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1. Introduction

I n this short paper, we consider the notion of thermal equilibrium for charge and current (ρ, J) satisfying
the continuity equation, ∂ρ

∂t = −div(J), in conjunction with the set of relations;

(i). □2(ρ) = 0.
(ii). □2(J) = 0.
(iii). ▽(ρ) + 1

c2
∂J
∂t = 0,

where □2 is the d’Alembertian operator ▽2 − 1
c2

∂2

∂t2 .
The significance of the relations (i)− (iii) is that they are invariant under the Lorentz transformation of

frames defined by special relativity, and characterise systems in which there exists electromagnetic fields (E, B)
in every frame such that (ρ, J, E, B) satisfy Maxwell’s equations, B = 0 and □2E = 0. Such configurations
have the characteristic that the Poynting vector E × B = 0 and the flux div(E × B) = 0, so that there is no
energy loss of the signal at any distance, in any inertial frame. The fields (E, B) may not be the causal fields
defined by Jefimenko’s equations, or related by Lorentz transformations in different frames. These ideas are
developed in detail in the papers [1] and [2].

In order to define thermal equilibrium in this paper, we need that the charge ρ > 0, in which case we
require that | J

ρ | = d, where d ∈ R≥0. The significance of J
ρ is that it defines the velocities of particles which

make up the charge. More precisely, one can start with (ρ, J) satisfying the continuity equation, and use ρ0

to define the initial position of the particles which make up the charge. The particle paths are then defined
by x(t + ϵ)− x(t) = ϵ J

ρ′ |x,t, where ϵ is an infinitesimal, with x(0) given and ρ′ defined step by step using the
new particle configuration. It is the aim of the paper [3] to prove that ρ′ is S-continuous as a nonstandard
process, has a well defined standard part ◦ρ′ and that (J, ◦ρ′) satisfies the continuity equation. It then follows,
by taking the difference of the processes, that;

∂(ρ − ◦ρ′)

∂t
= div(J)− div(J) = 0 and ρ0 = ◦ρ′0,

so that ρt = ◦ρ′t, for t ≥ 0, and the processes coincide. Physicists, as in [4], use this relation J = ρv intuitively.

In Definition 1, we define the notion of a simple system in which all the particles travel with constant
velocity. This notion is stronger than that of thermal equilibrium. In Lemma 1, we prove that simple systems
have the important property that they are classically non-radiating in every inertial frame, but the property of
thermal equilibrium is in general not preserved between frames. The result relies on the work of Larmor, see
[5], who characterises radiation fields for moving particles, although it is still to be shown that the radiation
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field defined by Jefimenko’s equations, see [4], coincides with the radiation field of the sum of its constituents.
We isolate simple systems as parallel and divergent, the idea being that in any other system, straight line paths
would intersect transversely and the current would not be well defined at the intersection point. We show
that there are systems (ρ, J) satisfying the continuity equation with ρ > 0 which are parallel but, using the
main result of [2], there are none which are divergent. We did, however, find a divergent system in [3] and [6],
which satisfies the additional relations, but is not simple or in thermal equilibrium. In Lemma 2, we exclude
the possibility that d ̸= c for parallel systems, when the additional relations outlined above are in place and, in
Lemma 3, we show that the condition of parallel with d = c is non vacuous, that is parallel systems with d = c
and satisfying the additional relations exist. In the final Definition 2, we define trajectories and flow lines,
and, in Lemma 4, we exclude the possibility of (ρ, J) satisfying the continuity equation and the additional
relations, with circular flow lines centred at the origin. We did manage to find a system in thermal equilibrium
with these properties in [7] but it does not have the property that ρ > 0 and it does not satisfy the additional
relations, though we present an argument that it is classically non-radiating in all inertial frames. If thermal
equilibrium holds, we use an important result in model theory due to Wilkie, see [8], that real fields with
Pfaffian functions are O-minimal, to show that the flowlines are unbounded. This allows us to prove that, if
the additional relations are in place as well, that the system must be parallel, with d = c, by the above.

