ha) — 2u(AgCI) +2u(e (L)) — 2u(e (R))

G pem - _
= (%)m +2p(e (L)) = 2p(e (R))
G ey _ _
= (%)m + ((2Hehem (e (L)) = 2FP(L)) = ptcnem(e™ (L)) — 2F9(R)))
G e
= (%)m +2F(¢(R) —¢(L))
G pem
= (75?’” )1,p +2EF =0, 4)
where G, is the Gibbs energy restricted to the uncharged species. We have that;
G pem &
(=7 )Tpe = ), villf
a(: i=c'+1 o
= (AGShem’ + RTZ”(Qchem’(T' PO)))
== AG?hEm” (5)

using the definition of Q ., in Definition 1, the fact that y; = pu? + RTIn(a;), p; = p?, forc’ +1 <i < ¢, so
that Qe (T, P°) = 1.
From (4),(5), we obtain;

G oy’
ZEOF — _ chem o
(7 c )T,p
= _Acghem" ©)
Similarly, we have that;
aGchem’ < o
(Tg)“’ = ). Viti = (DG + RTIN(Qepreny (T, P))), @)
i=c’'+1
so from (4),(7), we obtain that;
G e
2EF = _(75?'" )7.p

- - (AGcohem/ + RTln(Qchem’ (Tr P) ) ) (8)
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Combining (8), (6), we obtain that;

2EF —2E°F = _(AGShem’ + RTln(Qchem/(T,P))) — (—Athgm/)
= _RTln(Qchem/(T/ P))/

so that;

RTIn (Qchem’ (Tr P) )

E—E°=—
2F

O

Lemma 3. [7] For the energy function G involving only an uncharged species;

G
(ag )r.p = AG® + RTIn(Q).
Proof. By Lemma 5, we have that;
C
P =) Vil

i=1

C
AG°® = Zviyf. 9)
i=1

Using (9), the fact that y; = p + RTIn(a;), and Definition 1, we have that;

G

)T,p —AG® = sz

= Z vi(pi + RTIn(a;) — p7)
=1

C
=) v;RTIn(a;)
i=1

= RTln(f[ a/") = RTIn(Q).
i=1

O

Lemma 4. At electrical chemical equilibrium (T, P) and (T, P°), and chemical equilibrium (T, P), we have
AG® = 2F(E — EY).

Proof. By Lemma 2, we have that

o RTIn(Q)
E—E° = o (10)
and, by Lemma 3, we have that
dG o
0= (ag)TP—AG + RTIn(Q). (11)

Rearranging (10) and (11), we obtain the result. O
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Lemma 5. Let us take

G <
(57T = ) Vit
aC ~ [iga’

1=

C
AG® =Y 3.
i=1

o At chemical equilibrium (T, P), (%%)T’p =0andat (T,P%), AG® = 0.
e If chemical and electrical chemical equilibrium exists at (T, P°) and (T, P), we have Q(T,P) = 1and E = E°.

Conversely, if Q(T, P) = 1 and chemical equilibrium exists at (T, P°®) then chemical equilibrium exists at (T, P).
e Chemical equilibrium exists at (T, P) iff Q(T, P) = e R~ and we always have that Q(T,P°) = 1.
Proof. For the first claim, using the definition of ¢, we have

dl’l,‘ = Vidé, (1 S i S C)' (12)

By Lemma 1, fixing T and P, and using (12), we have
C C
dG = Z ]/lidi’li = (Z ‘Mﬂ/i)dg, (13)
i=1 i=1
so that;
dG <
(5=)rp = Z Hivi. (14)
9 i=1

The second claim from the first, as

ae(1) = [

= [ (v (g
i=1
c 1
= i;viﬂi (T)/o dg
= 3w (7).

Noting that (%—?)T, po doesn’t vary with ¢. For the third claim, at chemical equilibrium, (T, P), noting again that
(%%)T,p doesn’t vary with ¢, and using (13) and (14), we have

aG = (?)Cé,;)T,p =0, (independently of ¢). (15)

At chemical equilibrium T, P°, using the first and second claims, and (15), we have

dG c o o
dG = (7)7",1?0 = Zl/i}li =AG° =0.
9 i=1

For the second to last claim, and the first direction, we have, by Lemma 3, that RTIn(Q) = 0, so that Q = 1,

and, by Lemma 2, that E — E° = —%F(Q) = 0. For the converse, we have by Lemma 3, using the fact that
Q(T,P)=1;
oG
= A °©
( 3 )T,P G°,

and, if chemical equilibrium exists at (T, P°), then, as Q(T, P°) = 1 we have

oG

(3¢ )1.pe = BG"+ RTIn(Q) = 4G =0,
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G
sothat(a(;,)Tp =0.
For the penultimate claim, in one direction, use Lemma 3, together with the fact that (T(g)

rearrange, the converse is also clear, by applying In.
For the final claim, we have, by the definition of activities, that;

pi = p; + RTIn(a;),

so that 4;(T, P°) = 1. Now use the definition of Q in Definition 1. O
Lemma 6 (van't Hoff,Gibbs-Helmholtz [7]). Along a chemical equilibrium path, we have

1 T, AR
n( T1 R /

AG°(Tr)  AG°(Th) _ _/Tz AHC
T; I T2

In particularly, if AH® is temperature independent;

Q) _ _AH (11
"om) =k ‘% n)
AG°(T) AG(TY) ., 1 1

L 0N =AH (?2 T1)
AGO(Ty) = BAGH(Ty) — (B —1)AH.

T T

For c € R, Let D, intersect the line P = P° at (Ty, P°), then, for (T, P) € D,, we have

AG®(T))—-AG°(Tp)

Q(Tz,P) =e RT>

c=AG°(Th),
QT 1 [BAH —c
ln(Q(Tl)) =In(Q(Tr)) = R ), 2 aT,
AG°(Ty) — AG°(Th) 2 AH® —¢
L
T T T2
and if AH® is temperature independent;
Q(T») AH®° —c 1 1
In =n(Q(N)) = —(—)(=— =),
AG°(T) — AG°(Ty) o 1 1
T, = (AH C)(?z Tl)/
AGO(Ty) = LLAG(Ty) — AHP (L — 1),
T, T,
Proof. By Lemma 5, we have
C
AG° = Zviyf,
i=1
so that differentiating with respect to T;
d du; < ou?
Zvl - = 1:21 ( arfv )P,n'
By Euler reciprocity, we have
ouy 0S° o

_(aini)T,P,n’ =-=5;,

= 0 and

(16)

17)

(18)

(19)
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so that, noting S is independent of 1;, so we can replace S; by g;,i, the absolute molar entropy of substance i,
and using thermodynamic arguments;

d(AG° I, <,
(d;; ) __ Y viS; ==Y vS,,; = —AS°. (20)
i=1 i=1

Using the product rule, (20) and the definition of enthalpy, we have

d AG°, 1d(AG°) 1 o AS® AG°  A(ST+G)°  AH°
ﬁ( T )= T dT ﬁAG T T2 T2 = T2 21)
By Lemma 5, along a chemical equilibrium path, we have that Q = R, so that In(Q) = =R&~. 1t follows
from (21) that;
din(Q) i(—AGO) _ AH°
dT  dT' RT '  RT?’
It follows, integrating between T; and Ty, that;
Q(T2)
In =lIn T)) —In T:
(Q(T1)) (Q)(T2) — In(Q)(Th)
_ —AG(Ty) | AG(Ty)
RN RT,
~ (T2dIn(Q)
B ./Tl ar T
1 T2 AH®
_1 _ 22
R T2 (22)

So that, rearranging, we obtain the first claim. Using the fact, by Lemma 3, that;

n(Q(T)) = ~25 1,
m(Q(r) = ~25 1,

we obtain, substituting into (22), canceling R, and performing the integration, if AH® is temperature
independent, that;

AG°(Ty)  AG°(Ty) _/Tz AH® 11

= AH° (= — =) 2
Tz T1 Ty T2 (Tz Tl) ( 3)

For the fifth claim, rearrange (23). If D, intersects the line P = P° at (T7, P°), for the sixth (16) and seventh
claims, we have, using Lemma 3 and the fact from Lemma 5 that Q(Ty, P°) = 1;

(?a?)rz,p = AG°(T») + RT»2In(Q(T», P))
= (%(C;)Tl,ljo
= AG°(Ty) + RT1In(Q(Ty, P°))
=AG°(Th) =,

so that, again rearranging, we obtain the result. Along D., we have, using Lemma 3, that;

c— AG°
n(Q) =~
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so that, using the first part;

din(Q) d c—AG°

T —ar" rr )

—C d  —AG°
= w2 "ot R
_ AH° —c
~ RT? '

so that, performing the integration, using the fact that Q(Ty, P°) = 1;

1 T2 AH® —
In(Q(T2)) ~ In(QTy)) = (Q(T2)) = & [ Sz,
We have that, by Lemma 3;
— AG°(T
m(Q(ry) = =HE T,
In(Q(Ty)) =0,
so that;

n(Q(T2)) = In(Q(T2)) — n(Q(Th))

c— AGO(Tz)

- T RD

_ AG°(Th) — AG°(T>)

- RT,
1 2 AH° —¢

— - [P2E —Cr
R Jn T?
1 1 1

and rearranging;
AG®(Ty) — AG(Ty) .. 11, . 11

so that, rearranging again;

o1 1 1. AGYTy) AG(Ty) 11
AG (Tl)(ﬁ+ﬁ Tz)— T AH (Tz Tl)/

to obtain;
AG®(Ty) = %AGO(Tz) CARP(B .
2

O

Lemma 7. If there exists a component D, ¢ € ‘R, which projects onto a closed bounded subinterval I of the line P = P°,
not containing 0, and intersects P = P° at (Ty, P°) with Ty > 0, then for T, € 1, AG® is linear, with

(AG*(T1) — AH®)

AG®(T2) = Taf T

)+ AH®,

for Ty € L. If e # 0, we have

(((ii(g)T'P = A+ EZI’Z(P) + ,BT,

where {A, e, B} C R and {B, e} can be effectively determined, and we have that the activity coefficient is given by;

/
eln( )

Q(T, P') =e 2,
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and the dynamic equilibrium paths are given by;

P e
(P,o> E =

for ¢ € R>, see Definition 1, while the quasi-chemical equilibrium paths are given by;
A+eln(P') + BT, =,

force R. Ife =0;
aG

(az
where {A, B,0} C R, and {B, 0o} can be effectively determined. For every Ty > 0, there exists a straight line feasible
chemical path vy with prip(y) C (T = Ty), which is both a dynamic and quasi-chemical equilibrium path, and

Q(T,P) = 1.

)Tp—/\+,BT+(Tln( )

Proof. For the first claim, by Lemma 6, we have that

(AG*(T1) — AH?)

T, T
AG°(T) = =2AG°(Ty) — AH® (52 — 1) = Ty( ) + AH®.
T T n
For the next claim, by Lemma 5 and the proof of Lemma 6, we have that
aG
(a(Tg)T,P) _ (a(Zle Ul‘]/ll‘) )
or " ot 'F
c ayl
= Lularr
_y alf‘z
i=1
¢ —
i=1

To compute S, ;, we have by the first law of thermodynamics;
dQ =dU+dL =dU + pdV,

where L is the work done by the system, see [5]. We can assume that the liquid mixture is in thermal
equilibrium with a mixture of ideal gases in the vapour phase, and using the ideal gas law, the definition
of temperature for ideal gases, obtain the calculation of internal energy for the mixture;

c
3
U(T,P,Tll, . .,nc) = Z(ENAnikT - NAnimipi),
i=1

where m; is the molecular mass of species i, p; is the specific latent heat of evaporation of species i, which
we assume is independent of temperature T. By a result in [11], using the fact that entropy difference is
independent of path, see [9], we have that Q is independent of P. We then have;

<3 c 3 c
AU = 3 3 NaKTdn; & 35 NaknidT = 3 Nmioid

c 3 c 3 c
dQ = 1:21 ENAdeni + g 5> NaknidT — l; Nam;p;dn; +dL,
d <3 dr T,7)dT & _.dn;
TQ = ZENAkdn1+Z NAlel T ZNAmlpl %+Zhi(ﬂn)%,
i=1 i=1
d 3 dn; _ dn
(TQ)n/,T,p = ENAkdnl NAmlpl : hi(T,n)Tl.
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It follows that

T dQ 3 . Namip; | ki(T)
Smi = /Am:l( T Ju',T,p = ZNAk 5t (25)
So that, from (24);
(%8 )T, <3 Namioi <& ki
Rl (2 _ Namipiy ‘ i(T)
(—or )r= g”’(zNAk T ) ;”1 T
3 c C k(T)
= _ENAk 21/1 T ; iHiPi 1_21 lT
3 C
= INAK( )+ A ) vies — S, (26)
i=1 i=1

From (26), which is uniform P, we see that (%)T,p is of the form a(P) + BT + vIn(T) — [ %, (B), where
C R, and, assuming that 7 p is differentiable, « € C!(R). By a similar calculation, we have that
7Y g g , y

(a(%)T,P> _ (E)(Zle I/i;li) )
op T op T
C
= YulGpr
C
s
= Yu(Gp)ma
i=1
1%
=) vi(5 )t pw
= on
€ p—
= ZviVl
i=1
< NAmz
=) v , (27)
LT, D)
where x; is the density of substance i. We also have that
< NAml- < =
P(Y v ) =P()_v;Vi) =G(T), (dL = PdV), (28)
= (TP i=1
and from (27) and (28);
p(ia(%h’l’) = G(T) = Pa/(P)
ap T — - 7
so that G(T) = €, a(P) = A + eln(P), (92)r,p is of the form
G(T)
a(P) + BT + vIn(T) — / ~ = A+eln(P) + BT +yIn(T) — eln(T)
= A+eln(P) + BT +oln(T), (29)

where o = ¢ —¢, {ﬁ €A 0} CR.
If e = 0, then ( ¥l &)t p is independent of P, and the components D, are all straight line paths. In this case,
if D, intersects the line P = P° at (Ty, P°), then, for all P > 0;

c= AGO(Tl) + RTllTl(Q(Tl,P) = AGO(Tl),
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implies that RT;In(Q(Ty, P) = 0, so that Q(Ty, P) = 1 and, by Lemmas 11 and 12, there exists a straight line
feasible chemical path 7y with prip(y) C (T = Tj), which is both a dynamic and quasi-chemical equilibrium

path. From (29), we have that
aG

¥
We have that, for any T} > 0, we can find ¢ € R with A + BTy + oln(Ty) = ¢, so that D, defines a component

straight line path passing through (T;, P°). Then we can apply the previous result.
If € # 0, for any ¢ € R, we can solve the equation;

)r.p = A+ BT +cln(T).

A+eln(P) + BT+ oln(T) =,

for any given T > 0 and an appropriate choice of P(T). In particularly, there exists a component D, projecting
onto the line P = P% and, by the first part, AG® is linear, with;

(AG°(Th) — AH®)
T

AGO(Tz) = Tz( ) 4+ AH®,

for an intersection at (T;, P°). We also have, using (D), that

AG(Ty) = (%E’)T,p(n, P°) = A+ eln(P°) + BTy + oln(Ty),

so that, equating coefficients;

oc=0,
A+ eln(P°) = AH®,

_ (AG°(T) - AF)
R

AG®(Ty) = BTy + AH®,
AG®(Ty) = BT, + AHC.

