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Abstract: In this article, we focus on developing new results regarding normed quasilinear spaces. We
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1. Introduction

I n this article, we focus on developing new results regarding normed quasilinear spaces. Aseev introduced
quasilinear spaces, normed quasilinear spaces, and quasilinear operators in [1]. In [2–4], proper

quasilinear spaces were defined, and many results were obtained on normed quasilinear spaces. In [5,6],
authors worked on bounded quasilinear interval-valued functions and analyzed the Hahn Banach extension
theorem for interval-valued functions. To develop quasilinear functional analysis, quasilinear inner product
spaces, which are generalizations of inner product spaces, were defined in [7–10]. In [11], a special class of
fuzzy number sequences was shown to be a Hilbert quasilinear space. In [12], authors provided easy examples
of approximate estimations of deterministic autocorrelation of some semi non-deterministic signals or signals
with inexact data in [12]. In [13], a new mathematical method for processing such a non-deterministic signal
was presented by using interval-valued functions, which is called its model interval signal. Moreover, in
[14], a new continuous-time epidemic model including nonlinear delay differential equations was analyzed by
using parameters and functions selected from a class of intervals whose algebraic basis is based on quasilinear
spaces.

In 1999, Molodtsov introduced soft set theory in [15] and showed various applications of this theory on
economics, engineering, medical science, etc. In [16], several operations on soft sets were presented. Das and
Samanta introduced the notions of soft element in [17] and soft real number in [18]. They worked on soft
linear spaces, soft normed linear spaces, soft linear operators, soft inner product spaces, and their properties in
[19–22]. In [23,24], soft normed space was introduced from a new point of view, and soft inner product space
and soft Hilbert space on soft linear spaces were introduced, respectively.

Based on these studies on soft linear spaces and quasilinear spaces, in [25], the notions of soft quasilinear
spaces and soft normed quasilinear spaces were introduced. Afterwards, in [26], definitions of soft inner
product quasilinear spaces and soft Hilbert quasilinear spaces were given, and some properties of soft inner
product quasilinear spaces were studied.

In this paper, we define the concept of soft homogenized quasilinear space and obtain new results related
to this new concept. We also provide properties of these spaces. Furthermore, we present new theorems and
examples regarding the floor of soft quasilinear spaces and soft quasilinear inner product spaces. Our results
contribute significantly to the development of quasilinear functional analysis.

2. Preliminaries

In this section, we introduce some notions related to soft set theory, as well as basic concepts such as soft
quasilinear spaces, soft normed quasilinear spaces, and soft inner product quasilinear spaces.
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Let Q be a universe and P be a set of parameters. P (Q) denotes the power set of Q, and B denotes a
non-empty subset of P.

Definition 1. [15] A pair (G, P) is called a soft set over Q, where G is a mapping defined by G : P → P(Q).

Definition 2. [20] A soft set (G, P) over Q is said to be an absolute soft set represented by Q̃, if for every λ ∈ P,
G (λ) = Q. A soft set (G, P) over Q is said to be a null soft set represented by Φ, if for every λ ∈ P, G (λ) = ∅.

Definition 3. [18] Let Q be a non-empty set and P be a non-empty parameter set. Then a function q : P → Q
is said to be a soft element of Q. A soft element q of Q is said to belong to a soft set G of Q, which is denoted
by q ∈ Q, if q (λ) ∈ G (λ), λ ∈ P. So, for a soft set G of Q with respect to the index set P, we have G(λ) =

{q (λ) , λ∈̃P} . A soft set (G, P) for which G(λ) is a singleton set, ∀λ ∈ P can be determined with a soft element
by simply determining the singleton set with the element that it contains ∀λ ∈ P.

The set of all soft sets (G, P) over Q is described by S
(

Q̃
)

for which G (λ) ̸= ∅, for all λ ∈ P, and the

collection of all soft elements of (G, P) over Q is denoted by SE
(

Q̃
)

.
Now, let us give a definition that is meaningful in soft quasilinear spaces but not in soft linear spaces.

Definition 4. [25] Let Q be a quasilinear space and P be a parameter set. Let G be a soft set over (Q, P). G is
said to be a soft quasilinear space of Q if Q (λ) is a quasilinear subspace of Q for every λ ∈ P.