Definition 1. Suppose that (ρ, J) satisfy the continuity equation, with ρ > 0, so that we can use the results of
[3], in defining constituent particles and their velocities. We assume this throughout the paper. We say that the
system is simple if the velocities of the individual particles are equal, with zero acceleration. We say the system
is parallel, if the particles travel in parallel straight lines at constant velocity. We say the system is divergent, if
all the particles travel in straight lines with constant velocity and the paths can only intersect at one point. We
say the system is in thermal equilibrium if | J

ρ | = d, for some d ∈ R>0.

Lemma 1. A simple system has the property that it is classically non radiating in the sense of [2], in every inertial
frame, and is in thermal equilibrium in the base frame. The parallel systems are given by the prescription that the charge
ρ satisfies the transport equation; ∂ρ

∂t = −λ �▽(ρ) for the velocity vector λ, and the current J satisfies; J = λρ. In
particular parallel systems exists. Without loss of generality, the divergent systems are given by the prescription that ρ

satisfies the equation; ∂ρ
∂t = − d

|x| (▽(ρ) � x − 2ρ), (x ̸= 0), where d ∈ R and the current satisfies; J = dρ x
|x| . However,

no non trivial divergent systems satisfying the continuity equation exist.

Proof. As all the particles in a simple system have zero acceleration, using the calculation of the
Lienard-Wiechert potentials for a single particle, and the fact that all the acceleration fields vanish, we have
that; limr→∞

∫
B(0,r) div(Et × Bt)dx = 0, for the causal fields (E, B). When we transform between frames, the

particles still move with constant but differing velocities and again all the acceleration fields vanish, so the
result holds for the causal fields in all frames. Thermal equilibrium in the base frame follows from the fact that
| J

ρ | = d, as all the particles have the same constant speed. For the second claim, as the velocity λ is constant,

and the paths are parallel, we must have that, J = λρ. In order to satisfy the continuity equation, we must
have that;

∂ρ

∂t
= −div(J) = −div(λρ) = −λ �▽(ρ).

This is a transport equation with solution ρ(x, t) = g(x − λt), where g ∈ C∞(R3). For the third claim, in
a divergent system, with the intersection point centred at the origin, we must have that; J = dρ x

|x| , (V). By the
continuity equation, we obtain that;

∂ρ

∂t
= −div(J) = −div(dρ

x
|x| ) = −d▽ (ρ) �

x
|x| − dρdiv(

x
|x| ) = −d▽ (ρ) �

x
|x| −

2dρ

|x = − d
|x| (▽(ρ) � x− 2ρ)(A)

If (E, J) = 0 for the causal fields such that (ρ, J, E, B) satisfies Maxwell’s equations, then, for any volume
V ⊂ R3, we would have that dW

dt = 0, for the total mechanical energy W of the charge distribution in V. In
particular, as all the particles are travelling with equal speed, we must have that;
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dQ
dt

=
d
dt

∫
V

ρdx =
∫

V

∂ρ

∂t
dx = 0,

so that, as the volume V was arbitrary, ∂ρ
∂t = and ρ is time independent. From (A), we then obtain that

▽(ρ) � x = 2ρ. However;

if ρ = 1
2 (ρxx + ρyy + ρzz), then ρx = 1

2 (ρxxx + ρx + ρxyy + ρxzz) and ▽(ρx) � x = ρx. Similarly, it follows
that; ▽(ρy) � x = ρy and ▽(ρz) � x = ρz.

Repeating the argument, we obtain that; ▽(ρxx) � x = ▽(ρxy) � x = ▽(ρxz) � x = ▽(ρyy) � x

▽(ρyz) � x = ▽(ρzz) � x = 0

It follows that:

ρrxx = ρrxy = ρrxz = ρryy = ρryz = ρrzz = 0, ρrx = C1ρry = C2ρrz = C3, ρr = C1x + C2y + C3z.

By the divergence theorem and the continuity equation, we have that;

∫
B(0,r)

∂ρ

∂t
dx = −

∫
B(0,r)

div(J)dx = −
∫

S(0,r)
J � dS = −

∫
S(0,r)

dρ
x
|x| �

x
|x|dS = −d

∫
S(0,r)

ρdS = 0

so that
∫

S(0,r) ρdS = 0. It follows, by the Reynolds transport theorem, that;

d
dr

∫
B(0,r)

ρdx =
∫

B(0,r)

∂ρ

∂r
dx +

∫
S(0,r)

ρdS =
∫

B(0,r)
C � xdx = 0

and; ∫
B(0,r)