We can then, using Lemma 3, obtain a formula for the activity coefficient;

((%%)T,PlTZ,P/fAGO(Tz)) (AH® —eln(P'®)+eln(P')+ BTy —(BTy+AH®)) eln( 475

Q(T, P') =e = e 2 =e 2, (30)

as required. The claim about the coefficients being determined is clear from the proof. The determination of
the dynamical and quasi-chemical equilibrium lines, see Definition 1 and Lemma 13, follows from a simple
rearrangement of the formulas Q(Ty, P’) = ¢, for some ¢ € R >, using (30), and (%)T,p =, forsomec € R,
using (29), withoc = 0. O

Lemma 8. With notation as in Lemma 7, if € = O, then if either;

(i) p>0,0>0,
(ii) < 0,0 <0,
(iii) > 0,0 <0,A — 0+ oln(=
(iv) B<0,0>0,A—0+0cln(

9

) <0,
) >0,

=]
m‘qm

we can always find Ty > 0, defined as the solution to A + BT + oln(T) = 0, such that T = T defines a chemical
equilibrium line.

Proof. By the proof of Lemma 7, if Tj is a solution to;
A+ BT +0oln(T) =0, (31)

then (%%)T’ph“:]"o = 0, so that T = T defines a chemical equilibrium line. By considering limits at co and
noting that the derivative  + £ of A + BT + ¢ln(T), is of a fixed sign in cases (i),(ii), so that A + BT + cln(T)
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is monotonic, we can see there does exist a unique solution Tj in cases (i),(ii). In cases (iii),(iv), computing
limits at co again, and noting that g + 7 is increasing/decreasing, we have that, if the minimum/maximum T
respectively of A + BT + oln(T), given by the solution to;

B+7. =0,

sothat T} = %’, then, in case (iii), if;

/\+‘B(Tl) +0’l?l(T1) <0,

iff A —o+ aln(%’) < 0, there exist two possible solutions Ty, with a unique solution if equality holds.
Similarly, then, in case (iv), if;

A—o+ Uln(%T) >0,
there exist at least two possible solutions T, with again a unique solution if equality holds. O

Lemma 9. Ife = 0, we have, for all Ty > 0, that;

G G
(Tg)T,P (TLP) = (Tg)T/P

(T1,Pp)

iff
E(Ty,Py) = E(Tq, P}) = E°(Ty),

where G is the Gibbs energy function for the charged and uncharged species.

Proof. By (4) of Lemma 2, we have that

oG 9Gpem’
(afg)T,P = (%)T,PJFZEP- (32)
By Lemma 7, we have that (acgi’g’"’ )T,p is independent of P, in particularly, we have that
G ey G peny
( (—;Igm )1, = ( glgm )11, (33)

so that, combining (32) and (33), we obtain the result. O

Lemma 10. Forall T; > 0,P; > 0, we have

G G
2F(E(Th, P1) — E°(Th)) = (a*C)T,Ple,pl) - (g)T,Ple,pf) — RTyIn(Q(Ty, P1)).

Proof. Following the proof of Lemma 2, we have that

G G e
(Gg)relrm = (5" )neln p +2E(T, PF, (34)
. G G ey
2E°(Ty)F = (%)T,P‘TLP{’ - (%)T,MH,P{)
G .
= (g)T,P T3,P> — BGen (T1)- (35)

So from (34) and (35) and Lemma 3;

aG aGchem/
g)T,P 7, — ( oz )1,plT0,P,

0
- <§>T,p

2E(T11P1)F = (

TPy — (AGShem’(Tl) + Rlen(Qchem/(Tll Pl)))~
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2E(Ty, P1)F — 2B°(T)F = (52 )1plry — (8GS(T1) + RIS Qe (T2, P))) = (52 )11, — 3G (Ty
oG dG
= (%) , P — (( aéc) RTlln(Qchem’(le Pl))

O

Definition 3 (Ideal solution). We let prq is the projection onto the first factor, prq, be the projection onto the
first two factors, in coordinates (T, P, ny,...,n.). We define a feasible chemical path « : [0,1] — Rﬁ)‘:, such
that if n;(t) = pro4i(t), for 1 <i <, then

!
n’. n.
=1 for 1<i<j<yg
1% 1/]'
where {v1,...,1.} are the stoichiometric coefficients. If n(t) = f 1 n,»( ), and x;(t) = a;(t) = T(t), then

Q(priz((t))) = TT5_1 ai(t)% and 7:;—00 = fi(pr12(7(0))), where f; = o ,1 <i<c, see§13. Note thatn > 0
and the x; are well defined.

We define a chemical equilibrium path to be a feasible chemical path  with the additional property that
chemical equilibrium exists at pri(y(t)), for t € [0,1]. We define a quasi-chemical equilibrium path to be a
feasible chemical path 7 with the additional property that (%—g) ; ([0,1]) is constant. We define a dynamic
equilibrium path to be a feasible chemical path 7y with the additional property that pra..(y)'(t) = 0, for
1<i<ec.

We define a straight line feasible path from (T, P°) to (T,P) to be a map v : [0,1] — RZ;E)C such that
prizy(0) = (T,P°), prioy(1) = (T,P), pri(y(t)) = T. We say that a point (T, P) is a simple dynamic
equilibrium point, if it lies on the locus Q(T, P) = 1.

Lemma 11. In an ideal solution, a straight line chemical equilibrium path from (T,P°) to (T,P) is a dynamic
equilibrium path. Every (T, P°) is a simple dynamic equilibrium point.

Proof. By Lemma 5, and the definition of activities for an ideal solution, we have that
[ Cc
1=Q(T,P)=[]a" =[]/, (36)
i=1 i=1

and:l/—lf = %,forl <ij<c Y gn=n.
Using the relation (36), differentiating and using the facts that, for1 <i <c¢—1;

!
;) Vilg _ ving
n; = e’ n; = v +d;, (37)
we obtain that
< v v;i—1 v;—1 v < 1
! / - / /
(Hxll) = Zlell xil_[xj] = Zlell XiX; L= Zlel X
i=1 i=1 j#i i= i=1
_ivn(nn—nin’)_ c (n: n’)
i=1 lni n? i=1 l 1 n
_ = Uz'zné Ven A ?:1 n;
T “ymetved; | ne (ZC n')
=1 “1'*c cH c 1=1"
_ 2 c—1 v l
_ CZ;l vin,, ven, Y (X wt 1)n; _0 (38)
= Ville + Vcdl‘ ne (Zlczll L/' + 1)nc + ZC 1 d ’
where A = Y¢_; v;. If v/ # 0, we obtain that
1 vy
o2 (E) % 41)

-t - 0,
;vinc+vcdi fe ((2C LU e + X5 1d)

i=1 v,
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so that;
c—1 c—1 c—1
Z viznc(zxnc +B) H(vjnc + ved; )+ ve(ane + B) 1—[ ving + ved;) — Ang H(Vﬂlc +v.d;) =0,
i=1 i i=1 =

where & = Zz:ll :—; +land g = Zf:_ll d; which we can write in the form;

c .
Z ’y]«v{; =0.
j=0
We have that
c—1
Yo = Zv a] v —i-m/CHvl A Tvi
i=1 j#i i=1

-1
=ad ) v+ adv. —AS
i-1

a(i Vi) —A
i=1
=oA(a—1).

Noting thatd # 0Oand a — 1 = f;ll 5‘ , we have that . # 0 iff Zl 1 Vi #0and Y, v; # 0. In this case,
we obtain a nontrivial polynomial relation p(n.) = 0, so that, by continuity and discreteness of roots, . is a

constant and 1. = 0. By the connecting relations (37), we obtain that n; =0aswell, for<j<c—1.
IfYs ,v; =0(G) then ZC 1 Vi # 0, and, we have, from (36), that

C
anf =pliati =1, 39)
i=1

and, following the calculation (38), we obtain

so that, if n. # 0;
_ Vc
= 0,
; Vine + vcd ne

and, differentiating k times, for k > 0, canceling n,. if n/. # 0, and using the chain rule, we obtain the relations;

— k+2
Y b0
= (v, + Ved;)FHT T R :
Letg; = +cd = V”; < 0,for1 <i<c—1. Then,fork > 0;
1% Tcl ¢
c— ‘ ¢ c—1 %
Z gty =Y vi(vig) T +ve =0 (40)
i=1 i=1
If g; = —1, then
ne ne _ ne -1
Vel vC(VL'ZC +d;)  vine + ved; ’
so that
ne = —(vine + ved;),
implies

(]. + UZ)”C = Vcdi.
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Then if n, # 0, we must have that v; = —1, d; = 0. Re-scaling each v; by a factor of 2, we still have the
conditions (36), (E), (G), so we can assume that |v;| > 2, which is a contradiction. Hence, we can assume that
lgil # 1, for 1 < i < ¢ —1, so that taking the limit as k — oo, with k even, so that 1/1]-<+2 > 0, gi-““l < 0, for
1 <i < c¢—1,we obtain a contradiction, and conclude that n. = 0, and n§ =0,for1<i<c-—1.

If for every ¢ — 1 element subset Ij C {v1,...1},1 <j<c wehavethat) ;. [Vi= 0, then clearly;

Zvi:Zvi—i—v]-:v]-, for 1§jSC,

1<i<c iEI]-

which we can exclude. It follows that there exists some jy, with 1 < jy < ¢, such that ) ;¢ I, Vi # 0. Using nj,
as the pivot and following the above proof, replacing 1. by 1, we can, without loss of generality, assume that
Zf;ll v; # 0, and the proof is complete.

The second claim follows from the fact in Lemma 5 that Q(T,P°) =1. O

Definition 4. For ¢ € R, we define C. C R? to be the zero locus of Q(T, P) — c. We define D C R? to be the
condition of chemical equilibrium. We define D, to be the zero locus of (%)T,p —c=0.

Lemma 12. For every smooth curve W C R?, there exists a locally feasible path -y : [0,1] — R>**¢ with pria(y) C W.

Proof. As W is smooth, we can choose a local parametrization ¢ : [0,1] — W. Let e(t) = Q(4(t)) > 0 and
w = Y {_; v;. Without loss of generality, we can assume that pri2(y(0)) = (To, ), see §13. We have that

ili!xi”"(f) = e(t), (41)
iff .
[ne) = oo
iff
j A () = e ()0
iff
j( O ) = () (Lm0
iff

c—1 v c—1 v c—1
1(*’nc +dy)" (e (t) = e(f)((g o T Dne+ ) di)*(8)

Ve

1=

Letd; > 0,for1 <i<c¢—1,then

iff
c—1 Vs c—1 v
H(U—lnc +d)"i()ng(t) = e(t) ()] 17’ + D +0)*(t),
i=1 ~¢ i=1 7¢
iff B
TG+ " (e (1) = e()(one+ )" (1),

where o = Y7, Ld; > 0. Assume that w > 0, then we have that

C
[x"(t) =e(t
i=1

iff
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iff

P v w c—1

[IH)Ying +r(ne) =e(®[(-)" (171) ViVt 4 s ()]

i=1 “¢ ¢ i=p+1 €
iff )

g(j) ing +r(ng) = G(t)[(ljc) l,pﬂ(vic)i ine +s(nc)],
iff
anf +r(ne) = e(t)(Bnf +s(ne)), (42)

where & = H 1 ( ')Vl #0,p=(;)°II;Z ;+1(11//l) Vi£0,A = ZZ p1 Vis {r,s} C R[x] have degree less than x,

r(0) =T1/_,d; > 0,5(0) =0, as d1v131ble by x~¥. Dividing (42) by nf > 0, we obtain

xt ) =etB+a(), 3)

c

where {ry,51} C R[x] have degree x, with r1(0) = s1(0) = 0, deg(r1) = x and ¢, = r(0) = []}_, d; > 0 where

=Yy c]-xf, deg(s1) <k + v < K, so that limy_ye0 giggi; = oo,
Let v(x) = ax® + r(x), w(x) = px* + s(x). Then, the roots v; of r(x), 1 < i < p, are given by v; = —dL—’:C >
0, while the roots w; of w(x) are given by wyp = 0, w; = %ﬁvf <0, p+l1<i<c—1landw, = % If

v; = w, for 1 <i < p, it would follow that w > Zl 1 Vi = pw, which is a contradiction as p > 1. It follows

cdl d;
that we can choose ip with 1 < iy < p such that —*¢ # = and — # ——0 (1), Dividing by x* doesn’t
0

effect the positive roots v;, 1 < i < p of r}(%) = a+r1(1), and the pos1t1ve roots of « + r1(x), are the positive

reciprocals v} = v%_, 1<i<p. Aslimy oo gigg; = oo and (—:( ) > 0, we can choose vy with q(vo) = e( ) and
vy > U;, for1 < i < p, where g(x) = D/;igg; Then % < - =v;,forl <i < p,and as l <04 " vo > ’V/—évi,

Vc vo +d; > VZ v;+d;i =0, for 1 <i < p. In particularly, as nC(O) = 1 , we have, by the hnkmg relations, that
n;(0) = ﬁnc(O)—i—di— o L +d;>0,for1 <i < p. Moreover, as 1 >0 fori+1<i<c-—1, and— >0, we
have that
ni(0) = —nc(0) +d; = vl —+d; >0, aswell for i+1<i<p-1, (44)
Ve Ve g

By (43), we have that q(n%) = €(t) and, by the above construction, it follows that g(vy) = €(0). Consider
the real algebraic curve defined by 6(x,y) = g(x) —y — €(0), so that 6(vp,0) = 0. Computing the differential
(q'(x), —1), if g'(vg) # 0, we see that the projection pry is un-ramified at (vo,0), so that we can apply the
inverse function theorem, see [10], to obtain a real branch y(y) with 7(0) = vy and

0(v(y),y) =q(v(y)) —y —€(0) = 0.
Replacing y with e(t) — €(0), and letting 6(t) = y(e(t) — €(0)), we have that

0(5(t),e(t) —€(0)) = q(5(t)) — (e(t) — €(0)) —e(0) = q(8(t)) — e(t) = 0.

1 As n. is mobile, the conditions that n;o = d; + - wneo, 1 <i<c—1, (B), together with the requirement that 7ip = (n1y,...,%c0)

lies in Ker(M) NRS,, see §13 places a 1 dlmenswnal restriction on the tuple (dy,...d._1), defined as pr._1(W), where W = V' N

g (Ker(M)), V = {(dy,...de_1,1c0(d1,...dc—1)) : (d1,...dc1) € R}, and g(x1,...,%) = (y1,...,Yc) is the morphism defined
by;

Ye = Xc

vi=xi+ x, (1<i<ec—1)

c
determined by the conditions ((B)). Moreover, we can assume that pr._1(W) N RC L £ Q. Movmg the tuple (dq,...d._1) along
pre—1(W), we can fine d;; > 0,and d;, 1 < j < c—1,j # ip, withd; > 0, so that —"<%o # =% and vj; is the highest root of r(x), so

that the roots w; of w(x) do not coincide with the highest root v;, of r(x).
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Then 6(t) > 0, and we can set 1, = ﬁ, with n.(0) = vlo Using the linkage relations, we can define ;(t), for
1 <i<c—1fromn.. As,by (44), we have that n;(0) > 0, for 1 < i < ¢, by continuity, for sufficiently small ¢,
we have that n;(¢t) > 0, for 1 <i < cas well.

If w < 0, we can take the reciprocal of the relation (41), replace v; by —v; and e(t) by ﬁ > 0,togetw > 0.
Reordering so that the pivot v, < 0,v; > 0,for1 <i < p’,v; <0, for p’ +1 <i < ¢ — 1, we can carry out the
above proof to get the result.