We use the notation q̃, w̃, z̃ to indicate soft quasi vectors of a soft quasilinear space and ã, b̃, c̃ to specify
soft real numbers. If a soft quasi element q̃ has an inverse i.e. q̃− q̃ = θ̃ such that q̃ (λ)− q̃ (λ) = θ̃ (λ) for
every λ ∈ P then it is called regular. If a soft quasi element q̃ has no inverse, then it is called singular. Also, Q̃r

express for the set of all soft regular elements in Q̃ and Q̃s imply the sets of all soft singular elements in Q̃.

Definition 5. [25] Let Q̃ be the absolute soft quasilinear space i.e. Q̃ (λ) = Q for every λ ∈ P. Then a mapping

∥.∥ : SE
(

Q̃
)
−→ R (P) is said to be soft norm on the soft quasilinear space Q̃, if ∥.∥ satisfies the following

conditions:

i) ∥q̃∥ ≥̃0 if q̃ ̸= θ for every q̃ ∈ Q̃,
ii) ∥q̃ + w̃∥ ≤̃ ∥q̃∥+ ∥w̃∥ for every q̃, w̃ ∈ Q̃,

iii) ∥α̃ · q̃∥ = |α̃| · ∥q̃∥ for every q̃ ∈ Q̃ and for every soft scalar α̃,
iv) if q̃⪯̃w̃, then ∥q̃∥ ≤̃ ∥w̃∥ for every q̃, w̃ ∈ Q̃,
v) if for any ε>̃0 there exists an element q̃ε ∈ Q̃ such that, q̃⪯̃w̃ + q̃ε and ∥q̃ε∥ ≤̃ε then q̃⪯̃w̃ for any soft

elements q̃, w̃ ∈ Q̃.

A soft quasilinear space Q̃ with a soft norm∥.∥ on Q̃ is called soft normed quasilinear space and is
indicated by

(
Q̃, ∥.∥

)
or

(
Q̃, ∥.∥ , P

)
.

Theorem 1. [26] If a soft norm ∥.∥ on soft normed quasilinear space Q̃ satisfied the condition " ξ ∈ Q, and λ ∈ P,
{∥q̃∥ (λ) = ξ} is a singleton set.". If for every λ ∈ P, ∥.∥λ : Q → R+ be a mapping such that for every ξ ∈ Q,
∥ξ∥λ = ∥q̃∥ (λ), where q̃ ∈ Q̃ such that q̃ (λ) = ξ. Then for every λ ∈ P, ∥.∥λ is a norm on quasilinear space Q.

Let Q̃ be a soft normed quasilinear space. Then, soft Hausdorff or soft norm metric on Q̃ is defined by

hQ(q̃, w̃) = inf
{

r̃≥̃0 : q̃⪯̃w̃ + q̃r
1 , w̃⪯̃q̃ + q̃r

2, ∥q̃r
i ∥ ≤̃r̃

}
.

Definition 6. [26] Let Q̃ be a soft quasilinear space, W̃ ⊆ Q̃ and q̃ ∈ W̃. The set

FW̃
q̃ = {m̃ ∈ W̃r : m̃⪯̃q̃},

is called floor in W̃ of q̃. If W̃ = Q̃ then we will say only floor of q̃ and written shortly Fq̃ instead of FQ̃
q̃ .
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Definition 7. [26] Let Q̃ be a soft quasilinear space, Q̃ is called a solid floored soft quasilinear space whenever

q̃ = sup{m̃ ∈ W̃r : m̃⪯̃q̃}

for every q̃ ∈ Q̃. Otherwise, Q̃ is called a non-solid floored soft quasilinear space.

Theorem 2. [26] Absolute soft quasilinear space
(

Ω̃C (R)
)

is a solid floored.

Definition 8. [26] Let Q̃ be a soft quasilinear space. Consolidation of floor of Q̃ is the smallest solid floored

soft quasilinear space
(̂

Q̃
)

containing Q̃, namely, if there exists different solid floored soft quasilinear space W̃

including Q̃, then
(̂

Q̃
)
⊆̃W̃ .