ρdx = 0 for r ∈ R(E)

As ρ ≥ 0, the condition (E) then implies that ρ = 0, so that J = 0 as well. We can therefore assume
that for the causal fields (E, B) in the based frame, that (E, J) ̸= 0. As the set of causal fields in the frames Sv,
where |v| < c is definable, and the condition (E, J) = 0 defines a closed set, we can assume that generically
in Sv, (Ev,causal , Jv) ̸= 0. We can then apply the arguments in [2], together with the classically non-radiating
property proved above, to conclude that there is a transfer of mechanical energy between two volumes {S, Sκ}.
As this occurs over a finite time interval (t0 = ϵ, t0 + ϵ) we can construct corresponding volumes {T, Tκ} in
the base frame. Generically, either the energy change in T is positive and the energy change in Tκ is negative
ot the energy change in T is negative and the energy change in Tκ is positive, both of which contradict thermal
equilibrium in the base frame. Alternatively, the energy change in {T, Tκ} is of the same sign, in which case,
as the process is reversible, we can assume that both energy changes are negative. In this case, we can assume
that energy is transferred into the field, again a contradiction. By the main result of [2], we can conclude that
(ρ, J) must satisfy the wave equations □2ρ = 0, □2 J = 0 in the base frame, as well as the connecting relation
▽(ρ) + 1

c2
∂J
∂t = 0. We have, by the definition of J, that; ▽(ρ) + 1

c2
∂J
∂t = 0 iff ▽(ρ) + 1

c2 d x
|x|

∂ρ
∂t = 0.

In particularly, ▽(ρ) is parallel to x, so that ρ is constant on spheres S(0, r), for r ∈ R>0. We have that

□2(ρ) = 0, so writing the Laplacian ▽2 in polar form, we obtain that; 1
r

∂2

∂r2 (rρ) − 1
c2

∂2ρ

∂t2 = 0 so that rρ(r, t)

satisfies the 1-dimensional wave equation □2
r (rρ) = 0, (K), with speed c. Similarly, □2

r (r
∂ρ
∂t ) = 0. From (A),

we have that;
∂ρ
∂t = − d

|x| (▽(ρ) � x − 2ρ) (A)

= −d ∂ρ
∂r −

2dρ
r

so that; r ∂ρ
∂t = −dr ∂ρ

∂r − 2dρ and, as □2
r (r

∂ρ
∂t ) = 0, we have that; □2

r (−dr ∂ρ
∂r − 2dρ) = 0, (F). Also; d ∂(rρ)

∂r =

dr ∂ρ
∂r + dρ so that as d□2

r (
∂(rρ)

∂r ) = 0, we have that; □2
r (dr ∂ρ

∂r + dρ) = 0 (G).
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Combining (F), (G) gives that □2
r (ρ) = 0. It follows from this and (K) that;

∂2ρ

∂2r = 1
c2

∂2ρ

∂2t

∂2(rρ)

∂r2 =
∂(ρ + r ∂ρ

∂r )

∂r
= 2

∂ρ

∂r
+ r

∂2ρ

∂2r
=

1
c2

∂2ρ

∂2t

so that; (1 − r) ∂2ρ

∂2r = 2 ∂ρ
∂r . Letting g = ∂ρ

∂r , we have that; (1 − r) ∂g
∂r = 2g, so that g = A(t)e−2ln(1−r) =

A(t)(1 − r)−2 = A(t)
(1−r)2 and ρ = A(t)

(1−r) + B(t). It follows from □2
r (ρ) = 0, that; 1

c2 (
A′′(t)
(1−r) + B′′(t)) = 2A(t)

(1−r)3 , so

that A′′(t) = B′′(t) = A(t) = 0, and ρ = B(t) = αt + β. It follows that J = d(αt + β) x
|x| and clearly, we cannot

have that □2 J = 0.

Lemma 2. Suppose that (ρ, J) satisfy the wave equations □2ρ = 0, □2 J = 0, the continuity equation ∂ρ
∂t = −div(J)

and the connecting relation ▽(ρ) + 1
c2

∂J
∂t = 0, such that the system is parallel, then, if |λ| ̸= c, where λ is the velocity,

{ρ, J} are time independent and harmonic. In particularly, if for t ∈ R, ρt ∈ S(R3), Jt ∈ S(R3), then ρ = 0, J = 0.
In the remaining case, when |λ| = c, we obtain the additional relation ρ = λ

c2 � J. With the same hypotheses as the first
claim, if thermal equilibrium holds instead of parallel, we obtain that ρ is time independent and harmonic, and if |λ| = c,
div(c) = 0.