If w = 0, we can carry out the first calculation with B replaced by Hf;; +1(Z—;)’Vi #0. O

Lemma 13. A feasible path v is a dynamic equilibrium path iff pr(y12) C Cy, for some f € Ry, iff %3 =0 In
particular, for any feasible path -y in which pri(7y) is fixed, we have dynamic equilibrium and ‘3—? =

Proof. For the first claim, we have that f > 0 and if pr(712) C Cy, we have that

C
[Tx =7,
i=1

with the same linkage relations as Lemma 11. Now follow through Lemma 11, noting that differentiating
reduces the constant f to 0, as in the proof. Conversely, if pr(712) ¢ Cy, then we have that

<ﬁlx?>'|o = Q)]0 = (grad(Q)]0) +7'(0)) £0,

but, if ¢ is a dynamic equilibrium path, then clearly each #; is constant, 1 < i < ¢, n is constant and x; is
constant, so that x = 0, for 1 < i < cand ([T;_, x:/i )'lo = 0, which is a contradiction. For the second claim, if
pr(v12) C Cg, for some ¢ € R, it follows from Definition 4 and the proof of Lemma 11, that Q is constant and
’fj—? = 0. Conversely, if ‘fj—? = 0, then Q is constant along pr(712), so that pr(y12) C C, for some ¢ € R. The
final claim follows from the fact that Q depends only on the coordinates (T, P), so that ”fi—? = 0, and the first
claim. O

Lemma 14. We have that the condition of chemical equilibrium defines a 1-dimensional curve D in the state space (T, P).
Similarly, the conditions that Q(T, P) = c define 1-dimensional curves C¢ in (T, P), and if y : [0,1] — (T, P, ny,...nc)
is a path, such that pryp(7y) lies in Cc, then it must be a dynamic equilibrium path. Let D’ be a component of D, then
Q is constant along D' iff A&" is constant along D'. Let C.. be a component of Ce, then (%—g) rp = 0along C. iff
AC" = —RiIn(c). Assuming that S~ is non constant, we have that Q is constant along D' iff pr1(D’) is a fixed
temperature T, and (%—g) |7.p = 0along C. iff pr1(C\) is a fixed temperature T. The only feasible paths which are both
chemical and dynamic equilibrium paths are straight line chemical equilibrium paths. There exists a feasible dynamic
equilibrium path, with pri2(y) C P = P°.

Proof. For the first part, either use the fact that (?T(g;) | p only depends on (T, P) and differentiability properties,

or the result from Lemma 5 that chemical equilibrium is defined by Q(T, P) — e RF- = 0, and the fact that AG°
dependson T.

For the second part, either use differentiability properties of Q(T, P) or the fact from Lemma 5 that Q =1
iff (%—g) |7 p — AG® = 0. The second claim is clear from Lemma 13.

For the third claim, we have, by Lemma 5, that along D', Q = eATGTO, so that clearly Q is constant along D’
iff ATGD is constant.

The fourth claim is clear by the fact that (%—g) |t p — AG®° = RTIn(c) along C..

The fifth and sixth claims follow immediately from the fact that A—%O is a function of T and is non constant.

For the seventh claim, if y is a chemical and dynamic equilibrium path, then pri»(y) C D, and, by Lemma
13, pri2(7y) C C, for some ¢ € R. It follows that Q is constant along the priz(7y) C D’ for some component
D', and then, by the fifth claim, pr1(y) C pri(D’) is a fixed temperature T, so that vy is a straight line chemical
equilibrium path.

For the final claim, we have that Q(T,P°) = 1, by Lemma 11, so that P = P° lies in C;. It follows, by
Lemma 13, that a feasible path  with pri>(y) C P = P° is a dynamic equilibrium path. [J
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3. Ideal solutions

Remark 1. We have, using the phase rule for an ideal solution in equilibrium with its vapour, and using the
ideal gas law, see [8], that

b;

)
o) = oo RTln(%). (45)

By the definition of an ideal solution, we have that
pi = i + RTIn(x;), (46)

where, by 17 (T, P), we mean the chemical potential of substance i on its own, at temperature and pressure
(T, P). By Raoult’s law P; = x;P;", see [7], combined with (46), we obtain;

, ) P
i = i+ RTIn(x) = pf + RTIn(55) = pif +RTIn( 1)  RTIn(7%). @)
i
Combining (45) and (47), we obtain that
P; P
we=pi— RTln(P—;) + RTln(P—’o)
— (e Piyy_ Ll i
= (ui + RTln(PO ) RTln(Po) + RTln(PO)
P
=u; + RTln(P—ZO). (48)

Letting P/ = P°, we obtain that (T, P') = yu?, (48), where (T, P’) is the temperature and pressure at which
the equilibrium pressure P/* = P°. From (46), the fact that (T, P) ~ (T, P’) and (48), we obtain that

i = 7 + RTIn(x;), (49)

as a very good approximation. This avoids the contradiction that x; = 1 for a solution involving more than
one component, at P = P°. To make the results here more precise, we need to compute the error term, but the
proof is still consistent if we allow that n;(T, P) — 0 as P — P°, so that x; = % — 1, and x; is not defined at
P =Pp°.
More specifically, we have that
ui (T, P) = pi (T,P') +39,

where 6 = pf(T,P) — u; (T, P'), so that
pi = i + RTIn(x;) + 6.

For Raoult’s law, see [7], we also need an approximation. We have that, by the definition of an ideal
solution, the phase rule, Dalton’s law that each gas in a mixture of ideal gases behaves as if it were alone in the
container at the equilibrium pressures {P;, Pf 1, see [7], that

*

o P ° P;
pi = i + RTIn(x;) = ui (T, P;') + RTIn(x;) +€ = y; ) + RTln(P—l) + RTIn(x;) +€ =y, (&) + RTln(P—f)),

(o)

so that p p*
RTIn(x;) = RTIn(5t) = RTIn(55) — €,

where € = u! (T, P) — u; (T, Pj), so that (47) becomes;
P*

P. .
wi = u + RTIn(x;) = uf —|—RTln(P—;) - RTln(p—lo) —e. (50)
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Combining (45) and (50), we obtain that

. b;
W= pi— RTln(P—) + RTln(P—l)
Pk
= (4§ + RTIn(55)) — RTIn(35) + RTIn( ) + ¢
=u; +RTln( ) te. (51)
Letting P’ = P° again, we obtain that
ui(T,P') = pi +e. (52)

From (46) and (52), we obtain that
#i = u + RTIn(x;) = u(T,P') + 6 + RTIn(x;) = u5 + € + 6 + RTIn(x;) = ui + RTIn(x;) + i,
where
vi =€+ = (T,P) = i (T, P;) + i (T, P) — i (T, P") = 2pi (T, P) — i (T, P{") — pj (T, P') = 0.

Using Lemma 1, we have that dG = —SdT + VdP, so that, if temperature is fixed, dG = VdP, then, for
the Gibbs energy function of substance i on it own, in the liquid phase;

G(],P,T’l)*G(],P-*,Tl) 1 P G 1 PV P
(T, P) — u*(T,P*) = : = d d
,uz(’ ) Vl(’l) n T’ZP].* nPI-*
nNam; Nym;(F _11'*) *
= (P — P:
/P* KZ( P)d Vm,z( 1)’

where «(T, P) is the density of substance 7 in the liquid phase, and which we assume to be approximately
constant, and V,,; is the molar volume. Similarly

Nam;(P — P')

=V,i(P—-DP),
. wilP— P

ui (T, P) — i (T, P') ~

so that
Yi(P) ~ V,, i(2P — P} — Py ~o0.

Now, we reformulate Lemmas 3, 5, 6 and 7 with this error term.

Lemma 15. In the ideal solution case, for the energy function G involving only c uncharged species;

9G
¢

where €(P) = Y5 vivi(P) ~ 0 and -y;(P) ~ 0 is the error term for the i'th uncharged species in Remark 1.

( )Tp = AGO+RTZTZ(Q) €,

Proof. By Lemma 5, we have that

le

C C
P = 21/1']11', AG°® = 21/1']1?. (53)
i=1 i=1
Using (53), the fact that y; = u + RTIn(a;) + 7;, and Definition 1, we have that

oG
G

Mn

(52)1p —AG® = ) vi(pi — p) = )_vi(ui + RTIn(a;) + v — p7’)

i=1

C

C
vivi = RTIn([ [ ai") + Y _ vivi = RTIn(Q) +e.
i=1 i=1

viRTIn(

I mn mn
Mm

Il
—_



Open ]. Math. Sci. 2023, 7, 35-88 55

O

Lemma 16. For an ideal solution, we have, using the definition of €(P) in Lemma 3, and the error terms y;(P),1 <i < ¢
in Remark 1, that

oG <
P = Zvil/‘ir
i=1
C
AG® =Y 3.
i=1

At chemical equilibrium (T, P), ( 5 CVrp = O0andat (T,P°), AG® = 0.
—e(P)

If chemical and electrical chemical equilibrium exists at (T, P°) and (T, P), then Q(T,P) = e’ ~ 1 and
E = E°. Conwversely, if Q(T,P) = e R ~ 1 and chemical equilibrium exists at (T, P°) then chemical equilibrium
exists at (T, P).

Chemical equilibrium exists at (T, P) iffQ(T,P)=e D)

We always have that Q(T,P°) = eRT =~ 1, where § = €(P°) = Y51 vivi(P°).

Proof. For the first claim, we have, using the definition of ¢, that
dn; = v;dg, (1<i<ec). (54)

By Lemma 1, fixing T and P, and using (54), we have that

c c
G = Z}lidl’li = (2 ‘Llil/l')dg, (55)
i=1 i=1
so that
G <
=2)T,p = Y HiVi. (56)
i=1

The second claim follows from the first, as
o 1 aG 1 ¢ ° c o 1 4 o
AGU(T) =[G e = [ (O vinf (T))de = L vip (T) [ dg = ) v (T),
i=1 i=1 i=1

noting that (%—%)T, po doesn’t vary with ¢.
For the third claim, at chemical equilibrium, (T, P), noting again that (a—g)T,p doesn’t vary with ¢, and

using (55) and (56), we have that

3G
9

At chemical equilibrium (T, P°), using the first and second claims, and (57), we have that

dG = (57)tp =0, (independently of ¢). (57)

aG .
dG = (ag Tpozzulyl =AG° =0.
i=1

For the second to last claim, and the first direction, we have, by Lemma 3, that RTIn(Q) = —e ~ 0, so that
Q(T,P) =e R 1, and, by Lemma 20, that E — E° = %F(Q) - % = % - % = 0. For the converse,

we have by Lemma 3, using the fact that Q(T,P) = e R~ 1;

G

(3¢

)TP —AGO—G( )+€<P) :AGO,
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and, if chemical equilibrium exists at (T, P°), then, as Q(T, P°) = eielg : we have that

oG

(%)T,PO = AG° + RTIn(Q(T,P°) +€(P°) = AG° =0,

so that (%%)T,P =0.
G

For the penultimate claim, in one direction, use Lemma 3, together with the fact that ($2)7p = 0 and

¢
rearrange, the converse is also clear, applying In.
For the final claim, we have, by the definition of activities, that
i = u; + RTIn(a;) + vi(P).
so that RTIn(a;(T,P°)) = —v;(P°). Now use the definition of Q in Definition 1. O
Lemma 17. Along a chemical equilibrium path, we have that
Q) 1 (PO ( 1(EPT) _ elPT)
In == ——dT ++— — ,
(Q(Tl)) R/, T? R( T Tz )
AG°(Th) AG°(Ty) > AH°
. — / dT.
T T 7, T2
In particularly, if AH® is temperature independent
QT AH® 1 1 1 e(P(Th e(P(Tr))
Q) _ AHT 11 e(P(T) | e(P(Ty))
Q(Th) R ', T R T T
AG°(Tp) AG°(Th) ..., 1 1
L Af (Tz - Tl),
° Th ) ~o 5! °
AG°(Th) = —=AG°(Tr) — (= — 1)AH".
T I
For c € R, let D, intersect the line P = P° at (Ty, P°), then, for (T, P) € D, we have that
AG® (Ty)—=AG® (Ty)—e(P(T))
Q(Tp,P) =e R , (58)
c = AGO(Tl),
QM) _ _ 1 /T2 AH® —c e(P(Tz)) _e(P(Th))
AG°(Tp) — AG°(Ty) o AH® —¢
[P ey,
T T T?
and if AH® is temperature independent;
QT), _ _ _(AH —c, 1 1, e(P(T2) e(P(Th))
AG°(Tp) — AG°(Ty) o 1 1
= (AH° —¢)(7+ — =
o T ) o T
AG°(Ty) = —AG°(Th) —AH° (= —1). (61)
T T
Proof. By Lemma 5, we have that
C
AG°® = Zviyl ,

so that differentiating with respect to T;

dAGY) & dpd & e
aT VT _gv’( a7 )P
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By Euler reciprocity, we have that
a]/ﬁ 0S° —o
(57 )en = *(Tm)T,P,n/ = =5i,

so that, noting S; is independent of 71;, so we can replace S; by g;,l«, the absolute molar entropy of substance i,
and using thermodynamic arguments;

C

i iS; == —Y_uS,,; = —AS°. (62)

i=1

(AG°

Using the product rule, (62) and the definition of enthalpy, we have that

d AG°,  1d(AG®) 1 o AS° AG®  A(ST+G)°  AH°
T ) ST ar i R h T2 T2 (63)
B . e _ ZAG°—e(P) _ —AG°—¢(P)
y Lemma 16, along a chemical equilibrium path, we have that Q = e~ rr, so that In(Q) = — - It
follows from (63) that
din(Q) _i(—AGO)ii(e(P))_ AH° d (e( ))
dT  dT' RT dT ' RT ’~ RT? dT' RT
It follows, integrating between T; and T, and using the fundamental theorem of calculus, that
QD)
In =In ) —In T:
<Q(T1)) (Q)(T2) — In(Q)(Tx)
~ (T2din(Q)
B /Tl ar T
1 T2 AH° d e(P)
"R ' T2 ~ a7y AT
_ -AH® AH° e(P(Ty)  e(P(Ty))
~ R, + RTy — RT,  RT ) (64)

so that, rearranging, we obtain the first claim. Using the fact, by Lemma 15, that

—AG°(Tp) — e(P(Ty))

im(Q(ry)) = AT P,
In(Q(Ty)) = AGO(Tll)QTle(P(Tl)),

we obtain, substituting into (64), canceling R, and performing the integration, if AH® is temperature
independent, that

—AG°(Tp) —e(P(Tz)) —AG°(Ty) —e(P(Th)) _ —AH° 4 AHT e(P(T2)) e(P(Th))

RT, RTy ~ R, RTy — RT, RTy )
so that
AG°(Ty)  AG°(Ty) 1
L T =AM (Tz - Tl) (65)

For the fifth claim, rearrange (65). If D, intersects the line P = P° at (Ty,P°), for the sixth (58) and seventh

claims, we have, using Lemma 3 and the fact from Lemma 16 that Q(Ty,P°) = eRTl

(?)(g)n,p T;) + RTon(Q(Tz, P)) +e(P(T2)) = (%(g)“

G (T») (
= AG°(Tq) + RT1in(Q(Ty, P°)) + €(P(T1))
= AG°(Th) + RT1In(Q(Ty, P°)) + €(P°)

— AG°(Ty) — (5+e( °)
=AG°(Th) =
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so that, again rearranging, we obtain the result. Along D., we have, using Lemma 3, that