Definition 9. [26] Let Q̃ be the absolute soft quasilinear space i.e. Q̃(λ) = Q, ∀λ ∈ P. Then a mapping

⟨.⟩ : SE
(

Q̃
)
× SE

(
Q̃
)
→ Ω (R) (P)

is said to be a soft quasi inner product on the soft quasilinear space Q̃, if ⟨.⟩ satisfies the following conditions:

i) ⟨q̃, w̃⟩ ∈ (Ω (R))r ≡ R̃ if q̃, w̃ ∈ Q̃r,
ii) ⟨q̃ + w̃, z̃⟩ ⊆̃ ⟨q̃, z̃⟩+ ⟨w̃, z̃⟩ for all q̃, w̃, z̃ ∈ Q̃,

iii) ⟨α̃ · q̃, w̃⟩ = α̃ · ⟨q̃, w̃⟩ for all q̃, w̃ ∈ Q̃ and for every soft scalar α̃,
iv) ⟨q̃, w̃⟩ = ⟨w̃, q̃⟩ for all q̃, w̃ ∈ Q̃,
v) ⟨q̃, w̃⟩ ⊇̃0 if q̃ ∈ Q̃r and ⟨q̃, q̃⟩ =

{
0
}
⇔ q̃ = {θ},

vi) ∥⟨q̃, w̃⟩∥Ω(R) = sup
{
∥⟨x, y⟩∥ : x ∈ F(̂Q̃)

q̃ , y ∈ F(̂Q̃)
w̃

}
,

vii) ⟨q̃, w̃⟩ ⊆̃ ⟨z̃, ṽ⟩ if q̃⪯̃z̃ and w̃⪯̃ṽ for all q̃, w̃, z̃, ṽ ∈ Q̃,
viii) ∀ϵ̃≥̃0, ∃q̃ϵ ∈ Q̃ such that q̃⪯̃w̃ + q̃ϵ and ⟨q̃ϵ, q̃ϵ⟩ ⊆̃Sϵ(θ) then q̃⪯̃w̃.

A soft quasilinear space Q̃ with a soft quasi inner product ⟨.⟩ on Q̃ is called a soft quasilinear inner product
space and denoted by

(
Q̃, ⟨.⟩ , P

)
.

Remark 1. If Q̃ is a soft linear space, then above conditions are determined by conditions of the real soft inner
product spaces. Moreover, a regular subspace Q̃r of a soft quasilinear inner product space Q̃ is a soft (linear)
inner product space with the same inner product.

Definition 10. [26] A soft quasi vector q̃ of soft quasilinear inner product space Q̃ is said to be orthogonal to
soft quasi element w̃ ∈ Q̃ if

∥⟨q̃, w̃⟩∥Ω(R) = 0.

It is also denoted by q̃⊥w̃. Let M̃ be a non-null soft quasi subset of soft quasilinear inner product space Q̃
such that M̃ (λ) ̸= ∅ for every λ ∈ P. If a soft quasi vector q̃ of soft quasilinear inner product space Q̃
orthogonal to every soft quasi vectors of M̃, then we say that q̃ is orthogonal to M̃ and we write q̃⊥M̃. A
non-null orthonormal soft quasi subset M̃ of soft quasilinear inner product space Q̃ such that M̃ (λ) ̸= ∅ for
every λ ∈ P is a orthogonal soft quasi subset in Q̃ whose soft quasi vectors have norm 1; that is, for all q̃, w̃ ∈ M̃

∥⟨q̃, w̃⟩∥Ω(R) =

{
0, q̃ = w̃

1, q̃ ̸= w̃
.

Definition 11. The set of all soft elements of Q̃ orthogonal to W̃, denoted by W̃⊥, is called the orthogonal
complement of W̃ and is indicated by

W̃⊥ =
{

q̃ ∈ Q̃ : ∥⟨q̃, w̃⟩∥Ω(R) = 0, w̃ ∈ W̃
}

.

3. Main results

Definition 12. Let Q̃ be a soft quasilinear space and α̃β̃≥̃0̃ for every soft scalars α̃, β̃. If
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(
α̃ + β̃

)
· q̃ = α̃ · q̃ + β̃ · q̃

for every q̃ ∈ Q̃, then we say that Q̃ is a soft homogenized quasilinear space.

Theorem 3. Let Q̃ be a soft quasilinear space. Ω̃C(Q) is a soft homogenized quasilinear space but Ω̃(Q) is not a soft
homogenized quasilinear space.

