

Article Interor and h operators of the category of locales

Joaquín Luna-Torres

Programa de Matemáticas, Universidad Distrital Francisco José de Caldas, Bogotá D. C., Colombia; jlunator@fundacionhaiko.org

Academic Editor: Waqas Nazeer

Received: 2 November 2022; Accepted: 27 February 2023; Published: 31 March 2023.

Abstract: We construct the concrete categories **I-Loc** and \mathfrak{h} -Loc over the category Loc of locales and we deduce that they are topological categories, where **I** and \mathfrak{h} denote respectively the classes of interior and *h* operators of the category Loc of locales.

Keywords: Filter; Bases of filters; Ultrafilter; *S*-filter; Cover-neighborhood; &-neighborhood; Grothendieck topology; Convergence; Compactness; Frames; Locales.

MSC: 18A35; 18F10; 18F70; 54A20; 54D30.

1. Introduction

K uratowski operators (closure, interior, exterior, boundary and others) have been used intensively in General(set-theoretic) Topology ([1–3]). For a topological space it is well-known that, for example, the associated closure and interior operators provide equivalent descriptions of the topology; but this is not always true in other categories, consequently it makes sense to define and study separately these operators. In this context, we study an interior operator *I* on the the coframe $S_{\ell}(L)$ of sublocales of every object *L* in the category **Loc**.

On the other hand, a new topological operador \mathfrak{h} was introduced by M. Suarez [4] in order to complete a Boolean algebra with all topological operators in General Topology. Following his ideas, we study an operator \mathfrak{h} on the collection $S_{\ell}^{c}(L)$ of all complemented sublocales of every object *L* in the category **Loc**.

The paper is organized as follows, we begin presenting, in §2, the basic concepts of Heyting algebras, Frames, locales, sublocales, images and preimages of sublocales for the morphisms of **Loc** and the notions of closed and open sublocales; these notions can be found in Picado and Pultr [5] and A. L. Suarez [6]. In §3, we present the concept of interior operator *I* on the category **Loc** and then we construct a topological category (**I-Loc**, *U*), where $U : \mathbf{I-Loc} \to \mathbf{Loc}$ is a forgetful functor. Finally in §4 we present the notion of \mathfrak{h} operator on the category **Loc** and discuss some of their properties for constructing the topological category (\mathfrak{h} -**Loc**, *U*) associated to the forgetful functor $U : \mathfrak{h}$ -**Loc**.

2. Preliminaries

For a comprehensive account on the the categories of frames and locales we refer to Picado and Pultr [5] and A. L. Suarez [6], from whom we take the following notions:

- The adjunction Ω : Top → Frm^{op}, pt : Frm^{op} → Top with Ω ⊣ pt, connects the categories of frames with that of topological spaces. The functor Ω assigns to each space its lattice of opens, and pt assigns to a frame *L* the collection of the frame maps *f* : *L* → 2, topologized by setting the opens to be exactly the sets of the form {*f* : *L* → 2 | *f*(*a*) = 1} for some *a* ∈ *L*.
- A frame *L* is *spatial* if for $a, b \in L$ whenever $a \notin b$ there is some frame map $f : L \to 2$ such that $f(a) = 1 \neq f(b)$. Spatial frames are exactly those of the form $\Omega(X)$ for some space *X*.
- A space is *sober* if every irreducible closed set is the closure of a unique point. Sober spaces are exactly those of the form **pt**(*L*) for some frame *L*.
- The adjunction Ω ⊢ pt restricts to a dual equivalence of categories between spatial frames and sober spaces.
- The category of sober spaces is a full reflective subcategory of **Top**. For each space *X* we have a sobrification map $N : X \to \mathbf{pt}(\Omega(X))$ mapping each point $x \in X$ to the map $f_x : (X) \to 2$ defined as f(U) = 1 if and only if $x \in U$.