¢ — AG®(T) — (P(T))

so that, using the first part;
din(Q) i(c—AGO(T) —e(P(T))) _ —C i(—AGO(T)) B i(e(P(T))) _ AH° —c B i(e(P(T)))
dT 4T RT ~ RT?2 4T RT dT* RT ~ RT? dT* RT 7
)
so that, performing the integration, using the fact that Q(Ty, P°) = e®1;
)
ZMQUE)—hﬂQUM)ZlMQU®)+§ﬁj
1 2 AH°—c d ,e(P(T))
" RJpy T o CRp T
1 (2 AH® —c €(P(Tz)) e(P(Th))
== dT — ( — ).
R J7 T2 RT, RTy
We have that, by Lemma 15;
_ ¢—AG°(Tr) —e(P(T2))
lTl(Q(Tz)) - RT2 4
1)
In(Q(T1)) = —ﬁ/
so that
_¢—AG(Tp) —e(P(Tp)) , ¢
_ AG(Th) — AG®(Th) — e(P(T2)) n 0
RT, RTy
_1 TZ[AHO —c_ (G(P(Tz)) _ G(P(Tl)))
 RJg T2 RT, RT;
I YO TCORE VI S SN (A€ )) N
=g B —o(E -5 RT,  RT
so that, canceling R and the the error terms;
AGY(Ty) =AG(TY) _ hrro b 10 o Ao 1 1
so that, rearranging again;
o 1.1 10 AG°(Ty)  AG°(Tp) _ ool 1
to obtain;
o T\ o o h
AG°(T1) = =AG°(T,) — AH° (= —1).
T, T
O

Lemma 18. If there exists a component D, ¢ € R, which projects onto a closed bounded subinterval I of the line
P = P°, not containing 0, and intersects P = P° at (Ty, P°), with Ty > 0, then, for T, € I, AG® is linear, with;

(AG°(T1) — AH®)
T
If e # 0, have that; (%)T’p = A+ eln(P) + BT where {A, e, B} C R and {B, e} can be effectively determined,

etn( B )—e(P)
and we have that the activity coefficient is given by; Q(Ty,P') = e and the dynamic equilibrium paths are

AGO(Tz) = Tz( )+AHO, for T, el



Open ]. Math. Sci. 2023, 7, 35-88 59

P\ "

given by; ( 75 ) R = ce€ for ¢ € Rxo, see Definition 1, while the quasi-chemical equilibrium paths are given by;
/\+eln(P’) + BTy = cforcER

Ife =0; (‘fi—) 7p = A+ BT + oln(T) where {A,B,0} C R, and {B,c} can be effectively determined. The
activity coefficient Q is given by; Q(Ty, P') = e%g).

The dynamic equilibrium paths are given by; E%le) = ¢ for ¢ € R, see Definition 1, while the quasi-chemical

equilibrium paths are given by; A + eln(P') + BTy = cforc € R.

Proof. For the first claim, by Lemma 17, we have that

T AG°(T;) — AHP
AG°(T,) = =2AG°(Ty) — AHO(— —1) = Tz(( ¢*(h) ))+AH°.
T T I
For the next claim, by Lemma 16 and the proof of Lemma 7, we have that
A% )rp v d A2
( §T )P = ( (2 1,”1 ZVI ‘ul = Z Vi Vl ZVI m,i (66)

Again, to compute gm,i/ we have by the first law of thermodynamics;
dQ =dU+dL =dU+ pdV,

where L is the work done by the system. We can assume that the liquid mixture is in thermal equilibrium with
a mixture of ideal gases in the vapour phase, and using the ideal gas law, the definition of temperature for
ideal gases, obtain the calculation of internal energy for the mixture;

C
Uu(T,P,ny,...,nc) = Z(fNAnikT — Nan;m;p;),
=1

N WL

where m; is the molecular mass of species i, p; is the specific latent heat of evaporation of species i, which
we assume is independent of temperature T. By a result in [11], using the fact that entropy difference is
independent of path, we have that Q is independent of P. We then have

C 3 C 3 Cc
— V" 2 NAkTdn: S NakndT — 0:dn:
dau 1; 2NA dn; —1—2 ZNA n;d ;NAmszd"zr

c ¢ c
Q=Y gNAdeTli +) %NAk”idT = ) Namipidn; +dL,
i=1 i=1 i=1
. — c .
dTQ = Z %NAkdl’l + Z NAknzd Z NAmsz i + M * 2 hi(T’ﬁ)%’
= i=1
(TQ)W,T,P NAkdnz NAmlpl 1 +hi(T,71) TZ
It follows that
_— Q. 3 Namipi  Ki(T)
Sm,l — An]_l( T )n/,T,P = 2I\[Ak T + T . (67)
So that, from (66)
A&)Tp £ 3 Namipiy ¢~ ki(T
¢ )T, AM;iP; l( )
(7)13 = — ZU-(fNAk* 7) - ZU‘
5T P i\ T = T
3 ¢ -
= _ENAk(ZVi) ZVz,uz Pi Z
i=1 i=1 =1
G(T)

3 C
= _ENAk(; vi) + TA ; T (68)
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From (68), which is uniform P, we see that (%)T, p is of the form
G(T
w(P) + BT + 4In(T) — / ¥ (69)

where {B,7} C R, and, assuming that (%)T,p is differentiable, « € C!(R). By a similar calculation, we have

that

8(%—6)Tp 0 1 ¢ . ¢ . c o c
g/Try  O(Evipi), Opiy op av _ NAm
(—p )= (55" )T—I;Vi(afpl)T—i:ZlVi(aT;)T,n 1:21 TP = ;VV —; l
(70)
where «; is the density of substance i. We also have that
C C
Z NAml =P(}_vVi) =G(T), (dL = PdV), 1)

and from (70),(69) and (71), we have that

(%)

P(—5p

)7 = G(T) = Pa’(P),

so that G(T) =€, a(P) = A +eln(P), (%)T,p is of the form;

x(P) + BT +yIn(T) - | @ — A+ eln(P) + BT +yIn(T) — eln(T) = A + €ln(P) + BT + oIn(T), (72)

where o = ¢ —¢, {ﬁ €A 0} CR.
If e = 0, then ( ¥ &)1 p is independent of P, and the components D, are all straight line paths. In this case,
if D, intersects the line P = P° at (Ty, P°), then, for all P > 0;

c = AGO(Tl) + RTllTl(Q(Tl,P) +€(P) = AGO(Tl),

implies that RT1In(Q(Ty, P) = —e(P), so that

—e(P)
Q(Ty,P) =e R . (73)
From (72), we have that
dG
(dg)TP—/\—i-ﬁT—i-(fln( ). (74)

The calculation of the dynamical and chemical equilibrium paths follows easily, from the equations Q = c, for
c € R>oand ( i CVrp = ¢, for c € R, using (73) and (74).
If € # 0, for any ¢ € R, we can solve the equation;

A+e€ln(P)+ BT +oin(T) =,

for any given T > 0 and an appropriate choice of P(T). In particularly, there exists a component D, projecting
onto the line P = P°. Calculating limits at {+oc0, —c0}, we have that for 8 > 0,0 > 0 or 8 < 0,0 < 0, we can
solve the equation;

A+eln(P°) + BT+ oln(T) =, (75)
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for T.Ifp> 0,0 <0Oorf < 0,0 > 0, observing that (BT + ¢ln(T)) = B+ §, (BT + cln(T))" = — 4, so there
exists amin/maxat T = /S , we have that, if

—o+oln(—- ) < c—A—eln(In(P?)),

/3
—o+oln(—- B )>c— —eln(In(P°)),

we can again solve the Eq. (75) for T, so that, for an appropriate choice of ¢, there exists an intersection of the
component D, with the line P = P°.
By the first part, AG® is linear, with;

(AG*(T1) — AH®)

AG®(T2) = Ta( T

)+ AH®,

for an intersection at (T;, P°). We also have, using (72), that

AG(T2) = (G2 )np(To, D7) = A+ eln(P*) + BT + o1n(Ta),

so that, equating coefficients;

oc=0,
A+ eln(P°) = AH®,
(AG°(Ty) — AH®)
ﬁ = T 4
1

AG®(Ty) = BTy + AH®.

We can then, using Lemma 15, obtain a formula for the activity coefficient;

((33)7,plg, pr ~AG°(T1)—(P') (A —cln(P'°)-+eln(P! )BT, — BTy +AH°))—e(P') etn( ) —e(®)

Q(Ty, P)=e RTy =e RTy =e KO , (76)

as required. The claim about the coefficients being determined is clear from the proof. The determination of
the dynamical and quasi-chemical equilibrium lines, see Definitions 1 and Lemma 13, follows from a simple
rearrangement of the formulas Q(T, P’) = ¢, for some ¢ € R >, using (76), and ( )T p = ¢, forsomec € R,
using (72), withoc = 0. O

Lemma 19. Let notation be as in Lemma 7, then if € # 0, with Q(T,P) = (£ )LTe R , then, using the definition of
grad in [2];

—eln(4&) +€(P), P —e(p) %—d@)fgﬁwag)

grad(Q)(T, P) = (B AT (e, PP (D
In particular the paths of maximal reaction, for the region |grad(Q)(T,P)| > 1, Q(T,P) > 0, are given by

| rbarttap =~ +cforc € R.

—eln(£)

Ife(P) = 0; then grad(Q)(T,P) = (—¢5f" (Ifo)% ﬁ(%)%) and the paths of maximal reaction, for the
region |grad(Q)(T,P)| > 1, Q(T, P) > 0, are given by Pz(l n(P) _ @ -+ z =cforceR.

Ife = 0, with Q(T,P) = e - , then grad(Q)(T,P) = (e(P)e_lezTP), € (P)e_RTP)) and the paths of maximal
reaction, for the region |grad(Q)(T, P)| > 1, Q(T,P) > 0, are given by f dP = *T +cforceR.

Proof. The determination of grad(Q)(T,P) = (g—% %) is a simple application of the chain rule and the
formula for Q. By the definition of the extent ¢ of a reaction, see Definition 1, we have that, for 1 <i <¢;

n;(t) = viG(t) +nip,

n(t) =

c
]:1 z:l
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wherea = Y7 ;v;and B =Y, n;, so that

It follows that for a feasible path v;

i o vic(t) gy, T (Vg (t) +mig)"
H.’X 712( )) - 11;!:( «x@(t) +.B ) - %Oég(t) +‘B)C - G’Y(C(t))/

where G, (x) = %W We have that ¢(0) = 0, and, as we can assume that § > 0, we have that

Yo villTjzinj0) ¢ ;;:1 nj0
'Bc ‘BC+1
1
‘BC+1 Z Hn]o —cHnJO
i=1 j#i
_ Hf=1 ]10(/321:1 Vi —0)
IBC+1 nio
C
— [Ti-17j0 (Mt
‘BCJ’_l mi
Iy )
_ =170
- ‘Bchl (
_ immio

13c+l

H 110
=17y ] v;
= ,BCH (log( Hx g init —

_ W(log(Q(m(t)))’lo o)

_ H]q:1 nj0  grad(Q) . 712(0> —¢)
petl Q(712(0)) '

G/ (0) =

Vi

—0)

i—1 Xiinit

(3 vilog(x:) e — ©)

i=1

so that;

o 8rad(Q) - 11, (0)
GL(0) =0, iff STl
70 Q112(0))
which we can exclude by an appropriate parametrization of the feasible path v, without altering the direction
of 71,(0). By the inverse function theorem, we can invert G, locally, to obtain that {(t) = (G, Lo Q)(712(t)).

Then

&'(0) = (G5 lo(my,py) 87ad(Q) (To, Po) - 712(0)

_ grad(Q)(To, Po) - 715(0)
G7(0)

_ / gt Q(712(0))
= 87T 20) 12O 5 () 47,0) — cQr12(0)
_ a1pa[grad(Q)(To, Po) - 715(0)]

grad(Q)(To, Po) « 71, (0) —cB1’

c+1
where 712(0) = (To, Py), a1(To, Py) = %, B1(To, Po) = Q(712(0)).
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Writing 7},(0) = A(cos(6),sin(6)), we have that

£(0) = Aalﬁl[g—%(mpo)cos(@) + aa%l(Tg,Pg)Sin(e)] —n(A,0) = Ay B1r(0)
MS2 (1, ) c05(8) + 5317, y)5in (6)] — cB1 Ar(0) — cBr
. 2

where r(0) = %kmpo)cos(@) + %RTO,PO)sm(G). We have that 9 = Ail(g)li(fg] - ())L‘:((lel;l—rcé?))ﬂ so that I =

0 iff a1B17(0) (Ar(0) — cB1) — Aayp1r?(0) = 0 iff —cayB3r(0) = 0, so that, as a3 # 0, Q(To, Py) # 0, and
(cos(0),sin(0)) is not tangent to the dynamic equilibrium path at (Tp, Py), then /(A, 8) is monotonic in A.

oh - )\061‘311’/(9) /\20(1‘311’/(9)
3~ Ar(6) —cpr (Ar(0) — cp1)?’

so that 2 = 0iff Aay 17/ (0)(Ar(8) — cBr1) — A2a1 By (0) = O iff Ay By (Ar(0) — cBr) — A2a1 By = 0 iff r(6) =

Aoy rt+cAm 7 ch
A2a1 By =1+

If |11+ C’%\ < |grad(Q)(Ty, Py)|, and |grad(Q)(To, Py)| > 1, we can solve r(6) = 1+ C‘%, for A > 0, so that,
whenr(8(A)) =1+ %,‘

AwiBr(1+ LYY Ay By + ca B cay B2

cB1
h(A,0(A)) = = =wa1p1+ =a1pr(1+ =),
AL+ %y —cpy A A A
$0 a maximum/minimum occurs when |1 + %| = |grad(Q)(To, Po)|, in which case (cos(0),sin(6)) is parallel

to grad(Q)(Ty, Py), and perpendicular to the tangent of the level curve of Q, through (T, Py). We, therefore,
have to solve the paired differential equation;

P
dar _ —eln(5) +e(P(1)) RAONEO
dt RT(t)? pe ’
e__ ¢l
dP _ P € (P(t))(P(t))R;(t)e—;%;))
dt RT(t) pe ’
so that » "
$—€'(P s
ap P (g)fe . T(5-€(P))
dT — “en(L . ¢ P :
T G )@ ey goar —eln(p) +e(P)
Separating variables, we obtain that
In(4)—e(P
elnlpe) —€(P) yp _ _ar,
€'(P)—%
which has an implicit solution given by
€PIn(£) — Pe(P) T?
/ per(Py—e W= 5 To

for c € R. By a result due to [3], we have that these implicit solutions are integral curves for grad(Q) as
required. If (P) = 0, then €/(P) = 0 and the implicit solutions are given by

T2

/‘ Pln(%)dP =—5 +ec,
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for c € R. We have, integrating by parts, that

/ pm(%) = [ Pin(p) — Pin(P*)
P2In(P) P P2n(P°)
_ _ / o

2 2
_ Pln(P) P> P2n(P°)
2 4 2
In(P) In(P°) 1
_ p2 _ _ =
=P 2 2"

for ¢ € R as required. The determination of grad(Q)(T, P) when € = 0 is again a simple application of the
chain rule. As before, we compute

dP _ —xr e H _ —€(P)T
dT eR(;’z) e%@ e(P)
so that, separating variables;
e(P)
P=-TdT
e’(P)d dT,

and the implicit solutions are given by

O

Remark 2. The fact that, in the case €(P) = 0, the paths of maximal reaction depend on an arbitrary choice of
P° suggest that some approximation is needed in the formula;

F’li(T/ P) = ‘uzo(T) + RTlog(xi(T/ P))
for ideal solutions. Of course, once P° is fixed, €(P) depends on this choice of P° as well.