Proof. As the acceleration is zero, the velocity λ is constant, so that, J = λρ, (A). By the continuity equation
and the connecting relation, we have that;

∂ρ

∂t
= −div(J) = −div(λρ) = −λ �▽(ρ) = λ � (− 1

c2
∂J
∂t
) = − λ

c2 �
∂J
∂t

=
∂

∂t
(

λ

c2 � J)

so that, by the FTC;

ρ =
λ

c2 � J + d(x) =
λ

c2 � λρ + d(x) =
|λ2|
c2 ρ + d(x)

so that either ρ is time independent or |λ| = c and d(x) = 0. In the first case, as □2ρ = 0, we have that
▽2(ρ) = 0 and ρ is harmonic. Then, as J = λρ, we have that, as □2 J = 0, and the components of J are time
independent, that the components of J are harmonic. In the second case, we obtain that ρ = λ

c2 � J, (B). The
penultimate claim is clear.

For the final claim concerning thermal equilibrium, we have that, J = λρ, with |λ| = d, so that ∂λ
∂t � λ = 0.

As above, we have that;
∂ρ
∂t = −div(J) = −div(ρλ) = −λ �▽(ρ) − ρdiv(λ)(U) = −λ � (− 1

c2
∂J
∂t ) − ρdiv(λ) = λ

c2 � ∂J
∂t − ρdiv(λ) =

∂
∂t (

λ�J
c2 )− 1

c2
∂λ
∂t � J − ρdiv(λ) = ∂

∂t (
λ�λρ

c2 )− ρ

c2
∂λ
∂t � λ − ρdiv(λ) = ∂

∂t
d2ρ

c2 − ρdiv(λ).
If d = c, we obtain ρdiv(λ) = 0, so that with analyticity assumptions, ρ ̸= 0, we obtain that div(λ) = 0. If

d ̸= c, letting ϵ = 1 − d2

c2 , we have that; ϵ
∂ρ
∂t = −ρdiv(λ) iff ϵ(div(J)) = ρdiv(λ).

Again, we have that;
div(J) = ▽(ρ) � λ + ρdiv(λ)

which implies that; ρ
ϵ div(λ) = ▽(ρ) � λ + ρdiv(λ), so that; ρdiv(λ)( 1

ϵ − 1) = ▽(ρ) � λ and, from (U);
∂ρ
∂t = −λ �▽(ρ) − ϵ

ϵ−1 λ �▽(ρ) = 1−2ϵ
ϵ−1 λ �▽(ρ) = 1−2ϵ

ϵ−1 λ �− 1
c2

∂J
∂t = 1−2ϵ

ϵ−1 λ �− 1
c2

∂
∂t (ρλ) = − 1−2ϵ

ϵ−1
1
c2 (d2) ∂ρ

∂t , so

that; (1 + 1−2ϵ
ϵ−1

1
c2 (d2)) ∂ρ

∂t = 0 iff 2(1 − d2

c2 )
∂ρ
∂t = 0

so that ρ is time independent. The conclusion that ρ is harmonic follows again from □2(ρ) = 0.

Lemma 3. Parallel systems with |λ| = c, which satisfy the additional connecting relation; ▽(ρ) + 1
c2

∂J
∂t = 0 are

characterised by; ρ(x, t) = h( λ1
c x + λ2

c y + λ3
c z − ct) and J = λρ, where h ∈ C∞(R). In particular, we have that the

addition relations □2ρ = 0, □2 J = 0 is satisfied and there is a solution with this requirement.



Open J. Math. Sci. 2023, 7, 279-286 283

Proof. As the system is parallel, by the proof of Lemma 1, we have that; J = λρ and ∂ρ
∂t = −λ �▽(ρ) (A). The

connecting relation implies that;

▽(ρ) +
1
c2

∂J
∂t

= ▽(ρ) +
1
c2

∂(λρ)

∂t
= ▽(ρ) +

λ

c2
∂ρ

∂t
= 0,

so that ▽(ρ) = − λ
c2

∂ρ
∂t (B).