- The category of spatial frames is a full reflective subcategory of **Frm**. For each frame we have a spatialization map $\phi : L \to \Omega(\mathbf{pt}(L))$ which sends each $a \in L$ to $\{f : L \to 2 \mid f(a) = 1\}$.
- We call **Loc** the category **Frm**^{*op*}, and we call its objects locales. Maps in the category of locales have a concrete description: they can be characterized as the right adjoints of frame maps (since frame maps preserve all joins, they always have right adjoints).
- A *sublocale* of a locale *L* is a subset *S* ⊆ *L* such that it is closed under arbitrary meets, and such that *s* ∈ *S* implies *x* → *s* ∈ *S* for every *x* ∈ *L*. This is equivalent to *S* ⊆ *L* being a locale in the inherited order, and the subset inclusion being a map in Loc.
- Sublocales of *L* are closed under arbitrary intersections, and so the collection $S_{\ell}(L)$ of all sublocales of *L*, ordered under set inclusion, is a complete lattice. The join of sublocales is (of course) not the union, but we have a very simple formula $\bigvee_i S_i = \{ \bigvee M \mid M \subseteq \bigcup_i S_i \}$.
- In the coframe $S_{\ell}(L)$ the bottom element is the sublocale $\{1\}$ and the top element is L.
- Let $f : L \to M$ be a localic map. The set-theoretic preimage $f^{-1}[T]$ of a sublocale $T \subseteq M$ is not necessarily a sublocale of L. To obtain a concept of a preimage suitable for our purposes we will, first, make the following observation: "Let $A \subseteq L$ be a subset closed under meets. Then $\{1\} \subseteq A$ and if $S_i \subseteq A$ for $i \in J$ then $\bigwedge_{i \in J} S_i \subseteq A$ ". Consequently there exists the largest sublocale contained in A. It will be denoted by A_{sloc} .
- The set-theoretic preimage $f^{-1}[T]$ of a sublocale T is closed under meets (indeed, f(1) = 1, and if $x_i \in f^{-1}[T]$) then $f(x_i) \in T$, and hence $f(\bigwedge_{i \in J} x_i) = \bigwedge_{i \in J} f(x_i)$ belongs to T and $\bigwedge_{i \in J} x_i \in f^{-1}[T]$) and we have the sublocale $f_{-1}[T] := f^{-1}[T]_{sloc}$. It will be referred to as *the preimage* of T, and we shall sat that $f_{-1}[-]$ is *the preimage function* of f.
- For every localic map *f* : *L* → *M*, the preimage function *f*₋₁[−] is a right Galois adjoint of the image function *f*[−] : *S*_ℓ(*L*) → *S*_ℓ(*M*).
- Embedded in S_ℓ(L) we have the coframe of *closed sublocales* which is isomorphic to L^{op}. The closed sublocale c(a) ⊆ L is defined to be ↑ a for a ∈ L.
- Embedded in S_ℓ(L) we also have the frame of open sublocales which is isomorphic to L. The open sublocale is defined to be {a → x | x ∈ L} for a ∈ L.
- The sublocales $\mathfrak{o}(a)$ and $\mathfrak{c}(a)$ are complements of one another in the coframe $\mathcal{S}_{\ell}(L)$ for any element $a \in L$. Furthermore, open and closed sublocales generate the coframe $\mathcal{S}_{\ell}(L)$ in the sense that for each $S \in \mathcal{S}_{\ell}(L)$ we have $S = \bigcap \{\mathfrak{o}(x) \cup \mathfrak{c}(y) \mid S \subseteq \mathfrak{o}(x) \cup \mathfrak{c}(y) \}$.
- A pseudocomplement of an element *a* in a meet-semilattice *L* with 0 is the largest element *b* such that $b \land a = 0$, if it exists. It is usually denoted by $\neg a$. Recall that in a Heyting algebra *H* the pseudocomplement can be expressed as $\neg x = x \rightarrow 0$.

3. Interior Operators

We shall be conserned in this section with a version on locales of the interior operator studied in [7].

Before stating the next definition, we need to observe that since for localic maps $f : L \to M$ and $g : M \to N$:

the preimage function *f*₋₁[-] is a right Galois adjoint of the image function *f*[-] : S_ℓ(L) → S_ℓ(M); *g*[-] ∘ *f*[-] = (*g* ∘ *f*)[-].