4. Electrochemistry with error terms and ideal solution

We consider the reaction Hy(g) +2AgCI(s) +2e~ (R) — 2HCI +2Ag(s) + 2e~ (L), for the standard cell,
even though the uncharged species probably don’t form an ideal solution. The reader can easily reformulate
the results in the context of an ideal solution, by just changing the electron count, see §8.

Lemma 20 (The Nernst equation for the standard cell). At electrical chemical equilibrium (T, P) and (T, P°);

RTIn(Q(T,P)) e(P)
B 2F - 2F

(E—-E°)(T,P) =

Proof. For ¢ substances, with ¢ the number of the charged species, using Definition 1, we have that the
electrostatic potential energy;

C/
U =Y ¢(%i)qi,
i=1

where q; = Njez; = Nanjez; and where {X; : 1 < i < ¢’} are the positions of the charged species, N; is the
number of particles at ;. We have that
U = Ucpem + U,
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so that
G(T,P,nl,...,nc) =U+PV-TS
= chem+uel+PV_TS
= Uy + Gchem
c
= Z (P(yj)% + Genem
j=1
c
= Z (P(fj)NAleEZj + Gehems
j=1
so that
oG
pi = (E)Tzi)T’P
B (a(Z]C':l ¢(X;)Nanjez; + Gepem)
o E)n,- TP
= Hichems (Cl +1<i<c)
(T .
= Ui chem + (47(351;1:1[14”1621)/ (1 <i< Cl)
i

= Wichem T ‘P(Ei)NAeZi
= Michem + ‘P(yi)FZi- (77)

We consider the standard cell reaction Hy(g) + 2AgCI(s) +2¢~ (R) — 2HCI + 2Ag(s) + 2e~ (L). At electrical
chemical equilibrium, similarly to Lemma 5, generalized to a collection involving charged species, using (77),
we have that

G
(ETC)T’P =Y Vit

= 2(HCI) +25(Ag) — p(Ha) ~ 2u(AgCI) +2p(e™ (L)) ~ 2u(e (R))
— (P 2p(e” (L)~ 20(e(R)

_ (2w
= (

o )1,p + ((2pchem(e™ (L)) = 2FP(L)) — (2ptchem (e (L)) — 2F¢(R)))
aGchem/
=

a¢
aGchem’

g

where Gy, is the Gibbs energy restricted to the uncharged species. By Lemmas 15 and 16, we have that

)1,p +2F(¢(R) — ¢(L))

)r.p+2EF =0, (78)

aG h ! ¢
(—=Cem )y po = Z Vi
ag i=c'+1 ll
= (AGshem’ + RTln(Qchem/(T/ PO)) + E(PO))

= (AG,,,, —€(P°)) +€(P?))

chem’
== AG?hem/. (79)
From (78) and (79), we obtain
o IG jyom R
2E F —_= —( chem )T,PO = _AGchem" (80)

og
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Similarly, we have that

3Gy c .
(%)T,P = Y vipi = (AGSpy + RTIN(Qeppeny (T, P)) + €(P)), (81)
i=c'+1

so from (78) and (81), we obtain that

d Gchem’
o

Combining (82) and (80), we obtain that

2EF = —( )1,p = = (DG + RTIN(Qeeny (T, P)) + €(P)). (82)

2EF — 2E°F = —(AGS,,, + RTIn(Qepen (T, P)) + €(P)) — (—AGS) = —RTIn(Qepeny (T, P)) — €(P),

so that
_RTln(Qchem’(TrP)) _ €(P)
2F 2F °

E—E° =
O
Lemma 21. At electrical chemical equilibrium (T, P) and (T, P°), and chemical equilibrium (T, P), we have
AG®° = 2F(E — EY).
Proof. By Lemma 20, we have that

_RTIn(Q) e(P)

E—E° = 5F  oF (83)
and, by Lemma 15, we have that
oG o
0= (g)m = AG° + RTIn(Q) + €(P). (84)
Rearranging (83) and (84), we obtain the result. [
Lemma 22. Ife = 0, we have, for all Ty > 0, that
oG oG
(%)T,P“Thpl) = (Tg)T,P|(T1,Pf)/
iff
E(Ty, Py) = E(Ty, P7) = E°(Th),
where G is the Gibbs energy function for the charged and uncharged species.
Proof. By (78) of Lemma 20, we have that
oG G jem’
(3¢ )rp = (55" )rp +2EF. (85)
By Lemma 18, we have that (acgihgm/)’f,p is independent of P, in particularly, we have that
G hem! G gem!
( Sgem )1,p = ( ggem )11, (86)

so that, combining (85) and (86), we obtain the result. [

Lemma 23. We have, for all Ty > 0,P; > 0, that

G G
2F(E(Tq, P1) — E°(Th)) = (%)T,P|(T1,P1) - (ETC)T,P\(TLP;)) — RTyIn(Q(Ty, P1)) — e(Py).
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Proof. Following the proof of Lemma 20, we have that

G G '
(g)T,PHl,Pl = ( ggm )1.p|T,P, +2E(T1, P)F, (87)

. 3G 3Gy 3G .
2E°(Th)F = (afg)T,Phl,pf —( (—;Igm ).plTy, P = (%)T,P 1,00 = DG (T1), (88)

so from (87), (88) and Lemma 15, we have

JG 3G om
2E(Ty, P)F = (atz)T/P Ty,p — ( S?m )1,plT,P,
oG .
—= (Tg)T,P Tlrpl - (AGChCm,(Tl) + RTlln(Qchem’(le Pl)) _|_ G(Pl)),

o oG .

2E(Ty, P)F —2E°(T)F = (g)f,p 1P, — (DG (T1) + RT11n(Qepen (T1, P1)) + €(P1))
oG 3
B ((Tg)T'P TPy — AGchem’(Tl))

G 9G

= (%)T,P Ty,Py — ((%)T,Phl,plo — RTy1n(Qupen (T1, P1)) — €(Py).

O

5. Dilute solutions

Definition 5. As mentioned in Definition 1, we can consider an electrolyte as a solute in a dilute solution.
Sometimes the solvent is involved in an electrolytic reaction, for example;

2H,0 +4e” (R) — Oy +2Hy +4e™ (L), (89)

and sometimes not, as in the standard cell, where we can consider H,O as the solvent not involved in the
reaction. In Lemmas 2 to 10, for the standard cell, we can replace Q defined as [T;_; afi by ao(IT5_, aiv"),
considering HO as substance 0.

We ideally have that

wi = u; + RTIn(a;), 0<i<cg, (90)
when we define the activities a4;, for 0 < i < ¢, which, when (90) holds, involves a contradiction.
Lemma 24. In Lemmas 2 to 10, for the standard cell, and considering a dilute solution with no interaction of the solvent,

replacing Q defined as [15_y a; by ao(IT5_q a;"). If we assume without approximation that p; = ¢ + RTIn(a;),
0 <i <, then, the Lemma 2 reduces to

E—E° =

aog(T,P
_RTIn(Q) | RTIn(G475%5)

2F 2F
and Lemma 3 reduces to 3G 0
(a?)T,p — AG° + RTln(m)

where AG® is the Gibbs energy change for 1 mole of reaction without the solvent.

The Lemma 4 reduces to
AG® = 2F(E — E°) + RTIn(ao(T, P°)),

and Lemma 5 remains same with the modification that if chemical and electrical equilibrium exist at (T, P°) and (T, P),

Q(T,P) = ap(T,P) and E — E° = —w. Conversely, if Q(T, P) = aaoo((TT,}i)) and chemical equilibrium exists

at (T, P°) then chemical equilibrium exists at (T, P). Also, chemical equilibrium exists at (T, P) iff Q(T, P) = aoe%?o.
Moreover, we always have that Q(T,P°) = 1.
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The Lemma 6 remains same with the modification that along a chemical equilibrium path, we have that;

Q(Tz), 1 /T2 AH® ao(T2, P»)
In = — dT +In(——+"-=),
(Q(Tl)) R Jr, T? (ao(Tl,P1))
and, if AH® is temperature independent;
Q(T2) AH® 1 1 a9(T2, )
In = == ) FIn(—=—=<).
(Q(Tl)) R (Tz Tl) (ﬂo(T1,P1))

For c € R, if D, intersect the line P = P° at (Ty, P°), then, for (T, P) € D,, we have that
AGO(Tl)fAGO(Tz) ;Tl
Q(To, P) =e kT ao(Ty, P°) 2 ag(T>, P), 1)
c = AGO<T1) - RTllT’l(Clo(Tl,Po),

Q1) ag(T, P)

1 T2 AH® — ¢
(i) = Q) = g [ =g+ In( ),
AG°(T,) — AG(T T AH® — T
( 2)T2 () _ _/Tl TCdTJrR(l— é)l”(ﬂo(ﬂ,l’o))/
and if AH® is temperature independent;
QD) _ __AH ey 11, (T P)
In(§gy) = QM) = ~(F )5, = 5) T or 50, 92)
AG®(Ty) — AG®(T 11 T
( 2)T2 (M) _ (ppe ~0)(; = )+ R = )inao(Ti, P), (93)

to obtain AG°(Ty) = %AGO(B) — AHO(% — 1) again.
eln(PP—,;)

The Lemma 7 remains same with the modification that if e # 0; Q(To, P') = e X2 ay(T,, P') and the dynamic
equilibrium paths are given by ag(Ty, P’)(PL,;)TTZ = c for c € R, whileife = 0, Q(Tp, P') = ;00((722’1,13,;)), the
a0(To,P')

w(HPe) = € for ¢ € R>q and the quasi-chemical equilibrium lines are given by

dynamic equilibrium lines are given by
A+ BTy +oln(Ty) =cforc € R.

Proof. Following the proof of Lemma 5, we note that for Gibbs function G with ¢ + 1 species, including the
solvent, substance 0, as dng = 0, that

c c
dG = Z ]«ll‘dTli = 2 yidni,
i=0 i=1

so the first three claims in Lemma 5 go through as before. Going through the proof of Lemma 3, we then obtain

that
<a£) = AG°+RT1n(ﬁaVi) —AG°+RT1n(f:7°”lW
ag /TP il ao(T, P)

Going back through the proof of Lemma 5, we obtain that RTZH(%) =0, sothat Q(T, P) = ao(T, P). Going

through the proof of Lemma 2, using the fact that y1; = y? + RTIn(a;), for 0 < i < ¢, so that Q(T,P°) = 1, we
have that

Q

) =AG® + RTln(m).

Gy ] )
(%)T,P“ = AGchgm’ + RTZ”(Qchem’(TfP )
— AGS, ,+ RTIn(—2—)
chem ao(T, po)
— NG — RTIn(ag(T, P°)), (94)

where G,y is the Gibbs energy restricted to the uncharged species without the solvent. Using (4), from
Lemma 2 and (94), we obtain

2E°F = —AG?,,,s + RTIn(ag(T, P°)). (95)
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Similarly, we obtain

G hem’ o o Q
(%)T’P = AG gy + RTIN(Qepen (T, P) = AGgpey + RTln(ﬂo(T, P) )
so that, from (4), from Lemma 2;
— _(ACO Q
2EF = —(AG,,,y + RTln(aO(T, P) ). (96)
Combining (96) and (91), we obtain
2EF —2E°F = —(AGy,,,y + RTln(a(?P))) — (=AG,,,y + RTIn(ao(T,P°)))
ol4,
_ Q - o\ _ QO(T, P)
= RTln(aO(T, P)) RTIn(ao(T, P°)) = —RTIn(Q) +RTln(7a0(T,PO)),
which gives the result.of Lemma 2. Going back through the proof of Lemma 5 again, we then have that
T,P T,P
E_po_ _RTIQ RTIn(2G2%) __ RTIn(ao(T, P)) RTIn(22%) _ RTIn(ag(T,P°))
N 2F 2F N 2F 2F N 2F '
For the converse claim, we have by the modification of Lemma 3, and the facts that Q(T,P) = HZO((TT’I,Iz,)),

Q(T, P°) =1, (%%)1,pe =0, that

G o 0 e )
(a—g)T,p = AG° + RTln(ao(T, P)) = AG® — RTlIn(ao(T, P°)),
and - 0
(3¢ )T = BG” + RTIn(—55) = 0.

So that we have chemical equilibrium at (T, P). For the penultimate claim of Lemma 5, rearrange the formula
from the modification of Lemma 3, with the definition of chemical equilibrium;

G o Q
((—Tg)T,P = AG° + RTln(ao(T,P)
The last claim is clear from y; = uf + RTIn(a;), for 0 <i < c.
For Lemma 4, we have by the modification of Lemma 2, that

) =0.

ao(T,P
_ RTIn(Q) RTIn( aoo((T,Po)) )

E—E° = °F F ,
and, by the modification of Lemma 3, that
dG R
0= (E)T,P = AG® + RTIn(Q) — RTIn(ao(T, P)),

so that

AG® = RTIn(ao(T, P)) — RTIn(Q)
B . ao(T, P)
= RTIn(ag(T, P)) + 2F(E — E°) — RTln(aOO(Tjo))

— 2F(E — E°) + RTIn(ao(T, P°)).
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For the modification of Lemma 6, the first part of the proof goes through with the chemical potentials
ui, 1 <i < ¢, defined relative to the Gibbs energy including the solvent. By the modification of Lemma 5, we

have that Q = agpe “RF along a chemical equilibrium path, so that

In(Q) = _ﬁTGO + In(ao(T, P)). @)
It follows that i p AG p N p
mQ) _ A (2B L infag(1,2))) = A 4 L (tn(ao(T P))).

RT?2 4T
It follows, integrating between T; and T3, using (97) and the fundamental theorem of calculus, that

QT2)\ _
(i) = In(Q)(T2) = In(Q)(Ty)

—AG°(T AG°(T.
_ RTE 2) | RT(ll) +1n(ag(To, Py)) — In(ag(Ty, P1))

_ (TdinQ)
_/Tl ar L
_ 1 T AH° /Tz d
R T2 7, dT

Tz o
R/ B+ In(ag(Ta, P2)) — In(ag(Ty, 7). (98)

(Inao(T, P)))dT

So that, rearranging, we obtain the first claim. Using the fact, by the modification of Lemma 3, that

m(Q(T2)) = ~25 T in(ao(Ta, Py,
n(Q(1) = =25 4 nao(ry, 1))

We obtain, substituting into (98), canceling R, and performing the integration, if AH® is temperature
independent, that

AG°(Ty)  AG°(Ty) _ _/Tz AHP 11

=AH°(= — — 99
T2 Tl Ty T2 (T2 Tl ) ( )

For the fifth claim, rearrange (99). If D, intersects the line P = P° at (T;, P°), for the sixth and seventh claims,
we have, using the modification of Lemma 3 and the fact from Lemma 5 that Q(Ty, P°) = 1;

(?)(g)]“zp = AGO(Tz) + RTzln(Q(Tz,P)) — RTzln(ao(Tz,P))
~ (G

= AGO( ) + RTlll’l(Q(Tl,Po)) — RTlli’l(ﬂo(Tl, PO))
= AGO( 1) — RTllTl(ao(T1,P )) = C.