Proof. First, we will show that Ω̃C(Q) is a soft homogenized quasilinear space for a soft quasilinear space

Q̃. We have to show that
(

α̃ + β̃
)
· q̃ = α̃ · q̃ + β̃ · q̃ for every q̃ ∈ Ω̃C(Q) and α̃β̃≥̃0̃ for Ω̃C(Q) to be soft

homogenized quasilinear space. We obtain
(

α̃ + β̃
)
· q̃ ⊆ α̃ · q̃ + β̃ · q̃ since Ω̃C(Q) is a quasilinear space. Let

c ∈
(

α̃ · q̃ + β̃ · q̃
)
(λ) for a parameter λ. Then, we get

c = α̃ (λ) a + β̃ (λ) b

for a, b ∈ q̃ (λ). Here, we can write

c = (α̃ + β̃) (λ) ·
[

α̃ (λ)

α̃ (λ) + β̃ (λ)
a +

β̃ (λ)

α̃ (λ) + β̃ (λ)
b

]
. (1)

If we take t̃ = α̃
α̃+β̃

and k̃ = β̃

α̃+β̃
, then we obtain

(i) α̃≤̃α̃ + β̃ ⇒ α̃
α̃+β̃

≤̃1̃ and 0̃≤̃ α̃
α̃+β̃

for α̃, β̃ ∈ R̃+.

(ii) α̃ + β̃≤̃α̃ ⇒ 1̃≥̃ α̃
α̃+β̃

and 0̃≤̃ α̃
α̃+β̃

α̃, β̃ ∈ R̃−

for α̃β̃≥̃0̃. So, we have 0̃ ≤ t̃ ≤ 1̃ from (i) and (ii).

Further, from definition of convexity on quasilinear spaces we find α̃(λ)

α̃(λ)+β̃(λ)
a + β̃(λ)

α̃(λ)+β̃(λ)
b ∈ q̃ (λ) since

t̃ + k̃ = α̃
α̃+β̃

+ β̃

α̃+β̃
= α̃+β̃

α̃+β̃
= 1̃. Thus, for a k ∈ q̃ (λ) we obtain

c = (α̃ + β̃) (λ) k ∈ q̃ (λ)

from (1). Therefore, we get c ∈
((

α̃ + β̃
)
· q̃
)
(λ) for arbitrary soft parameter λ.

Example 1. Ω̃(R) is not a homogenized soft quasilinear space. Let

Ã : M −→ Ω(R)
λ −→ Ã(λ) = {1, 2}.

From here, we obtain
(

2̃ · Ã
)
(λ) = {2, 4}. Otherside, we get

(
Ã + Ã

)
(λ) = Ã(λ) + Ã(λ) = {2, 3, 4} . Also,

α̃β̃≥̃0̃ we obtain 2̃ · Ã ̸= Ã + Ã for every parameter α̃ (λ) = α.

Example 2. Let Q̃ = Ω̃(R2) and Ã be a soft quasi vector on Ω̃(R2). Let Ã(λ) = {A1, A2} such that A1 =

{(0, t) : 0 ≤ t ≤ 1} and A2 = {(t, 0) : 0 ≤ t ≤ 1} for a λ parameter. Then, similar to above example if we take
α̃ (λ) = α for every λ parameter, then we obtain(

2̃ · Ã
)
(λ) = {2A1, 2A2}.

Otherside, we have(
Ã + Ã

)
(λ) = {A1, A2}+ {A1, A2}

= {(0, 2t) : 0 ≤ t ≤ 1} ∪ {(t, t) : 0 ≤ t ≤ 1} ∪ {(2t, 0) : 0 ≤ t ≤ 1}.
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This gives Ω̃(R2) is not a homogenized soft quasilinear space for α̃ (λ) = 1 and β̃ (λ) = 1 soft scalars.

Theorem 4. Let Q̃ be a soft homogenized quasilinear space. If Ã ∈ Q̃d, then there exist a B̃ ∈ Q̃ such that Ã = B̃ − B̃.

