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Abstract: Using the Kudryashov and Tanh methods, we have obtained novel exact solutions for the Paraxial
Wave Dynamical Equation with Kerr law, including various types of wave solutions. These distinct types
of wave solutions have important applications in physics and engineering, and their physical characteristics
are well defined. These outcomes are a substantial innovation in the study of water waves in mathematical
physics and engineering phenomena. The results we have acquired demonstrate the power and effectiveness
of the present techniques.
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1. Introduction

N onlinear phenomena are an essential area of research that arises in several branches of engineering
and physical sciences, including plasma, solid-state physics, optical fibers, chemical kinetics, biology,

and fluid mechanics. Nonlinear evolution equations (NLEEs) often play a crucial role in the mathematical
representation of these phenomena. Obtaining the solutions of NLEEs can aid in understanding the dynamics
of these phenomena. Exact traveling wave solutions (TWSs) of NLEEs have become increasingly important
tools in physical phenomena.

Various methods have been used to obtain TWSs for NLEEs in previous works, such as the new
extended direct algebraic method [1–3], the first integral method [4,5], the generalized Kudryashov method
[6,7], the new extended hyperbolic function method [8], the undetermined coefficient method, and modified
mapping method [9], the extended simple equation methods [10], the Jacobi elliptic functions method
[11,12], Kudryashov’s methods [13,14], the generalized tanh method (GTM) [15], the exp-function method
[16], the auxiliary equation method and Sine-Cosine method [17]], the mapping method [18], the Exp
(− f (e))-expansion method [19], the modified simple equation method [20], the generalized (G′/G) expansion
method [21], the modified Khater method [22,23], the extended (G′/G)-expansion method [24,25], the
homotopy perturbation double Sumudu transform method [26], the tan method, and the tanh method [27],
the fractional extended Fan sub-equation method [28], and the modified auxiliary equation method [33,34],
and the sub-equation method [29,30].

In this paper, we focus on constructing novel exact solutions of the Paraxial Wave Dynamical Equation
with Kerr law using the Kudryashov and Tanh methods. Our solutions include multiple types of wave
solutions, which have important applications in physics and engineering. The physical characteristics of these
solutions are well-defined, and the results demonstrate the power and effectiveness of the present techniques.

The paper is structured as follows: §2 presents the governing equation, while §3 discusses the proposed
analysis method. In §4, we apply the Kudryashov method, while §5 presents the analysis and application of
the tanh method. Finally, we provide the conclusion of this paper in §6.
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2. Governing model

Using Kerr media, the dimensionless time-dependent Paraxial wave equation (PWE) [31] through limiting
the diffraction into one-dim in the existence of GVD is given as,

ι
∂E
∂Z

+
α

2
∂2E
∂t2 +

β

2
∂2E
∂y2 + γ|E|2E = 0 , (1)

here, E represents the addition of complex waves, the t, y, and z represent temporal, spatial and longitudinal
promulgation veriables, correspondingly. In Eq. (1), β, γ, and α are real numbers and denote the effects of
diffraction, non-linearity of Kerr and dispersal, similarly. Eq. (1) convert into hyperbolic NLSE if αβ < 0 and
its convert into elliptic NLSE [32] if αβ > 0. Clearly, this model can also describe (2+1)- dim dynamic of spatial
in cubic-Kerr media, disregarding GVD, in this sensey, t represent the coordinates of temporal and spatial
transverse and z denotes the longitudinal coordinate. Moreover α = β > 0,

E(y, z, t) = Q(η) eιY, (2)

where

η = k1y + k2z + wt, Y = µ1y + µ2z + τt + θ. (3)

Using (2) and (3) into (1) and classifying into parts, we get,

(αw2 + βk2
1)Q

′′(η)− (ατ2 + βµ2
1 + 2µ2)Q(η)− 2γQ(η)3 = 0. (4)

(2ατw + 2βk1µ1 + 2k2)Q′(η) = 0. (5)

From (5) Q′(η) ̸= 0, so

k2 = −ατw − βk1µ1. (6)

3. Analysis of the Kudryashov method [13,14]

Suppose we have PDE as follows

Ω(p, pt, py, ptt, pzy, pzt, ...) = 0, (7)

where p = p(y, z, t) is a function. Consider the next wave transformations

p(y, z, t) = W(η), η = k1y + k2z + wt. (8)