So that, again rearranging, we obtain the result. Along D., we have, using Lemma 3, that

In(Q) = S + In(ao(T,P)),

so that, using the first part;

din(Q) d c—AG° d
Q) 2O - (n(ao(T, P))

_ R;TCZ + %(_ﬁfo) - ;T(l”(ﬂo(T P)))
= A inao(T, ),
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so that, performing the integration, using the fact that Q(Ty, P°) = 1;

1 [T AH® —¢ .
n(Q(T)) — n(Q(Th)) = n(Q(T2)) = ¢ |~ —z—dT +In(ao(Tz, P)) — In(ao(Ty, P7)).
1
We have that, by the modification of Lemma 3;
c— AG°(T
In(Q(T2)) = T(Z) + In(ao(T2, P)),
2

n(Q(T1)) =0,

so that, using the formula for c;

n(Q(Tz)) = n(Q(T2)) — In(Q(T1))

_ c—AG(Ty)
=5 + In(ag(Ty, P))
AG°(Ty) — RT T1,P°)) — AG°(T:
_ AG(Th) 1n(ag(Ty, P°)) — AG*(T>) + In(ag(Ty, P))
RT,
1 2 AH®° —¢ 5
= ﬁ I TdT—Fln(ao(Tz,Pz))—ll’l(ﬂo(Tl,P ))
= e — oL — L S nao(To, o)) — In(ag(Ty, P))
=R T, T ol12, 12 ol11, ,
and rearranging;
AG®(Ty) — RTyln(ao(Th, P°)) —AG*(T2) _ -1, . 1 1 o
RT, =R (AH c)(T2 Tl) In(ag(Ty, P°)),
AG°(Tp) — AG°(T RTyl Ty, P° o 1 1 o
( 2) ( 1) + 1 n(a()( 1 )) _ (AH 7c)(7 _ *)‘FRlT’l(ﬂo(Tl,P ))’
T, T L, T
AG (Tz) — AG (Tl) _ (AHO —C)(i . i) —|—RZI’£({10(T1,PO)) . RTllT’l(ao(Tl,P ))
T T T T
o o o 1 1 o RTyIn(ag(Tq, P°
~ (AH® — (AG®(Ty) — RTiIn(a(Ty, P*)))) (2 — =) + Rin{a(Ty, p°)) — St 0T )
T T Tz
o o 1 1 o, 1 1 RT o
= (AH® = AG®*(T1)) (5 — =) + RTaln(ag(Ty, P°)) (= — =) + (R — =1 )In(ag(Ty, P°))
o T T 1 T
1 1 1 1 RTy
= (AH®° — AG°(T))) (= — — T, P))(RTi (= — — -t
( G (T))(; = 7) + Inlao(Ty, P (RTi( = 72) + (R— 1))
o o 1 1
= (AH° = AG*(T) (5 — ).
so that, rearranging again;
o 1 1 1 AG°(Ty) AG°(Th) | 1
AG (T (=4 =—— =) = = —AH°(=— — —
RS T T Y T T
to obtain;
o Tl o o Tl
AG®°(Ty) = ==AG°(Ty) — AH° (= — 1).
T T
For the modification of Lemma 7, be careful to use the restricted summation for ¢ substances, in the

(2%
calculation of ( (agT)T’P )p. while the calculation for dU involves ¢ + 1 substances, including the solvent. If

€ = 0, we have that

c = AGO(Tz) + RTle’l(Q(Tz, P/)) - RTzli’l(ﬂo(Tz, P/)) = AGO(Tz) — RTzli’l(ao(Tz, Plo)),
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so that rearranging,
ap ( Tz , P / )

Q(TZ/ P,) = m,

and the claims about dynamic and quasi-chemical equilibrium lines follows from Q = c and (%—?)T, p = ¢, for
c € R>pand ¢ € R respectively. If € # 0, we use the modification of Lemma 3, to obtain the formula for the
activity coefficient;

(9G) 1 p| TP —AG® (Ty)+RTyln(ag(Ty,P')) eln(L)

14
Q(Tz, P/) =e RT, =e RO IZO(T2, P/).

Again, the determination of the dynamical and quasi-chemical equilibrium lines follows again from
rearrangement of Q = c and (%%)T,p =c, forc € R>p and c € R respectively. [

Lemma 25. In Lemmas 2 to 10, for the case of a reaction like (89) in Definition 5, and considering a dilute solution
with interaction of the solvent, replacing Q defined as TT5_q a;' by [T5_qa;". If we assume without approximation that
#i = i + RTlIn(a;), 0 < i < c, then the proofs go through as before, with the modification that we have c + 1 rather
than ¢ substances.

Remark 3. In the case of a solvent with no interaction, if we define the activities by a; = x;, 0 < i < ¢, with
the definition of Q as ag [1;<;<, a;./i, then we need to modify the proofs of Lemmas 11 and 13. This is done in
Lemma 44. For the existence of a feasible path, where we require that the 7 term is fixed, see Remark 5, we
need to change Lemma 12. Letting dg > 0 denote the fixed molar amount of the solvent, we obtain the relation,
modifying the proof of Lemma 12;

c—1 c—1 c—1

vi , 1%
do [ [(Fne+dy)Vi(t)nge(t) = e(t) (Y, -+ Dnc+ Y di)™(t),
i=1 Ve i=1 Ve i=0
wherew =1+Y7 ;v

In the w > 0 case, absorb the constant dj into €(t), by setting €3 (t) = %) > 0, and redefine o = Z;:& d;.
Then use the proof of Lemma 12, noting that if v; = w, for1 < i < p,thenw = 1+Y7 ;v; > Zle v =
Zle w = pw which is a contradiction again. If w < 0, then use reciprocality again to reduce to w > 0,
replacing dy with dl—o > 0. The w = 0 case is again similar, using the w > 0 calculation.

6. Dilute solutions with Henry’s law for solutes, Raoult’s law for the solvent and interaction of
the solvent

Definition 6. As mentioned in Definition 1, we can consider an electrolyte as a solute in a dilute solution and
define the activities a;, 0 <i < ¢, by

a; = x;, (1<i<ec),
and define
C ) C )
Q=ag H a;«” ~ H al./l, (no interaction of the solvent)
i=1 i=1
C v
Q=|]4" (interaction of the solvent),
i=0

We ideally have that y; = u{ + RTIn(a;), 0 < i < ¢, which involves a contradiction. By Henry’s Law, we have
that P; = k;x;, 1 <i < ¢, so that, by Henry’s Law, phase equilibrium and the ideal gas law;
(sol) kix;

_ (80 Piy _ (g
u = s +RTln(P—;)fyig + RTIn( IIJO

) = wM° £ RTIn(x;), (100)

where

(H)o _ ) RTln(%). (101)



Open ]. Math. Sci. 2023, 7, 35-88 73

From (100), we obtain that
ue = u° 4 RTIn(x;(T, P°)), (102)
and, for1 <i <g;
wi = i — RTIn(x;(T,P°)) + RTIn(x;) = pj + RTIn(x;) +x(T), (103)
where, from phase equilibrium and (101) and (102);

(sal)o
i

o o ki ki
K(T) = —RTIn(x;(T, P°)) = u{M° — o = p(&° 4 RTIn(55) - — RTIn(+5).

We can use Raoult’s law for the solvent as Py = Pjxq, see [7]. Then, using equilibrium with an ideal gas
mixture;
(sol)

o P o P
ue " = wg® +RTIn(53) = 15 + RTIn( ;’Jfo),

P*
ug'®) 4 RTIn(xg) + RTIn(2) = i (T, B§) + RTIn(x0) = 3 (T, P) + RTln(xo) + 6(T,P),  (104)
P) ~

where 6(T, P) = ui(T, Py) — u(T, P) ~ 0 so that

*

) P;
RTIn(xo) = RTln(%) ~ RTIn(3),

and

By

P
o = ui + RTIn(xq) + 6 = gy + RTzn(Pg) RTIn ( L) + 6. (105)

We also have, using the phase rule for the solvent in equilibrium with an ideal gas mixture, that
o PO
I/i(()g) = P‘o(g) + RTln(ﬁ),
sl = ol 4 RTln(%). (106)

Combining (106) and (105), we obtain that

yo—yo—RTln( %)+ RTIn (Pi)
— (5 + RTIn(L0)) - RTIn (P—)+RTZ 5y g
— Vo pe p° p°
P*
= ug + RTln(P—%) — 0. (107)

Letting Pj = P°, we obtain that y§(T, P') = ug — 6, for the corresponding P’, (105).
From (104) and (105), we obtain that

o = uy + RTIn(xg) + 6
=uy(T,P') 4+ 6+ RTIn(xg) + 0
=g — 0+ 0+ RTIn(xg) + 6
= g + RTIn(xg) + 6,

where 6 = (T, P) — u§(T,P') ~0.
Using the same calculation as before, we have that

to = g + RTIn(xo) + v(P).
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Lemma 26. In the case of dilute solutions, with interaction of the solvent, a feasible path <y is a dynamic equilibrium
path iff pr(712) C Ce, for some ¢ € R iﬁf%g =0.

Proof. We have that

C C
u;/i: x:,/i:Q:C:f/
i=0 i=0
where x; = 7. Now follow through the proof of Lemma 11, as we are differentiating, the proof works with a
constant f > 0. [

We reformulate Lemmas 15 to 19 in this context, assuming Henry’s law for the solutes and the solvent an
ideal solution.

Lemma 27. In the dilute solution case, with interaction of the solvent, for the enerqy function G involving ¢ + 1

uncharged species;

(aa?)w — AG® + RTIn(Q) + ¢,

where €(T,P) = voyo(P) + L5y viki(T) ~ 0, vo(P) ~ 0 and x;(T) =~ O are the error term for the i’th uncharged
species in Definition 6,1 <i < c.

Proof. The proof is clear from Lemma 15. O

Lemma 28. For a dilute solution, with interaction of the solvent, we have, using the definition of (T, P) in Lemma 27,
the error term yo(P) and the error terms x;(T), 1 < i < ¢ in Definition 5, that the same results as Lemma 16 hold,
replacing €(P) with €(T, P) and 6 with e(T, P°) = voyo(P°) + Y5 vik;(T).

Proof. The proof is clear from the proof of Lemma 16. O

Lemma 29. For a dilute solution, with interaction of the solvent, we have the same result as Lemma 17 hold, replacing
€(P(T)) by e(T, P(T)) along the quasi-chemical equilibrium lines.

Proof. The proof is clear from the proof of Lemma 17. [

Lemma 30. For a dilute solution, with interaction of the solvent, we have the same results as Lemma 18 hold, replacing
e(P') by e(Ty, P'). In particularly, if € # 0, we have that

eln( s )—e(T,P)

Q(T,P)=e¢ ",

and, if e = 0, we have that
—e(T,P)

Q(T,P) =e T .
Proof. The proof is clear from the proof of Lemma 18. [

Lemma 31. For a dilute solution, with interaction of the solvent, we have that, if € # 0;

B —eln(£) (T, P) §—§(T,P) P e -erp)  €P° g—g(T,P) P e —emp)
grad(Q)(T,P) = (( RT2 + T2 U RT )(E)RTQ RT ,(RTP_T)(E)RTe RT

and, ife = 0;
e(T, P) g—%(T,P) —e(T,P) —g—;(T,P) —e(T,P)

grad(Q)(T, P) = (S — T )e ™, —28 o~




Open ]. Math. Sci. 2023, 7, 35-88 75

The paths of maximal reaction in the region |grad(Q)(T,P)| > 1, Q(T,P) > 0, are given by implicit solutions to the
differential equations;

dP €TP° — PT(T, P)
dT — (—ePIn(L) + Pe(T, P) — PT (T, P))’
dp ~T2%(T,P)

dT ~ (T, P) — T2(T,P)’
respectively.

Proof. The computation of grad(Q) in both cases is a simple application of the chain and product rules.
Following the method of Lemma 19, noting the claim about maximal reaction is still valid with the same
definition of Q, if € # 0, we compute

° 9 (TP e —€(T,P) o
apr _ ke — Pz(zT ))(%)RW RT _ €TP° — PT25(T, P)
aT (*egézp% + <TP) a—%gp>)(%)%e*«€;{y’> (—€PIn(&) + Pe(T,P) — PT3 (T, P))
and, if e = 0;
_ o —e(T,
ap P _7(T,p)
AT (1) _ FR) 2 e(T,P) ~ T3 (T,P)
O

7. Dilute solutions with Fugacity and interaction of the solvent

Definition 7. As mentioned in Definition 1, we can consider an electrolyte as a solute in a dilute solution and
define the activities a;, 0 < i < ¢, by;

ap = yoxo ~ 1,

ai = ViXi, 1<i<ec
We can define the activity coefficient Q = ag[T5_;4; ~ [];_; a;’, but we will adopt a new convention, see
below;

We have that p; = p7 + RTin(a;), 0 < i < ¢, which involves the contradiction with the definition of
activity for ideal solutions. By the approximation of Henry’s Law for the solutes, we have that P; = k;x;7;,
1 <i < ¢, (convention (II)), see [7], so that, by the approximation of Henry’s Law, phase equilibrium and the
gas law with fugacity é;;

0;P;
Pe )

= ul8 4 RTln(ki;i%) + RTIn(6;(T, P))

4+ RTIn(v;x;) + RTIn(6;(T, P)), (108)

) = 18)° 4 RTIn(

1

i

where

e = 9 RTIn(55)- (109)

From (108), we obtain that;

18 = w4 RTIn(9:x,(T, P°)) + RTIn(5(T, P°), (110)
and, for1 <i <g;

#i = pj — RTIn(v;x;(T, P°)) — RTIn(6;(T, P°) + RTIn(v;x;) + RTIn(6;(T, P)) = p; + RTIn(v;x;) + (T, P),
(111)
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where, from phase equilibrium and (109) and (110);

K(T, P) = —RTIn(yix,(T, P°)) + RT(In(6,(T, P)) — In(6(T, P°))
__ _(H)o 40 ) o §Z(T/P)
= W™ — i + RTIn(8(T, P°) + RTIn (210

= W 4 RTIn(KD) — 0 4 RTIn(s,(7, P))

— RTIn (k ) + RTIn(5;(T, P))

_ sz51( ,P)

We can measure the correction in Raoult’s law for the solvent by Py = 7oPjxo, (convention I), see [7]. Then,
using the gas law with fugacity Jp, and the correction ¢ for the difference of the chemical potential between a
gas in a non ideal mixture and on its own, we have, at equilibrium, that

do Py dovoPy xo

pE? = g ® + RTIn(SS0) = ig'®) 4 RTin (12020,
o(g) S0Py, .
Ho* + RTIn(yox0) + RTIn(—5=) = po(T, Fy) + RTIn(70x0)
= uo(T, Py) +o(T, Py) + RTIn(7yoxo0)
= po(T, P) + RTIn(yoxo) + 6(T, P), (112)

where 0(T, P) = (T, Py) — us(T, P) + o(T, P), so that

S0Py

) SoP;
PO

pe )

RTIn(7y0)xo) = RTIn( — RTIn(

and

50 PO (50 PS

Mo = Hp + RTIn(70x0) +6 = pg + RTIn(—55-) — RTIn(—5;

)+ 6. (113)

We also have, using the phase rule for the solvent in equilibrium, that

S0Py

=),

(50 Py
pe

9 = i)+ iR

“l/l(()SOl) = o(sol) + RTIn (

). (114)
Combining (114) and (113), we obtain that

80P}
pe ) =0

%)) _ RTIn (501»0

SoB °) + RTIn(
(501’0

Mo = o — RTIn(

P*
Ppe )-8

Pa‘
— 0. 11
po ) (115)

= (uo +RTZn( )+ RTIn(>

o J
= ug + RTIn(

Letting doPj = P°, we obtain that j5(T, P') = ug — 0, for the corresponding P’, (113).
From (112) and (113), we obtain that

po = po + RTIn(yoxo) +6
= uy(T,P') + 6+ RTIn(yoxp) + 60
= pg — 0+ 5+ RTIn(yoxp) + 6
= pg + RTIn(yox0) + 9,

where 6 = p(T,P) — u§(T,P') ~0.
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Using the same calculation as before, we have that g = g + RTIn(y9xg) + A(P). We can define a new
activity coefficient by Z = [1{_ b:", where

by = xo,
bi:xi, 1§1§C

From the above, we have that

#o(T, P) = g + RTIn(x0) + RTIn(yo(T, P)) + 89(P) = 3 -+ RTIn(bo) + o(T, P)
and, for1l <i <g;

1i(T,P) = uj + RTIn(x;) + RTIn(v;(T,P)) + x;(T) = u; + RTIn(b;) + ¢;(T,P).