Therefore $g_{-1}[-] \circ f_{-1}[-] = (g \circ f)_{-1}[-]$ because given two adjunctions the composite functors yield an adjunction.

Definition 1. An interior operator *I* of the category **Loc** is given by a family $I = (i_L)_{L \in Loc}$ of maps $i_L : S_{\ell}(L) \to S_{\ell}(L)$ such that

- (*I*₁) (Contraction) $i_{\iota}(S) \subseteq S$ for all $S \in S_{\ell}(L)$;
- (*I*₂) (Monotonicity) If $S \subseteq T$ in $S_{\ell}(L)$, then $i_L(S) \subseteq i_L(T)$
- (I_3) (Upper bound) $i_L(L) = L$.

Definition 2. An *I*-space is a pair (L, i_L) where *L* is an object of **Loc** and i_L is an interior operator on *L*.

Definition 3. A morphism $f : L \to M$ of **Loc** is said to be *I*-continuous if

$$f_{-1}[i_{M}(T)] \subseteq i_{L}(f_{-1}[T])$$
(1)

for all $T \in S_{\ell}(M)$. Where $f_{-1}[-]$ is the preimage of f[-].

Proposition 1. Let $f : L \to M$ and $g : M \to N$ be two I-continuous morphisms of Loc then $g \cdot f$ is an I-continuous morphism of Loc.

Proof. Since $g : M \to N$ is *I*-continuous, we have

$$g_{-1}[i_{\scriptscriptstyle N}(S)] \subseteq i_{\scriptscriptstyle M}(g_{-1}[S])$$

for all $S \in S_{\ell}(N)$, it fallows that

$$f_{-1}\left[g_{-1}\left[(i_{\scriptscriptstyle N}(S)\right]\right]\subseteq f_{-1}\left[i_{\scriptscriptstyle M}(g_{-1}[S])\right];$$

now, by the *I*-continuity of *f*,

$$f_{-1}\Big[i_{\scriptscriptstyle M}\big(g_{-1}[S]\big)\Big] \subseteq i_{\scriptscriptstyle L}\Big(f_{-1}\big[g_{-1}[S]\big]\Big),$$
$$f_{-1}\Big[g_{-1}\big[i_{\scriptscriptstyle N}(S)\big]\Big] \subseteq i_{\scriptscriptstyle L}\Big(f_{-1}\big[g_{-1}[S]\big]\Big),$$

that is to say

therefore

$$(g \cdot f)_{-1}[i_N(S)] \subseteq i_L((g \cdot f)_{-1}[S])$$

As a consequence we obtain;

Definition 4. The category **I-Loc** of *I*-spaces comprises the following data:

- 1. **Objects**: Pairs (L, i_L) where L is an object of **Loc** and i_L is an interior operator on L.
- 2. Morphisms: Morphisms of Loc which are *I*-continuous.

3.1. The lattice structure of all interior operators

For the category Loc we consider the collection

Int(Loc)

of all interior operators on Loc. It is ordered by

 $I \leq J \Leftrightarrow i_L(S) \subseteq j_L(S)$, for all $S \in S_\ell$ and all *L* object of **Loc**.

This way Int(Loc) inherits a lattice structure from S_{ℓ} :

Proposition 2. Every family $(I_{\lambda})_{\lambda \in \Lambda}$ in Int(Loc) has a join $\bigvee_{\lambda \in \Lambda} I_{\lambda}$ and a meet $\bigwedge_{\lambda \in \Lambda} I_{\lambda}$ in Int(Loc). The discrete interior operator

$$I_{\scriptscriptstyle D} = (i_{\scriptscriptstyle DL})_{L\,\in\,\mathbf{Loc}}$$
 with $i_{\scriptscriptstyle DL}(S) = S$ for all $S\in\mathcal{S}_{\ell}$

is the largest element in Int(Loc), and the trivial interior operator

$$I_{\tau} = (i_{\tau_L})_{L \in \mathbf{Loc}} \quad with \quad i_{\tau_L}(S) = \begin{cases} \{1\} & \text{for all } S \in \mathcal{S}_{\ell}, \ S \neq L \\ L & \text{if } S = L \end{cases}$$

is the least one.