Conversely, if ρ satisfies (A), (B), with J = λρ, then we obtain a parallel system with the additional
connecting relation. By (A), we have that ρ(x, t) = g(x − λt), (C). In the case that λ = (c, 0, 0), we have from
(B), (C), that we require; (gx, gy, gz) = − 1

c2 (c, 0, 0) ∂ρ
∂t , so that, in particular, gy = gz = 0, g(x) = h(x) and then;

ρ(x, t) = g(x − λt) = h(x − ct). Observe that if ▽(ρ) = λδ(x, t), then, as |λ| = c;

∂ρ

∂t
= −λ �▽(ρ) = −λ � λδ(x, t) = −c2δ(x, t)

and δ(x, t) = − 1
c2

∂ρ
∂t , so that; ▽(ρ) = − λ

c2
∂ρ
∂t , which is (B), (∗).

We have that ρx = gx, ρxx = gxx, ρy = gy = 0, ρyy = gyy = 0, ρz = gz = 0, ρzz = gzz = 0, ρt = hx(−c),

ρtt = hxxc2, so that ▽2(ρ) − 1
c2

∂2ρ
∂t2 = hxx − hxx = 0 and □2(ρ) = 0, so that □2(J) = 0. In the case of an

arbitrary λ with |λ| = c, choose an orthogonal matrix U with U(1, 0, 0) = λ
c . We have found ρ(x, t) such that;

▽(ρ)(x, t) = − 1
c2 (1, 0, 0)m(x.t), so that, applying U to both sides, we have that;

U(▽(ρ))(x, t) = ▽(ρ)(U−1(x), t) = − 1
c2

λ

c
m(x.t)

We have that;

ρ(U−1(x), t) = g(U−1(x)− λt) = h(U−1(x)1 − ct) = h(
λ1

c
x +

λ2

c
y +

λ3

c
z − ct).

Observe that if g(x) = h( λ1
c x + λ2

c y + λ3
c z), then; g(x − λt) = h( λ1

c x + λ2
c y + λ3

c z − λ2
1−λ2

2−λ2
3

c t) = h( λ1
c x +

λ2
c y+ λ3

c z− ct), so that (A) is still satisfied, and, by the above remark (∗), (B) is satisfied as well, as ▽(ρ ◦U−1)

is parallel to λ. Again ρ ◦ U−1 satisfies the wave equation □2(ρ ◦ U−1) = ▽2(ρ ◦ U−1) − 1
c2

∂2ρ◦U−1

∂t2 = 0.
Defining J = λρ ◦ U−1, we have that □2(J) = 0 as well.

Definition 2. Given (ρ, J) satisfying the continuity equation with ρ > 0, we define a trajectory γ to be an
integral curve for the velocity field J

ρ . We define a flow line γ : (0, ∞) → R3 to be a solution of the differential

equation; γ′(s) = J
ρ (γ(s), t0 + s). We define a system to be circular if all the flow lines are circular orbits centred

at the origin. We define a system to be closed if all the flow lines define closed curves. We define a system
to be open if none of the flow lines are closed or bounded. We define thermal equilibrium by the condition
(J,J)

ρ2 = d2, where d ∈ R>0.

Lemma 4. Suppose that (ρ, J) satisfy the wave equations □2ρ = 0, □2 J = 0, the continuity equation ∂ρ
∂t = −div(J)

and the connecting relation ▽(ρ) + 1
c2

∂J
∂t = 0. Then, if the system is circular, ρ is time independent and harmonic,

and, for t ∈ R, the components of Jt are harmonic. If the system is in thermal equilibrium, then every closed trajectory
intersects the locus ∂ρ

∂t |t = 0, for all t ∈ R. If the system is in thermal equilibrium and ρ is not time independent,
ρ(γ(s), s) is constant along the flowline. Moreover, every flowline is open and if ρt − z ∈ S(R3) for t ∈ R some z ∈ R,
the system must be parallel.
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Proof. For the first claim, we have that J
ρ � x = 0, in particular J � x = 0. As □2(J) = 0, and the continuity

equations holds, we have that;

□2(J � x) = (
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 − 1
c2

∂2

∂t2 )(j1x + j2y + j3z)