Proof. Let Ã be a symmetric soft quasi vector of homogenized soft quasilinear space Q̃ i.e. Ã = − Ã.
Sametime, we obtain Ã +Ã = Ã −Ã since Ã = Ã. For every λ parameter we obtain

(
Ã + Ã

)
(λ) =(

Ã − Ã
)
(λ). Since X is a homogenized quasilinear space, we find Ã(λ) + Ã (λ) = (2̃Ã) (λ). This gives

Ã (λ) = Ã
2̃
(λ) − Ã

2̃
(λ) . So, we obtain Ã = Ã

2̃
− Ã

2̃
.

Now, let us give our results regarding floor in a soft quasilinear space.

Theorem 5. Let Q̃ be a soft quasilinear space and Ũ ⊆ Q̃. Then the following conditions satisfies:

a)
{

0̃
}
∈ F⊥

Ũ
,

b) If Ũ ⊆ Ṽ, then FŨ ⊆ FṼ and if Ũ⊥ ⊆ Ṽ⊥, then F⊥
Ũ

⊆ F⊥
Ṽ

,

c) F{0̃} =
{

0̃
}

.

Proof. Let q̃ is a arbitrary soft quasi vector in Ũ.
{

0̃
}
∈ F⊥

Ũ
since

∥∥∥∥〈q̃,
{

0̃
}〉

Ω̃(R)

∥∥∥∥ =

∥∥∥∥〈q̃ (λ) ,
{

0̃
}
(λ)

〉
Ω(R)

∥∥∥∥ =∥∥∥⟨q̃ (λ) , 0⟩Ω(R)

∥∥∥ =
{

0̃
}

for a parameter λ.

Let Ũ ⊆ Ṽ. We must show that q̃ ∈ FṼ for every q̃ ∈ FŨ . If q̃ ∈ FŨ , then there exist a ũ ∈ Ũ such that
q̃ ∈ Fũ. Since Ũ ⊆ Ṽ, we find ũ ∈ Ṽ. Thus, we obtain Fũ⊆̃ ∪ũ∈Ũ Fṽ. This gives q̃ ∈ FṼ . if Ũ⊥ ⊆ Ṽ⊥, then
F⊥

Ũ
⊆ F⊥

Ṽ
can be showed similarly.

Clearly,

F{0̃} =
{

q̃ ∈ Q̃r : q̃≤̃
{

0̃
}}

=
{

q̃ (λ) ∈ Qr : q̃ (λ) ≤
{

0̃
}
(λ)

}
= {q̃ (λ) ∈ Qr : q̃ (λ) ≤ 0}

=
{

0̃
}

for a parameter λ.

Definition 13. Let Q̃ be a soft quasilinear space. M̃ ⊆ Q̃ is a convex if and only if α̃q̃ + (1 − α̃)w̃ ∈ FM̃ for
every q̃, w̃ ∈ FM̃ and soft scalar α̃.

Theorem 6. Let Q̃ be a soft quasilinear space and M̃ is a subspace of Q̃. Then FM̃ is a convex subspace of soft quasilinear
space Q̃ if and only if FM is a convex subspace of Q.

Proof. Let α̃ · ã + (1̃ − α̃) · b̃ ∈ FM̃ for ∀ã, b̃ ∈ FM̃ such that ã(λ) =a ∈ FM,b̃(λ) = b∈FM, x̃(λ) =x ∈
M,ỹ(λ) = y ∈ M and soft scalar α̃(λ) =α for every parameter λ. From Definition 6, there exists x̃, ỹ ∈ M̃
such that α̃ · ã + (1̃ − α̃) · b̃≤̃α̃ · x̃ + (1̃ − α̃) · ỹ. Then for every parameter λ, we get (α̃·ã)(λ) + (1̃−α̃)·b̃(λ) ≤
(α̃·x̃)(λ) + (1̃−α̃)·ỹ(λ). This gives

α̃(λ)·ã(λ) + (1̃−α̃)(λ)·b̃(λ) ≤ α̃(λ)·x̃(λ) + (1̃−α̃)(λ)·ỹ(λ).

So, we obtain α · a + (1 − α) · b ≤ α·x+(1−α)·y ∈ M. Otherside, there exists a c̃ ∈ M̃ such that α̃ · ã + (1̃ −
α̃) · b̃ + c̃ = θ because of α̃ · ã + (1̃ − α̃) · b̃ ∈ M̃r . So, we obtain (α̃·ã)(λ) + (1̃−α̃)·b̃(λ)+c̃(λ) = θ for every
parameter λ. This gives α · a + (1 − α) · b ∈ Mr. Therefore, we get α · a + (1 − α) · b ∈ FM.