Proof. For $\Lambda \neq \emptyset$, let $\widehat{I} = \bigvee_{\lambda \in \Lambda} I_{\lambda}$, then

$$\widehat{i_L} = \bigvee_{\lambda \in \Lambda} i_{\lambda L},$$

for all *L* object of **Loc**, satisfies

- $\hat{i}_{L}(S) \subseteq S$, because $i_{\lambda L}(S) \subseteq S$ for all $S \in S_{\ell}$ and for all $\lambda \in \Lambda$.
- If $S \leq T$ in S_{ℓ} then $i_{\lambda L}(S) \subseteq i_{\lambda L}(T)$ for all $S \in S_{\ell}$ and for all $\lambda \in \Lambda$, therefore $\hat{i}_{s}(S) \subseteq \hat{i}_{L}(T)$.

• Since $i_{\lambda L}(L) = L$ for all $\lambda \in \Lambda$, we have that $\hat{i}_{L}(L) = L$.

Similarly $\bigwedge_{\Lambda} I_{\lambda}$, I_{D} and I_{T} are interior operators.

Corollary 1. For every object L of Loc

 $Int(L) = \{i_L \mid i_L \text{ is an interior operator on } L\}$

is a complete lattice.

3.2. Initial interior operators

Let **I-Loc** be the ctegory of *I*-spaces. Let (M, i_M) be an object of **I-Loc** and let *L* be an object of **Loc**. For each morphism $f : L \to M$ in **Loc** we define on *L* the operator

$$i_{L_f} := f_{-1}[-] \cdot i_M \cdot f[-].$$
 (2)

Proposition 3. The operator (2) is an interior operator on L for which the morphism f is I-continuous.

Proof.

- (*I*₁) (Contraction) $i_{L_f}(S) = f_{-1}[i_M(f[S])] \subseteq f_{-1}[f[S]] \subseteq S$ for all $S \in S_{\ell}$;
- (*I*₂) (Monotonicity) $S \subseteq T$ in \mathcal{S}_{ℓ} , implies $f[S] \subseteq f[T]$, then $i_{M}(f[S] \subseteq i_{M}(f[T]))$, consequently $f_{-1}[i_{M}(f[S])] \subseteq f_{-1}[i_{M}(f[T])]$;
- (I₃) (Upper bound) $i_{L_f}(L) = f_{-1}[i_M(f[L])] = L.$

Finally,

$$f_{-1}\big[i_{\scriptscriptstyle M}(T)\big]\subseteq f_{-1}\big[i_{\scriptscriptstyle M}\big(f\big[[f_{-1}[T]\big)\big]\subseteq i_{\scriptscriptstyle L_f}\big(f_{-1}[T]\big),$$

for all $T \in S_{\ell}$.

It is clear that i_{L_f} is the coarsest interior operator on *L* for which the morphism *f* is *I*-continuous; more precisaly

Proposition 4. Let (L, i_L) and (M, i_M) be objects of I-Loc, and let N be an object of Loc. For each morphism $g : N \to L$ in Loc and for $f : (L, i_{L_t}) \to (M, i_N)$ an I-continuous morphism, g is I-continuous if and only if $f \cdot g$ is I-continuous.

Proof. Suppose that *g* • *f* is *I*-continuous, i. e.

$$(f \cdot g)_{-1}[i_M(T)] \subseteq i_N((f \cdot g)_{-1}[T])$$

for all $T \in \mathbf{S}(\mathbf{N})$. Then, for all $S \in S_{\ell}$, we have

$$g_{-1}[i_{L_f}(S)] = g_{-1}[f_{-1} \cdot i_M \cdot f[S]] = (f \cdot g)_{-1}[i_M(f[S])]$$

$$\subseteq i_N((f \cdot g)_{-1}[f[S])) = i_N(g_{-1} \cdot f_{-1} \cdot f[S])$$

$$\subseteq i_N(g_{-1}[S]),$$

i.e. *g* is *I*-continuous.

As a consequence of Corollary 1, Proposition 3 and Proposition 4 (cf. [8] or [9]), we obtain

Theorem 2. The forgetful functor $U : \mathbf{I} \cdot \mathbf{Loc} \to \mathbf{Loc}$ is topological, i.e. the concrete category ($\mathbf{I} \cdot \mathbf{Loc}$, U) is topological.