=
∂2

∂x2 (j1x) +
∂2

∂y2 (j2y) +
∂2

∂z2 (j3z) + ((
∂2

∂y2 +
∂2

∂z2 − 1
c2

∂2

∂t2 )j1)x + ((
∂2

∂yx +
∂2

∂z2 − 1
c2

∂2

∂t2 )j2)y

+((
∂2

∂x2 +
∂2

∂y2 − 1
c2

∂2

∂t2 )j3)z

= 2
∂j1
∂x

+ 2
∂j2
∂y

+ 2
∂j3
∂z

+ (
∂2

∂x2 j1)x + (
∂2

∂y2 j2)y + (
∂2

∂z2 j3)z + ((
∂2

∂y2 +
∂2

∂z2 − 1
c2

∂2

∂t2 )j1)x

+((
∂2

∂yx +
∂2

∂z2 − 1
c2

∂2

∂t2 )j2)y + ((
∂2

∂x2 +
∂2

∂y2 − 1
c2

∂2

∂t2 )j3)z

= 2div(J) + (□2 j1)x + (□2 j2)y + (□2 j3)z = 2div(J) = −2
∂ρ

∂t
= 0,

so that ρ is time independent and, as □2(ρ) = 0, that ρ is harmonic. As ▽(ρ) is time independent, by the

connecting relation ▽(ρ) + 1
c2

∂J
∂t = 0, we have that ∂J

∂t is time independent and ∂2 J
∂t2 = 0, so that, as □2 J = 0, the

the components of Jt are harmonic for t ∈ R. For the second claim, we have that, if γ is a trajectory;

dρ

ds
(γ(s), t) = ▽(ρ)|γ(s),t � γ′(s) = − 1

c2
∂J
∂t
|γ(s),t �

J
ρ
|γ(s),t

= − 1
c2ρ

|γ(s),t(
∂J
∂t

� J)|γ(s),t = − 1
2c2ρ

|γ(s),t
∂

∂t
(J � J)|γ(s),t

= − 1
2c2ρ

|γ(s),t
∂

∂t
d2ρ2|γ(s),t = − d2

c2ρ
|γ(s),tρ|γ(s),t

∂ρ

∂t
|γ(s),t

= −d2

c2
∂ρ

∂t
|γ(s),t.

If a closed trajectory γ is disjoint from the locus of ∂ρ
∂t t0

, with γ(a) = γ(b), for some t0 ∈ R, then either
∂ρ
∂t |W > 0 or ∂ρ

∂t |W < 0. We have that;

∫
W
▽(ρ) � dγ =

∫ b

a

dρ

ds
(γ(s), t)ds = −d2

c2

∫ b

a

∂ρ

∂t
(γ(s), t)ds = γ(b)− γ(a) = 0

which is a contradiction. For the next claim, we calculate, if γ is a flowline;

dρ

ds
(γ(s), s) = ▽(ρ)|γ(s),s � γ′(s) +

∂ρ

∂t
|γ(s),s = − 1

c2
∂J
∂t
|γ(s),s �

J
ρ
|γ(s),s +

∂ρ

∂t
|γ(s),s

= − 1
c2ρ

|γ(s),s(
∂J
∂t

� J)|γ(s),s +
∂ρ

∂t
|γ(s),s = − 1

2c2ρ
|γ(s),s

∂

∂t
(J � J)|γ(s),s +

∂ρ

∂t
|γ(s),s

= − 1
2c2ρ

|γ(s),s
∂

∂t
d2ρ2|γ(s),s +

∂ρ

∂t
|γ(s),s = − d2

c2ρ
|γ(s),sρ|γ(s),s

∂ρ

∂t
|γ(s),s +

∂ρ

∂t
|γ(s),s

= −d2

c2
∂ρ

∂t
|γ(s),s +

∂ρ

∂t
|γ(s),s = 0,

as d = c, by Lemma 2. If γ is a flowline, then it cannot intersect the locus of Jt = 0 at any time t, as we have
thermal equilibrium c, with |c| = c. It follows that the flowline cannot have any equilibrium points in its
closure, and if it is bounded, must be a closed loop or spirals into a closed loop. The first case can be excluded,
by O-minimality of the real closed field with Pfaffian functions, using the fact that for a point x on the loop
Range(γ), we can define;