Lemma 32. In the case of dilute solutions, with interaction of the solvent, a feasible path vy is a dynamic equilibrium
path iff pr(y12) C Cy, for some f € R~o i ‘% =0.
Proof. We have that . .
[laf=]]x'=2=F.
i=0 i=0
Now copy the proof of Lemma 26. O

We reformulate Lemmas 15 to 19 in this context, assuming the approximation to Henry’s law for the
solutes and the approximation to Raoult’s law for the solvent.

Lemma 33. In the dilute solution case, with interaction of the solvent, for the enerqy function G involving ¢ + 1

uncharged species;

(%?)T,p _ AG® + RTIn(Z) + (T, P),

where €(T,P) = vopo(T,P) + Yi_, vigi(T, P), and ¢y is the error term for the solvent in Definition 7, and ;, for
1 <i < c are the error terms for the solutes in Definition 7.

Proof. The proof is clear from Lemma 15. [J

Lemma 34. For a dilute solution, with interaction of the solvent, we have, using the definition of (T, P) in Lemma 33,
the error term ¢o (T, P) and the error terms ¢;(T, P), 1 < i < c in Definition 7, that the same results as Lemma 16 hold,
replacing € (P) with €(T, P) and 6 with e(T, P°) = vo¢o(T, P°) + Y5, vithi (T, P°).

Proof. The proof is clear from the proof of Lemma 16. O

Lemma 35. For a dilute solution, with interaction of the solvent, we have the same result as Lemma 17 hold, replacing
e(P(T)) by e(T,P(T)) along the quasi-chemical equilibrium lines.

Proof. The proof is again clear from the proof of Lemma 17 [

Lemma 36. For a dilute solution, with interaction of the solvent, we have the same results as Lemma 18 hold, replacing
€(P') by e(Ty, P'). In particularly, if € # 0, we have that

Z(T,P)=e  ®

and, if e = 0, we have that

Proof. The proof is again clear from the proof of Lemma 18. [J
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Lemma 37. For a dilute solution, with interaction of the solvent, we have that, if € # 0;

—eln(§)  e(T,P) 3(T,P) P o —arn eP° 95(T,P) P  —en)
7)(T,P) = P ) AT (SR — ) (55T
grad(Z)(T,P) = (( RT2 + RT2 RT ) PO)RTe A RTP RT )

and, ife = 0;

e(T,P % (T,P), —etr) —2(T,P) —erp)
grad(Z)(T, P) = (( (RTZ)_aTRT e, TRl e,

The paths of maximal reaction in the region |gradZ(T,P)| > 1, Z(T,P) > 0, are given by implicit solutions to the
differential equations;

dP €TP° — PT(T, P)
dT — (—ePin(L) + Pe(T, P) — PT (T, P))’
P —T3%(T,P)

dT ~ ¢(T,P) — TE(T,P)’
respectively.

Proof. The proof is the same as Lemma 31, replacing Q by Z, noting that Z is defined the same way in terms
of activities. [J
8. Electrochemistry with error terms, Fugacity and interaction of the solvent

Using the new error term (T, P) and the activity coefficient Z from Section 7, we have the following

results;

Lemma 38 (The Nernst equation for Catalyzers). At electrical chemical equilibrium (T, P) and (T, P°);

_ RTIn(Z(T,P)) (T, P)

(E—E)(T, P) = 4T 4F

Proof. Just follow the proof of Lemma 20, replacing e(P) with (T, P) and use the fact that the catalyzer
reaction 2H,0 +4e™ (R) — O, + 2H, + 4e™ (L) occurs with 4 electrons rather than 2. [

Lemma 39. At electrical chemical equilibrium (T, P) and (T, P°), and chemical equilibrium (T, P);
AG® = 4F(E — EY).
Proof. Follow the proof of Lemma 21, replacing e(P) with €(T, P), noting the remark in Lemma 38. O

Lemma 40. If € = 0, we have, for all Ty > 0, that

oG oG
(afg)T,Pl(Tl,pl) = (afg)T,Pl(Tl,p;),

iff
E(Th, P1) = E(Ty, Pr) = E°(Th),
where G is the Gibbs energy function for the charged and uncharged species.

Proof. Follow the proof of Lemma 22, replacing the result there that (acgi}gW)T, p is independent of P, with the

corresponding same result in Lemma 36. [

Lemma 41. We have, for all T; > 0,P; > 0, that

4F(E(Th, P1) —E°(Th)) = (%§>T,P|(T1,P1) - (ZE)T,PHTLP;) — RTN1In(Z(Ty, P1)) — €(Ty, Py). (116)
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Proof. Follow the proof of Lemma 23, replacing e(P) with e(T, P).
O

Remark 4. The result of Lemma 41 combined with the determination of the activity coefficient Z in Lemma
36 and the error term €(T,P) in Lemma 33 can be use to determine the unknown quantity (%%)T’p. We
can measure the potential difference between the cathode and anode along the dynamical equilibrium paths
provided by Lemma 36 and then use the formula (116) in Lemma 41. Once this is determined, we then alter
the power supply, in accordance with (116), to push the reaction along the paths of maximal reaction given in
Lemma 37. This should improve the efficiency of the production of hydrogen and oxygen, in the case of the
electrolyzer reaction, given by 2H,O + 4e™ (R) — O, +2H, +4e~ (L).

9. Dilute solutions with Henry’s law for solutes, Raoult’s law for the solvent and no solvent
interaction

As mentioned in Definition 1, we can consider an electrolyte as a solute in a dilute solution and define the
activities a;, 0 < i < ¢, by

ap =xo =1,
a; = xj, 1<i<e.

We can either define the activity coefficient by W = T]5_, afi or, use the more conventional definition Q =
ao [T5_q a;' ~ TT{_; a;". We will consider both cases.
Remark 5. In the first case, if a9 is assumed constant, we have to redefine a feasible path by using coordinates

(T,P,ng,ny,...,nc) and letting 7 : [0,1] — R%C, such that if n;(t) = prz;(t), for 0 <i < ¢, then z—f = Z—;, for
1 <i < j < cwhere {vy,...,v.} are the stoichiometric coefficients. If n(t) = Y7, n;(t), and x;(t) = a;(t) =
%i(1),0 <i < ¢, then Q(pria(t)) = Hf;l a;(t)"i and ng > 0 is a fixed constant. Note that n > 0 and the x; are
well defined, 0 < i < c. The existence of feasible paths follows easily from the proof of Lemma 12, where we

are free to take any ng > 0.

Lemma 42. In the case of dilute solutions, with no interaction of the solvent, a feasible path vy is a dynamic equilibrium
path iff pr(y12) C Cy, for some f € R~q iff IV = 0.

Proof. We have that

W=]]a=]]x"="/. (117)
i=1 i=1
If v is a feasible path, then priy(y) C Ws, otherwise, we could find (T, P), with x;(T, P) < 0, contradicting
the fact that n; > 0, n > 0. It follows that f > 0. With f > 0, follow through the proof of Lemma 11, replacing
B with Y5 d;, where dy = ng. Clearly n, = 0 so we obtain the first direction. The rest of the proof follows
from Lemma 13, using the additional fact that nj, = 0. O

Lemma 43. In the case of dilute solutions, with no interaction of the solvent, and ag assumed constant, a feasible path v
is a dynamic equilibrium path iff pr(y12) C Ce, for some ¢ € R, iff ‘é—? =0.

Proof. We have that

If v is a feasible path, then priz(y) C Q-o, otherwise, we could find (T, P), with x;(T,P) < 0, contradicting
the fact that n; > 0, for 0 <i < ¢, n > 0. It follows that c > 0, d > 0. With d > 0, follow through the proof of
Lemma 11 again, getting the other directions from Lemma 13. O

Lemma 44. In the case of dilute solutions, with no interaction of the solvent, a feasible path <y is a dynamic equilibrium
path iff pr(y12) C Cy, for some f € R0 iﬁf%ﬁ? —0.
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Proof. With the same caveat as in Lemma 43, we have that
c ) c ) c )
a]Jaf =xo ][5 =]]x"=Q=F, (118)
i=1 i=1 i=0

where x; = "', o =1, u; = v;, 1 <i < c. Now, using the relation (118), differentiating and using the facts that,

for1<i<c—-1n = y;lnc,ni: ”;'ZC +d;, ny = 0and ng = dy, we obtain that

c
([T Zul””'nx”fffzwflx;l szh Ixl =0,
i=0

i#i

so that

i=0 i—0 i
RN R
- Z Vil + u.d; + B ( ¢ )
i—=1 Ville T Ml ne Zi:O n;
_ 1 P‘l
S L T A penp A (i1 b+ Dme )
o Mifle + Hed; ne (Zlc 11 :j’ + 1ne + ZC 1 d;
=0, (119)

where A =3¢ qpui=1+Y5 v

Following the proof of Lemma 11, replacmg B with Y~ 1 d;, we have, if ZC THo= X 111/1 # 0 and
A=14+Y5 pui=1+Y5 v #0, then nl =0,forl <i<g, and clearly we have that nj; = 0. Similarly, if
A=Yi oui =1+ Y5 ,v; =0, we obtain the relation []_, n? f=f.

Again, following the proof of Lemma 11, if n/, # 0, we obtain the relation;

c—1 c—1 2

DR R S
i—1 Hillc + ,ucd i—1 Ville +ved;  ne

and, by the proof there, we obtain that ng =0,forl1 <i<c. As n6 = 0, we obtain the result. We are left with
the case ZC 1 Hi = El 1 Vi = 0. As in the proof of Lemma 11, we can assume this choosing the appropriate
pivot. The other directions in the Lemma follow from a simple modification of Lemma 13. O

Lemma 45. In Lemmas 2 to 10, for the standard cell, and considering a dilute solution with no interaction of the
solvent, replacing Q defined as [T;_, a;./" and with the same definition of W, if we assume without approximation that
wi = uy + RTIn(a;), 1 < i < c, then the same results as Lemma 24, setting ag(T, P) = 1, with the caveat that in the
final claim W = 1 and any path is a dynamical equilibrium line.

Proof. The proof is clear. [

Lemma 46. In Lemmas 2 to 10, for the standard cell, and considering a dilute solution with no interaction of the
solvent, replacing Q defined as [15_y a; by ao(IT5_q a;") = xo([15_; a;") and if we assume without approximation that

wi = 7 + RTIn(a;), 0 < i < c, then the same results as Lemma 24, with the new definition of ag(T, P) = xo(T, P).

Proof. The proof is clear. [

In this context, assuming Henry’s law for the solutes and the solvent an ideal solution, we reformulate
Lemmas 15 to 19.

Lemma 47. In the dilute solution case, with no interaction of the solvent, for the energy function G involving c + 1
uncharged species, including the solvent, we have

G

)TP = AG° + RTlTl( ) €,
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where €(T,P) = Y.f_ vix;(T) ~ 0 and «;(T) =~ 0 are the error terms for the i'th uncharged species in Definition 6,
1<i<ec

Proof. The proof is clear from Lemma 15 and the fact that, as dng = 0;

C C
AG =) pidn; =) pidn;,
= i

i=0

so that (a%)T,P =Y i vipiand AG® = Y1 viu?. O
Lemma 48. For a dilute solution, with no interaction of the solvent, using the definition of €(T) = Y.¢_; vjk;(T), where
the error terms «;(T), 1 < i < c occur in Definition 6, the same results as Lemma 16 hold, replacing e(P) with €(T) and
dwith e(T) = Y5, vik;(T) and using W instead of Q.

Proof. The proof is clear from the proof of Lemma 16 and using the observation from Lemma 47.
O

Lemma 49. For a dilute solution, with no interaction of the solvent, the same result as Lemma 17 holds, replacing
€(P(T)) by e(T) along the quasi-chemical equilibrium lines, and using W instead of Q.

Proof. The proof is again clear from the proof of Lemma 17.
O

Lemma 50. For a dilute solution, with no interaction of the solvent, the same results as Lemma 18 hold, replacing e(P")
eln( &) —e(T) —e(T)

by €(Ty). In particularly, if € # 0, we have W(T,P) = e~ ’t,and, ife = 0, we have W(T,P) = e RT .

Proof. The proof is clear from the proof of Lemma 18.
O

Lemma 51. For a dilute solution, with no interaction of the solvent, we have that, if € # 0;

e, (20) (o) e 1),

—eln(g) | e(T) _ g (T)

grad(W) (T, P) = (— ™ + ) = ) ()

3
)
=
g
N
~—~

and, ife = 0;
de
e(T) 4p(T), —m
R(TZ) ~RF 0
The paths of maximal reaction in the region |grad(W)(T,P)| > 1, W(T, P) > 0, are given by implicit solutions to the
differential equations;

grad(W)(T, P) = ((

P eTP
AT~ (—ePln({&) + Pe(T) — PT4(T))
dp

ar =

respectively.

Proof. The computation follows easily from the proof of Lemma 31, replacing ¢(P, T) by ¢(T). We also note
that in the proof of maximal reaction, see Lemma 19, we have to change § to Zfi(} n;o, where n; o is the fixed
molar amount of the solvent. This effects a; but we still have that a; # 0 and the rest of the proof remains

unchanged. O

Remark 6. We can also formulate versions of Lemmas 47 to 51 for the activity coefficient Q instead of W,
mentioned in the introduction to the §9. However, although the proof should go through, it is more difficult,
and left as an exercise for the reader, combining the methods of §3 and §5. However, it seems unnecessary
when we can derive the main results with the coefficient W.
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10. Dilute solutions with Fugacity and no solvent interaction
We can define activity coefficients either by W = []5_; b/", or the more conventional Z = by [T{_; b where

b(]:.XO,
bi:xi, 1§1§C

We refer to the introductions of §7 and §9 with the Remark 5. We will again consider both cases.

Lemma 52. In the case of dilute solutions, with no interaction of the solvent, a feasible path «y is a dynamic equilibrium
path iff pr(y12) C Cy, for some f € R~ iﬁ%v =0.

Proof. The proof is similar to the proof of Lemma 42. [

Lemma 53. In the case of dilute solutions, with no interaction of the solvent, and by assumed constant, a feasible path y
is a dynamic equilibrium path iff pr(y12) C Cy, for some f € R~o iﬁ”{% =0.

Proof. We have that
o 2 - f 4
i1 bo i3 bo '
The remaining proof is similar to the proof of Lemma 43. [

Lemma 54. In the case of dilute solutions, with no interaction of the solvent, a feasible path «y is a dynamic equilibrium
path iff pr(y12) C Cy, for some f € R~g iff 2 = 0.