3.3. Open subobjects

Definition 5. An sublocale *S* of a locale *L* is called *I*-open (in *L*) if it is isomorphic to its *I*-interior, that is: if $i_L(S) = S$.

The *I*-continuity condition (1) implies that *I*-openness is preserve by inverse images:

Proposition 5. Let $f : L \to M$ be a morphism in Loc. If T is I-open in M, then $f_{-1}(T)$ is I-open in L.

Proof. If $T = i_M(T)$ then $f_{-1}[T] = f_{-1}[i_M(T)] \subseteq i_L(f_{-1}[T])$, therefore $i_L(f_{-1}[T]) = f_{-1}[T]$.

4. h Operators

In this section we shall be conserned with a weak categorical version of a topological function studied by M, Suarez M. in [4]. For that purpose we will use the collection $S_{\ell}^{c}(L)$ of all complemented sublocales of a locale *L* (See P, T. Johnston [10], for example).

Definition 6. An \mathfrak{h} operator of the category **Loc** is given by a family $\mathfrak{h} = (h_L)_{L \in \text{Loc}}$ of maps $h_L : \mathcal{S}^c_{\boldsymbol{\ell}}(L) \to \mathcal{S}^c_{\boldsymbol{\ell}}(L)$ such that

(*h*₁) $S \cap h_{L}(S) \subseteq S$, for all $S \in S^{c}_{\ell}(L)$; (*h*₂) If $S \subseteq T$ then $S \cap h_{L}(S) \subseteq T \cap h_{L}(T)$, for all $S, T \in S^{c}_{\ell}(L)$; (*h*₃) $h_{L}(L) = L$.

Definition 7. An h-space is a pair (L, h_L) where L is an object of Loc and h_L is an h operator on L.

Definition 8. A morphism $f : L \to M$ of **Loc** is said to be \mathfrak{h} -continuous if

$$f_{-1}[T \cap h_{M}(T)] \subseteq f_{-1}[T] \cap h_{L}(f_{-1}[T])$$
(3)

for all $T \in S^{c}_{\ell}(M)$. Where $f_{-1}[-]$ is the inverse image of f[-].

Proposition 6. Let $f : L \to M$ and $g : M \to N$ be two h-continuous morphisms of Loc then $g \cdot f$ is an h-continuous morphism of Loc.

Proof. Since $g : M \to N$ is *I*-continuous, we have

$$g_{-1}\left[V \cap h_{\scriptscriptstyle N}(V)\right] \subseteq g_{-1}[V] \cap h_{\scriptscriptstyle M}\left(g_{-1}[V]\right)$$

for all $V \in \mathcal{S}_{\ell}^{c}(N)$, it fallows that

$$f_{-1}[g_{-1}[V \cap h_{N}(V)]] \subseteq f_{-1}[g_{-1}[V] \cap h_{M}(g_{-1}[V])]$$

now, by the \mathfrak{h} -continuity of f,

$$f_{-1}[g_{-1}[V] \cap h_{M}(g_{-1}[V])] \subseteq f_{-1}[g_{-1}[V]] \cap h_{L}(f_{-1}[g_{-1}[V]])$$

therefore

$$(g \cdot f)_{-1} [V \cap h_{\scriptscriptstyle N}(V)] \subseteq (g \cdot f)_{-1} \cap h_{\scriptscriptstyle L} ((g \cdot f)_{-1}[V]).$$

This complete the proof. \blacksquare

As a consequence we obtain

Definition 9. The category h-Loc of h-spaces comprises the following data:

- 1. **Objects**: Pairs (L, h_L) where *L* is an object of **Loc** and h_L is an \mathfrak{h} -operator on *L*.
- 2. Morphisms: Morphisms of Loc which are h-continuous.

4.1. The lattice structure of all h operators

For the category Loc we consider the collection

of all h operators on Loc. It is ordered by

$$\mathfrak{h} \leq \mathfrak{h}' \Leftrightarrow h_{L}(S) \subseteq h'_{L}(S)$$
, for all $S \in \mathcal{S}_{\ell}^{c}(L)$ and all L object of **Loc**.