Using (8) we get the following ODE

H(W, W ′, W ′′, ...) = 0. (9)

Consider solutions (9) has the following solution

W(η) =
N

∑
j=0

f j(Q(η))j , (10)

here, f j are constants and

Q(η) =
1

1 + deη , (11)

that satisfies nonlinear differential equation given, as

dQ
dη

= Q(η)(Q(η)− 1). (12)

Inserting Eq. (12) into Eq. (10), then we found a set of equations by comparing the coefficients of Q(η) to zero.
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4. Application Kudryashov method

By KM, consider Eq. (4) has the solution, as

W(η) = f0 + f1Q(η), (13)

where f0 and f1 are constants. Substituting Eq. (13) into Eq. (3), corresponding the coefficients of Q(η) to zero,
gets a set of equations. On solving the system, the f j, j = 0, 1, 2, 3 are achieved novel sets of solution for Eq.
(1).

Case 1

f0 =

√
αw2 − βk2

1

2
√

γ
, f1 = −

√
αw2 − βk2

1√
γ

, µ2 =
1
4
(−2ατ2 − αw2 − βk2

1 − 2βµ2
1). (14)

Using (13), we got the following solution of (3)

W1(ξ) =

√
αw2 − βk2

1

2
√

γ
−

√
αw2 − βk2

1√
γ(1 + de(k1y+k2z+wt))

. (15)

The exact solution for (1) is given by

p1(y, z, t) =

√
αw2 − βk2

1

2
√

γ
−

√
αw2 − βk2

1√
γ(1 + de(k1y+k2z+wt))

× eι(µ1y + µ2z + τt + θ). (16)

Case 2

f0 = −

√
αw2 − βk2

1

2
√

γ
, f1 =

√
αw2 − βk2

1√
γ

, µ2 =
1
4
(−2ατ2 − αw2 − βk2

1 − 2βµ2
1). (17)

Using (13), we got the following solution of (3)

W2(ξ) = −

√
αw2 − βk2

1

2
√

γ
+

√
αw2 − βk2

1√
γ(1 + de(k1y+k2z+wt))

(18)

The exact solution for (1) is given by

p2(y, z, t) = −

√
αw2 − βk2

1

2
√

γ
+

√
αw2 − βk2

1√
γ(1 + de(k1y+k2z+wt))

× eι(µ1y + µ2z + τt + θ). (19)

5. Description of the generalized tanh method [15]

Let PDE as given in (1) with the wave transformation in (2) and (3) using wave transformation ODE is
obtained as in (4). We assume that (4) has a solution, as

p(y, z, t) = W(η) =
N

∑
j=0

f jQj(η), (20)

here, f j(j = (1, 2, 3, .....N)) are constants and Q(η),

dQ
dη

= h + Q2(η) . (21)
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By using balancing rule in (4) the value of N is found. Replacing (20) into (4) with (21), gives a set of equations
for f j(j = (0, 1, 2, 3, ....N)). On solving this set, we yield set of solutions that admits (4), as follows

Consider the solutions of (21) are, as

Case 1

If h < 0, then

Q(η) = −
√
−h tanh(

√
−hη), (22)

and

Q(η) = −
√
−h coth(

√
−hη). (23)

5.1. Case 2

If h = 0, then

Q(η) = − 1
η

. (24)

Case 3

If h > 0, then

Q(η) =
√

h tan(
√

hη), (25)

and

Q(η) = −
√

h cot(
√

hη). (26)

5.2. Application of Tanh method

According the balancing rule in (4), we get N = 1, (20) reduces to

W(ξ) = f0 + f1Q(η) . (27)

Putting (27) and (21) in (4) produces a polynomial in form of Q(η). We get a system on making a comparison
of the coefficients of Q(η) to zero, after solving it we get solutions as

Set 1

f0 = 0, f1 =

√
−αw2−βk2

1
γ , µ2 = − ατ2

2 + hαw2 + hβk2
1 −

βµ2
1

2 . If h < 0, then

p1(y, z, t) = (−

√
−αw2 − βk2

1√
γ

√
−h tanh(

√
−hη))× eι(µ1y+µ2z+τt+θ), (28)

or

p2(y, z, t) = (−

√
−αw2 − βk2

1√
γ

√
−h coth(

√
−hη))× eι(µ1y+µ2z+τt+θ). (29)