{t ∈ R>0 : γ(t) = x}
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which cannot be a finite union of points and intervals, as the set is unbounded and discrete, see [8] and
[9]. More specifically, we can approximate J

ρ by a polynomial vector field W, using the Stone-Weierstrass

approximation theorem, on an open ball B(0, r0) containing the loop, in such a way that a flowline γ1 for W is
still a bounded closed loop. This follows as the cycle maps θt0,t for J

ρ , defined by;

θt0,t(x) = γ(t0 + t)

where γ(t0) = x are invertible, by reversing the flow, letting;

J
ρ

rev
(x, s) = − J

ρ (x, t0 + t − s), 0 ≤ s ≤ t

and using the cycle map θrev
0,t for the corresponding flowline. It follows, by continuity, that the cycle maps

θt0,t are proper and the deviation map ϕt0,t(x) = θt0,t(x) − x is proper. As γ forms a closed loop, we have
that 0 ∈ ϕt0,t(B◦(0, r0)) and not a boundary point. By continuity, when we construct W, we can still obtain a
closed loop. In the second case, we could find a limit point x ∈ Range(γ), which is not an equilibrium point
and which, wlog, is not on the trajectory, (∗). This follows as if it lies on the trajectory twice, we would form
a closed loop. By the argument (X) below, we can exclude the case that x is an endpoint of γ. It follows that
it must be part of a compact ω-limit set with no fixed points. By the Poincare-Bendixson Theorem, applied to
planar projections of the system in R3, we would obtain a periodic orbit again, and we can repeat the argument
to obtain a contradiction. We can, therefore assume that the system is open.

If the system is not parallel or divergent, then there exists a ball B(x, r) =
⋃

w∈I{γw(t) : 0 ≤ t ≤ t(w)},
where I is a closed interval and {γw : w ∈ I} is a set of flowlines, with the properties that;

(i). γw(0) and γw(tw) are the unique points of γw([0, tw]) lying on δB(x, r).
(ii). We have that −c(γw(0)) � n̂ > c(γw(tw)) � n̂
The property (i) follows from the fact that the flowlines are unbounded and the existence of flowlines

through a given point, the last property being a consequence of Peano’s existence theorem. The property (ii)
follows from the asymmetry of a path which is not straight and continuity. By the above, we have that ρ

is constant along the flowline in the sense that ρ(γw(s), s) = f (w) for some smooth function f , (S). By the
continuity equation and divergence theorem, we have that;∫

B(x,r)

∂ρ

∂t
dB = −

∫
δB(x,r)

J � n̂dS = −
∫

δB(x,r)
ρc � n̂dS(T)

so that by (S), (T) and the properties (i), (ii), the charge ρ would monotonically increase or decrease
inside the ball B(x, r). We can then either use the fact that ρ ≥ 0 or the fact that □2(ρ) = 0, together with
Kirchoff’s formula for ρ, with initial conditions in S(R3), so that |ρt| ≤ M

t , where M is independent of t, to get
a contradiction. The addition of a constant doesn’t effect the argument.

We show that every trajectory γ : [0, ∞) → R doesn’t have an endpoint, (X). Suppose that a trajectory has
an endpoint x. Then, by thermal equilibrium, we may suppose that J

ρ (x) = v ̸= 0. Without loss of generality,

assume that v2 = v3 = 0. By continuity, we may suppose that | j1
ρ | ≥ | v1

2 |, for x ∈ B(x, r), with r < |v1|
2 , and,

there exists t0 ∈ R>0, with |γ(t)− x| < r < |v1|
2 (A), for t ≥ t0. By the intermediate value theorem, we have

that;
|(γv(t0 + s))1 − (γv(t0))1| = |s(γ′

v(t0 + s0))1| ≥ sv1

2

with s0 ∈ (0, s), so that if s > 3, we obtain a contradiction with (A), as;
|(γv(t0 + s))− (γv(t0))| ≥ |(γv(t0 + s))1 − (γv(t0))1| > v1

and, by (A);
|(γv(t0 + s))− (γv(t0))| ≤ |(γv(t0 + s))− x|+ |(γv(t0))− x| ≤ 2 v1

2 = v1 (X)

which is a contradiction.
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