This way $\mathfrak{h}(\mathbf{Loc})$ inherits a lattice structure from \mathcal{S}_{ℓ}^{c} .

Proposition 7. Every family $(\mathfrak{h}_{\lambda})_{\lambda \in \Lambda}$ in $\mathfrak{h}(\mathbf{Loc})$ has a join $\bigvee_{\lambda \in \Lambda} \mathfrak{h}_{\lambda}$ and a meet $\bigwedge_{\lambda \in \Lambda} \mathfrak{h}_{\lambda}$ in $Int(\mathbf{Loc})$. The discrete \mathfrak{h} operator

$$\mathfrak{h}_{D} = (h_{DL})_{L \in \mathbf{Loc}}$$
 with $h_{DL}(S) = S$ for all $S \in \mathcal{S}^{c}_{\boldsymbol{\ell}}(L)$

is the largest element in $\mathfrak{h}(\mathbf{Loc})$, and the trivial \mathfrak{h} operator

$$\mathfrak{h}_{\tau} = (h_{\tau_L})_{L \in \mathbf{Loc}} \quad with \quad h_{\tau_L}(S) = \begin{cases} \{1\} & \text{for all } S \in \mathcal{S}^c_{\boldsymbol{\ell}}(L), \ S \neq L \\ L & \text{if } S = L \end{cases}$$

is the least one.

Proof. For $\Lambda \neq \emptyset$, let $\widehat{\mathfrak{h}} = \bigvee_{\lambda \in \Lambda} \mathfrak{h}_{\lambda}$, then

$$\widehat{h_L} = \bigvee_{\lambda \in \Lambda} h_{\lambda_L},$$

for all *L* object of **Loc**, satisfies

- $S \cap \widehat{h_{L}}(S) \subseteq S$, because $S \cap h_{\lambda_{S}}(L) \subseteq S$, for all $S \in \mathcal{S}_{\ell}^{c}(L)$ and for all $\lambda \in \Lambda$.
- If $S \subseteq T$ then $S \cap \widehat{h_L}(S) \subseteq T \cap \widehat{h_L}(T)$, since $S \cup h_{\lambda L}(\widetilde{S}) \subseteq T \cup h_{\lambda L}(T)$, for all $S, T \in \mathcal{S}^c_{\boldsymbol{\ell}}(L)$ and for all $\lambda \in \Lambda$.
- $L \cap \widehat{h_L}(L) = L$, because $L \cap h_{\lambda L}(L) = L$ for all $\lambda \in \Lambda$.

Similarly $\bigwedge_{\lambda \in \Lambda} \mathfrak{h}_{\lambda}$, \mathfrak{h}_{D} and \mathfrak{h}_{T} are \mathfrak{h} operators.

Corollary 3. For every object L of Loc

$$\mathfrak{h}(L) = \{h_L \mid h_L \text{ is an } \mathfrak{h} \text{ operator on } L\}$$

is a complete lattice.

4.2. Initial h operators

Let \mathfrak{h} -Loc be the category of \mathfrak{h} -spaces. Let (M, h_M) be an object of \mathfrak{h} -Loc and let L be an object of Loc. For each morphism $f : L \to M$ in Loc we define on L the operator

$$h_{L_f} := f_{-1}[-] \cdot h_M \cdot f[-].$$
(4)

Proposition 8. The operator (4) is an \mathfrak{h} operator on L for which the morphism f is \mathfrak{h} -continuous.