If h = 0, then

p3(y, z, t) =

√
−αw2 − βk2

1√
γ

(− 1
η
)× eι(µ1y+µ2z+τt+θ). (30)

If h > 0, then

p4(y, z, t) = (

√
−αw2 − βk2

1√
γ

√
h tan(

√
hη))× eι(µ1y+µ2z+τt+θ), (31)
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or

p5(y, z, t) = (−

√
−αw2 − βk2

1

γ

√
h cot(

√
hη))× eι(µ1y+µ2z+τt+θ). (32)

Set 2

f0 = 0, f1 = −
√

−αw2−βk2
1√

γ , µ2 = − ατ2

2 + hαw2 + dβk2
1 −

βµ2
1

2 . If h < 0, then

p6(y, z, t) = (

√
−αw2 − βk2

1√
γ

√
−h tanh(

√
−hη))× eι(µ1y+µ2z+τt+θ), (33)

or

p7(y, z, t) = (

√
−αw2 − βk2

1√
γ

√
−h coth(

√
−hη))× eι(µ1y+µ2z+τt+θ). (34)

If h = 0, then

p8(y, z, t) = −

√
−αw2 − βk2

1√
γ

(− 1
η
)× eι(µ1y+µ2z+τt+θ). (35)

If h > 0, then

p9(y, z, t) = (−

√
−αw2 − βk2

1√
γ

√
h tan(

√
hη))× eι(µ1y+µ2z+τt+θ), (36)

or

p10(y, z, t) = (

√
−αw2 − βk2

1√
γ

√
h cot(

√
hη))× eι(µ1y+µ2z+τt+θ). (37)

6. Results and discussions

The results of this paper will be valuable for researchers to study the most noticeable applications of the
paraxial dynamical model with Kerr law non-linearity in optic fibers. Figures 1-5 reveals the surfaces of the
solution acquired for 3-D and 2-D plots, with a selection of suitable parameters for the paraxial dynamical
model with Kerr law non-linearity. Likewise, 3D plots provide us to model and exhibit correct physical
behavior. Through this study, we consider the optical soliton solutions to the nonlinear paraxial dynamical
model with Kerr law non-linearity using the Kudryashov and tanh methods. The authors proposed different
analytic approaches in the newly issued article and reported some fascinating findings. The author can
understand from all the graphs that the proposed methods are very effective and more specific in assessing
the equation under consideration. Figure 1 indicates the solution given by (16), which is dark. Figures 2 and 3
indicate the solutions given by (28) and (29), which are dark and singular, respectively. Figures 4 and 5 are the
graphical representations of the solutions given by (36) and (37), which are periodic singular solitons.

7. Conclusion

In this work, we have successfully obtained exact solutions of the paraxial dynamical model with Kerr
law non-linearity using the Kudryashov and Tanh methods. These results are of great significance in the study
of physical phenomena such as optics and optical fibers, as they can help to better understand the behavior of
non-linear optic systems and provide a foundation for future research.

Both the Kudryashov and Tanh methods employed in this study have demonstrated their consistency,
efficiency, and effectiveness in solving non-linear PDEs. These methods can be utilized to develop new exact
solitons and deepen our understanding of complex physical systems.

The exact solutions obtained in this study have the potential to be applied in a wide range of physical
phenomena beyond optics and optical fibers. The Kudryashov and Tanh methods can be adapted and
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employed in other fields of research, such as fluid mechanics, plasma physics, and quantum mechanics, where
non-linear PDEs are frequently encountered.

Overall, the results of this work demonstrate the power and applicability of the Kudryashov and Tanh
methods in solving non-linear PDEs and provide a foundation for future research in various fields of physics.
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Figure 1. 3-d plot of (16) (left) and (a-1) 2-d plot of (16) with t = 1 (right)
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Figure 2. 3-plot of (28) (left) and (b-1) 2-plot of (28) with t = 1 (right)
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Figure 3. 3-d plot of (29) (left) and (c-1) 2-d plot of (29) with t = 1 (right)
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Figure 4. 3-d graph of (36) (left) and (d-1) 2-d plot of (36) with t = 1 (right)
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Figure 5. 3-d graph of (37) (left) and (e-1) 2-d plot of (37) with t = 1 (right)
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