Proof. We have that . .
bpo;-/i = xOHx;-/i =7Z= f
i=1 i=1

The remaining proof is similar to the proof of Lemma 44. [

Lemma 55. In Lemmas 2 to 10, for the standard cell, and considering a dilute solution with no interaction of the solvent,
replacing Q defined as [1S_, a;" by the definition of W, and assuming without approximation that y; = u$ + RTIn(b;),
1 < i < ¢, then the same results as Lemma 24 can be obtained by setting ao(T, P) = 1, with the same caveat as Lemma
45.

Proof. The proof follows from the proof of the Lemma 45. [

Lemma 56. In Lemmas 2 to 10, for the standard cell, and considering a dilute solution with no interaction of the
solvent, replacing Q defined as TTi_q a;’ by Z = bo(TTi_1 b}") = xo(ITi_1 b;") and assuming without approximation
that y; = p$ + RTIn(b;), 0 < i < c, then the same results as Lemma 24 can be obtained with the new definition of
bo(T, P) = xo(T, P) replacing ao(T, P) in the Lemma 46.

Proof. The proof follows from the proof of the Lemma 46. [

In this context, assuming the approximation to Henry’s law for the solutes and the approximation to
Raoult’s law for the solvent, we reformulate Lemmas 15 to 19.

Lemma 57. In the dilute solution case, with no interaction of the solvent, for the energy function G involving c + 1

uncharged species, we have

(E;E)T,P — AG® + RTIn(W) +¢(T, P),

where €(T,P) = Yi_, vityj(T, P), and ;, for 1 < i < c are the error terms for the solutes in Definition 7.

Proof. The proof is clear from Lemma 15, with the same observation as in Lemma 47.
O
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Lemma 58. For a dilute solution, with no interaction of the solvent, using the definition of €(T, P) in Lemma 57 and
the error terms ;(T, P), 1 < i < c in Definition 7, the same results as Lemma 16 hold, replacing € (P) with (T, P) and
S with e(T,P°) = Y.;_4 vitj(T, P°) and using W instead of Q.

Proof. The proof is clear from the proof of Lemma 16 and Lemma 57. O

Lemma 59. For a dilute solution, with no interaction of the solvent, the same results as Lemma 17 hold, replacing
€(P(T)) by e(T, P(T)) along the quasi-chemical equilibrium lines.

Proof. The proof is clear from the proof of Lemma 17 and Lemma 58. [

Lemma 60. For a dilute solution, with no interaction of the solvent, the same results as Lemma 18 hold, replacing e(P")
by €(Ty, P'). In particularly, if € # 0, we have that

sln(PLO )—e(T,P)

W(T,P)=e ’T

and, if e = 0, we have that
—e(T,P)

W(T,P) =e¢ R,
Proof. The proof is clear from the proof of Lemma 18 and Lemma 59. [

Lemma 61. For a dilute solution, with no interaction of the solvent, we have that, if € # 0;

—eln(£) e(T,P) %(T,P) P . -ctr) eP° (T,P) P c —crp)
grad(W)(T.P) = ((—gp— + (RT2)78TRT Jpe) e (gp ~ R ()T ),
and, ife = 0;
de de
% (T P)  _er) —9(T,P) e,
grad(Z)(W,P):((e(T'P)—aT( ))e#, BP( )e Igp)>'

RT? RT RT

The paths of maximal reaction in the region |gradW(T,P)| > 1, W(T,P) > 0, are given by implicit solutions to the
differential equations;

dP €TP° — PT(T, P)
AT (—ePin(L) + Pe(T, P) — PT (T, P))’
P —T%(T,P)

dT — ¢(T,P) — T%(T,P)’
respectively.

Proof. The proof is the same as Lemma 31, using W instead of Z, noting that the error term e(T, P) depends
on P, unlike Lemma 51. O

Remark 7. We can formulate Lemmas 57 to 61 using Q instead of W, see Remark 6. The results of the section
might be useful in the production of ethanol, using H>O as the solvent, by varying the temperature and
pressure of the reaction, C¢H120¢ — 2Co HsOH + 2CO», see [6] as well.

11. Electrochemistry with error terms, Fugacity and no interaction of the solvent

Using the new error term €(T, P) and the activity coefficient W from §10, we have following results;

Lemma 62 (The Nernst equation for the standard cell). At electrical chemical equilibrium (T, P) and (T, P°) for

the standard cell, we have
R _ RTIn(W(T,P)) €(T,P)
(E—-E°)(T,P) = °F 5

Proof. Using the proof of Lemma 20, replacing e(P) with the error term €(T, P) from §10, noting that for the
Gibbs function involving c + 1 species, including the solvent, (%—E’)T, p = )i 4 Vili, we get the desired result. [
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Lemma 63. At electrical chemical equilibrium (T, P) and (T, P°), and chemical equilibrium (T, P), we have
AG® = 2F(E — EY).
Proof. Following the proof of Lemma 21, replacing e(P) with (T, P), we get our desired result. [

Lemma 64. Ife = 0, we have, for all Ty > 0,

oG oG
(aié—)T,P|(T1,P1) - (a*C)T,P|(T1,Pf),

iff
E(Ty, Py) = E(Ty, P{) = E°(Ty),

where G is the Gibbs energy function for the ¢ + 1 charged and uncharged species.

Proof. The result can be obtained by following the proof of Lemma 22, replacing the result there that

(ac(g%"')T p is independent of P, with the corresponding result in Lemma 60. O

Lemma 65. We have, for all Ty > 0,P; > 0, that

oG oG

2F(E(Ty, P1) — E°(Th)) = (afg)T,P (TLP) — (afg)T,Ple,Pf) — RTyIn(Z(Ty, P1)) — €(Ty, Pr). (120)

Proof. The result follows by following the proof of Lemma 23 and replacing e(P) with (T, P). O

Remark 8. The result of Lemma 65 combined with the determination of the activity coefficient W in Lemma
60 and the error term €(T,P) in Lemma 57 can be used to determine the unknown quantity (%)T,p. We
can measure the potential difference between the cathode and anode along the dynamical equilibrium paths
provided by Lemma 60 and then use the formula (120) in Lemma 65. Once this is determined, we then alter
the power supply, in accordance with (120), to push the reaction along the paths of maximal reaction given in
Lemma 61. This should improve the efficiency of the production of hydrogen, in the case of the reaction, given
by Hy +2AgCl +2¢~ (R) — 2HCI +2Ag + 2e~ (L), where we use water H,O as a solvent with no interaction.

12. The constant change in enthalpy assumption

Lemma 66. We can assume that AH® is constant.

Proof. We have, by the definition of enthalpy, the laws of differentials, the first law of thermodynamics, with
dP = 0, that
dH = dU + PdV 4+ VdP = dU + PdV = (dQ — PdV) + PdV = dQ,

where Q is the internal energy including work, or heat. From this calculation, as any internal energy
change dU and change in volume 4V is unaffected by adding a solvent not involved in the reaction, and by
re-establishing the pressure of the original reaction, it is clear that AH®(T) = AH®*°!(T), where AH**°(T)
is calculated by adding a solvent not involved in the reaction at the same pressure P°. As in Kirchoff’s Law of
Thermodynamics, we have that;

T d(AHo,sol'(J(T))

AHo,solv T) = AHo,solv T T
(1) (T + [ R
T d(AQso10(T))
— o,50lv U\B¥solv\ 1))
= AH*(Ty) + n e dT

T
— AHO1(Ty) + /T Cooto(T)dT
0

T
= AH(To) + /T Coolo(T)dT, (121)
v 10
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where C,y1,(T) = A(%)(T) is the change in the heat capacity of the mixture, after one mole of reaction.
If we confine ourselves to a small temperature range, we can, therefore assume that AH® is approximately
temperature independent. However, we can also add solvent to the reaction, to lower the magnitude of
Cso1o(T), as the heat capacity before and after the reaction would approach that of the solvent, and extend
the temperature range of the reaction. More precisely, we have, by the law of mixtures for heat capacities, the
fact that 11,y 501, is conserved during 1 mole of reaction, that

CSOZU(T) = Cfin,solv(T) - Cin,solv(T)
1

c c
= ———— () mifinCifin(T) = Y_ 1 inCiin(T))
i-1

Mypix,solv =

Ny c
B Z 1, finMi,molec 1fm( ) - Z ni,inmi,molecci,in (T))
Minix,solv ;=g i=0
Ny
- Z 14, finMMimolecMi fmSC an in™i,molec™i, inSCi ( ))
Minix,solv i i=0
N2

c c
= 7A(an‘2,finmzz,molecsci(T) - 2 nlz,in zmolecsc ( ))
i=0

mmixsolv i=0

c c
= m Z Mijin — i zmolecsc( ) Znizm zmolecsc( ))
mix,solv j—( i—0
e (Y vy SCHT)) + — (Y vPm 1 SCH(T))
Mnix,solv j—1 i mel Mypix,solv j—1 b,mol
=0(T) +o(T), (122)

where vy = 0 and v;, for 1 < i < ¢ are the stochiometric coefficients for the original reaction, (2).

Using the fact that m:,::i:; -
reaction, we have that G(T)P% 0, and, similarly, v(T) — 0 as My — oo with {1m;in, m; fin, M; motecs Mimol }
denoting the initial, final, molecular and molar masses of substance i respectively, {C;, SC;, C;,,, C ﬁ-n} denoting
the heat capacities of substance i, the specific heat capacities of substance i, the initial heat capacity of the

— 0, for 1 < i < ¢, by increasing the mass of the solvent not involved in the

mixture and the final heat capacity of the mixture respectively. In particular, we see that, as 11,y so1, — 0,
which we can achieve, by increasing the solvent not involved in the reaction, Cy,(T) — 0. We then have, by
(M), (N), that

T
AH®(T) = AH®(Ty) +/ (6(S) + 0(5))dS — AH(Ty),
To
as we can make the convergence uniform on the interval (Ty, T), given that the specific heat capacities SC;(S)
are bounded on (T, T), for1 <i<c¢. O
13. Independence of path and existence

Lemma 67. If A # 0, see Lemma 7, then no substance is formed in a loop. With the assumption that AH®"® is constant,
we have that A = AH°® — eln(P°). If D, is a quasi-chemical equilibrium line in the theoretical limit, which we have
computed, intersecting P = P° at (Ty, P°), and projecting onto an interval (Ty, Tp), with Ty < T, then, making
w(Ty, Ty) =~ 0, see §12, for the mass of the mixture sufficiently large, we have that A(Ty, To) ~ AH*"f(Ty, T,) —
€(Th, Tp)In(P°), where e((Ty, T2)) can be effectively determined.

Proof. Suppose that an amount of substance ¢ is formed in a loop. We have, by Lemma 1, that

c
dG = —SdT + VdP + Y _ dn;, (123)
i=1

2 During the paper, we denoted by substance 0 a solvent either involved or not involved in the reaction. Here, we are relabeling the

reaction to include this solvent in the original mixture consisting of substances indexed by 1 < i < c¢. We are assuming that it is
possible to add a solvent not involved in the reaction within a certain time range, even though it might be involved within the original
mixture.
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and, by the definition of enthalpy in Definition 1, that

dH =d(U+ PV)=dU+ PdV + VdP, (124)
d(G+TS) =dG+ TdS + SdT. (125)
We then have that, for a closed path v, using (123), (124), (125), the definition of entropy as dS = and the

first law of thermodynamics, dQ = dU + pdV, the calculation of (4 % )(T, p) as follows;

A (dG + SdT — VdP) = [Y ((dH — TdS — SAT) + SdT — VdP)
- /7 (dH — TdS — VdP)
- /v(dH —dQ — VdP)
- fy((du + PdV + VdP) — dQ — VdP)
- /W(du + PdV — dQ)

- / ((dQ — PAV) + PAV — dQ)
Y

(A +eln(P) + BT + oln(T))dE
/(A+eln( )+ BT + oln(T))de

—AZ +/ (eln(P)O(P)dP + (BT + oln(T))¢(T)dT), (126)

where 6(P) = 6;(P) along 71, 61(P)dP = d¢|,,, 0(P) = 62(P) along 72, 62(P)dP = d¢|,,, ¢(T) = ¢1(T) along
71, ¢1(T)dT = d¢|y,, ¢(T) = ¢2(T) along y2, $2(T)dT = dg|,,.
Now, by Stokes Theorem;

/(eln(P)G(P)dP+/3T¢(T)dT) - /A(a((ﬁTJr”l”(T))‘P(T)) PPy argp o, (27)
Y

oP oT

and, by (126), ¢ = 0, if A # 0. The second claim, with the assumption that AH® is constant, follows from
the proof of Lemma 7, and in later sections, when we introduce error terms. The next claim follows easily as
w(Ty, Tz) ~ 0, see §12, and the computation of A without the error term w(Ty, T;). The computation of €(Ty, Ty)
isgivenin Lemma 7. [J

H1 We take it as reasonable then, that if there are 2 distinct feasible paths between (T, Py) and (T, P), with a
given initial condition (11, ...1nc0) at (To, Py), then the extent of the reaction ¢ determined by the paths
{71, 72} should be the same.

If this were not the case, then reversing one of the paths, we could obtain a reaction extent at (Tp, P) along
a loop 7. Even if A = 0, using the slight variation in the volume of liquids along a reaction path, and the
fact that we return to the original pressure Py in a loop, we would have AH = [ L AH = / . (U+VP) =
fﬁrdU—I—PdV—i-VdP: fﬁrdU—i—dL—i-VdP: AU—i—AL—i—vadP: AU+AL+V0f7dP: AU + AL = AQ.

If AH is large, this would mean that AQ # 0, which means that there is a change in heat, contradicting the
fact that the temperature T is unchanged. If AH is small, with AH = |, y VdP, then, by generic considerations
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of bond energies, the amount of substance ¢ formed by the reaction would also be quite small. If H1 holds for

a single pair { A, B}, then it holds for all pairs {C, D}, as we can compose with reactions from A to C and D to
pi(T,P)—pi (T)

B. If follows that if we define f;(T,P) = e RT >0, for1 <i<g¢ sothat fi(T,P) = x;(T,P) = %,
then, by the definition of extent;
Ny —nip
¢= "
ni = viG + njp, 1<i<ec),
we must have that
n; ViG + i vi¢ + 1 .
X = L — . = == f, 1<i<yg,
' Yi(vid+mnig) AL +mng fi
where A = Yf_; v;, so that
vi +nip = (AE +no)fi,
g = o rofi 1<i<e,
Kfi = vj
so that, for 1 <i <j < ¢, we have
mio —nofi _ Mo ~Mofi _ . (128)

Kfi —v; Kfi—vi

As all the steps are reversible, the requirement (128) at (T, P), for all (11, ...,n.p) satisfying % = fi(To, Py),
so that

¢(To, Po) =0 (129)
is equivalent to H1. We impose the condition that Ker(M) N'RS, # @, where

M;; = fi(To, Py) — 1, 1<i<eg,
M;; = fi(To, o), 1<i<j<ec

so that there exists at least one choice (n1y,...,1.0) € RS satisfying (129). With this requirement there do
exist feasible paths between any 2 pairs (A, B), see Lemma 12. If not, there is no feasible path involving a
reaction from A = (T, Py), which seems physically unreasonable.

The same arguments apply when we incorporate error terms into the functions {f; : 1 <i < p} or extend
the functions to a set {f; : 0 < i < p}, when we consider a solvent.
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