Proof.

$$(h_1) \ S \cap h_{L_f}(S) = f_{-1} \left[f[S] \cap h_M[f[S]] \right] \subseteq f_{-1}[f[S]] \subseteq S,$$

for all $S \in \mathcal{S}^c_{\boldsymbol{\ell}}(L)$.
$$(h_2) \ S \subseteq T \text{ in } \mathcal{S}^c_{\boldsymbol{\ell}}(L), \text{ implies } f[S] \subseteq f[T], \text{ then}$$

$$f[S] \cap h_M(f[S]) \subseteq f[T] \cap h_M(f[T]), \text{ therefore}$$

$$f_{-1} \left[f[S] \cap h_M(f[S]) \right] \subseteq f_{-1} \left[f[T] \cap h_M(f[T]) \right],$$

consequently $S \cap h_{L_f}(S) \subseteq T \cap h_{L_f}(T), \text{ for all } S, T \in \mathcal{S}^c_{\boldsymbol{\ell}}(L);$
$$(h_3) \ L \cap h_{L_f}(L) = f_{-1} \left[f[L] \cap h_M[f[L]] \right] = L.$$

It is clear that $h_{L_f}(L)$ is the coarsest \mathfrak{h} operator on L for which the morphism f is \mathfrak{h} -continuous; more precisaly

Proposition 9. Let (L, h_L) and (M, h_M) be objects of \mathfrak{h} -Loc, and let N be an object of Loc. For each morphism $g : N \to L$ in Loc and for $f : (L, h_{L_f}) \to (M, h_N)$ an \mathfrak{h} -continuous morphism, g is \mathfrak{h} -continuous if and only if $f \cdot g$ is \mathfrak{h} -continuous.

Proof. Suppose that *g* • *f* is *I*-continuous, i. e.

$$(f \bullet g)_{-1} [T \cap h_{\scriptscriptstyle M}(T)] \subseteq T \cap h_{\scriptscriptstyle N} ((f \bullet g)_{-1}[T])$$

for all $T \in T \in S^{c}_{\ell}(N)$. Then, for all $S \in T \in S^{c}_{\ell}(L)$, we have

$$g_{-1} \Big[S \cap (h_{L_f}(S)) \Big] = g_{-1} \Big[f_{-1} \big[f[S] \cap h_{M}(f[S]) \big] = (f \cdot g)_{-1} \big[f[S] \cap h_{M}(f[S]) \big] \\ \subseteq f \cdot g)_{-1} [f[S]] \cap \Big(h_{N} \big((f \cdot g)_{-1} \big[f[S] \big] \big) \\ = (f \cdot g)_{-1} \big[f[S] \big] \cap h_{N} \big(g_{-1} \cdot f_{-1} \cdot f[S] \big) \\ \subseteq g_{-1} [S] \cap h_{N} \big(g_{-1} [S] \big),$$

i.e. *g* is *I*-continuous.

As a consequence of Corollary 3, Proposition 8 and Proposition 9 (cf. [8] or [9]), we obtain

Theorem 4. The forgetful functor $U : \mathfrak{h}$ -Loc \rightarrow Loc is topological, i.e. the concrete category (\mathfrak{h} -Loc, U) is topological.

Conflicts of Interest: The author declares no conflict of interest.

References

- [1] Dugundji, J., & Topolgy, B. (1966). Allyn and Bacon. Inc., Boston, Mass.
- [2] Kuratowski, K. (1966). Topology, Vol. 1. Academic Press, New York and London.
- [3] Kuratowski, K. (1968). Topology, Vol. 2. Academic Press, New York and London.
- [4] Suarez, M. (1988). La Función Topológica h. Universidad Pedagógica y Tecnológica de Colombia, Tunja.
- [5] Picado, J., & Pultr, F. (2012). Locales: Topology Without Points. Frontiers of Mathematics.
- [6] Suarez, A. L. (2022). On the relation between subspaces and sublocales. *Journal of Pure and Applied Algebra*, 226(2), 106851, https://doi.org/10.1016/j.jpaa.2021.106851.
- [7] Luna, J., & Ochoa, C. (2011). Interior operators and topological categories. Advances and Applications in Mathematical Sciences, 10(2).
- [8] Adámek, J., Herrlich, H., & Strecker, G. (1990). Abstract and Concrete Categories. Wiley-Interscience.
- [9] Montañez, R. (2007). *Funtores Elevadores y Coelevadores de Estructuras*. (Doctoral dissertation, tesis de doctorado, Universidad Nacional de Colombia, Bogotá).
- [10] Johnstone, P. T. (2006). Complemented sublocales and open maps. Annals of Pure and Applied Logic, 137(1-3), 240-255.

© 2023 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).