Let α · a+ (1− α) · b ∈ FM for ∀a, b ∈ FM such that ã(λ) =a ∈ FM,b̃(λ) = b ∈FM, x̃(λ) =x ∈ M,ỹ(λ) = y ∈
M and soft scalar α̃(λ) =α for every parameter λ. From Definition 6, there exists x, y ∈ M such that α · a + (1−
α) · b ≤ α · x + (1 − α) · y. Then for every parameter λ, we get

(α̃·ã)(λ) + (1̃−α̃)·b̃(λ) =α · a + (1 − α) · b≤̃α · x + (1 − α) · y= (α̃·x̃)(λ) + (1̃−α̃)·ỹ(λ).
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This gives α̃·ã+(1̃−α̃)·b̃≤̃α̃·x̃+(1̃−α̃)·ỹ. Otherside, there exists a d ∈ M such that α · a + (1 − α) · b + d = θ

because of α · a + (1 − α) · b ∈ Mr. So, we obtain (α̃·ã(λ) + (1̃−α̃) · b̃(λ)+d̃(λ) = θ for every parameter λ. This
gives α̃·ã+(1̃−α̃)·b̃ ∈ M̃r. Therefore, we get α̃·ã+(1̃−α̃)·b̃ ∈ FM̃.

Theorem 7. Let Q̃ be a soft homogenized quasilinear space. Fq̃ is a convex for a q̃ ∈ Q̃.

Proof. We assume that Q̃ be a soft homogenized quasilinear space. We have to show that λ̃ · w̃ + (1− λ̃) · w̃′ ∈
Fq̃ for w̃, w̃′ ∈ Fq̃. For a q̃ ∈ Q̃, we have Fq̃ = {w̃ ∈ Q̃r : w̃⪯̃q̃}. From here, we obtain w̃⪯̃q̃ and w̃′⪯̃q̃ for

every w̃, w̃′ ∈ Fq̃. Since Q̃ be a soft quasilinear space, we find λ̃ · w̃⪯̃λ̃ · q̃ and (1̃ − λ̃) · w̃′⪯̃(1̃ − λ̃) · q̃ for every

0̃⪯̃λ̃⪯̃1̃ and λ̃ · w̃ + (1̃ − λ̃) · w̃′⪯̃λ̃ · q̃ + (1̃ − λ̃) · q̃. Since Q̃ is a homogenized soft quasilinear space, we obtain
λ̃ · q̃ + (1̃ − λ̃) · q̃ = (λ̃ + 1̃ − λ̃) · q̃ = q̃. This gives λ̃ · w̃ + (1̃ − λ̃) · w̃′ ∈ Fq̃.

Remark 2. A floor of a soft quasi vector of a soft quasilinear space Q̃ is a convex if and only if soft quasilinear
space Q̃ is homogenized. In the above theorem, if Q̃ would not be homogenized, then Fq̃ had not been convex
for a q̃ ∈ Q̃ because of the equality α̃ · q̃ + β̃ · q̃ = (α̃ + β̃) · q̃ may not satisfy for all soft scalars α̃, β̃.

Theorem 8. Let Q̃ be a soft Hilbert quasilinear space and K̃ is a soft convex subspace of Q̃. Then the set of floor of K̃ i.e.
FK̃ is a convex complete soft subspace of Q̃.

Proof. First, we will show that FK̃ is a convex soft subspace of Q̃. We have α̃ · q̃ + (1̃ − α̃)w̃ ∈ K̃ for every
q̃, w̃ ∈ K̃ and 0̃⪯̃α̃⪯̃1̃ since K̃ is a soft convex set. Let ã, b̃ ∈ FK̃. Then there exists a q̃, w̃ ∈ K̃ such that α̃⪯̃q̃ and
b̃⪯̃w̃. Otherwise, we find α̃ · ã≤̃α̃ · q̃ and (1̃ − α̃) · b̃≤̃(1̃ − α̃) · w̃ for 0̃⪯̃α̃⪯̃1̃. We obtain α̃ · ã + (1̃ − α̃) · b̃⪯̃α̃ ·
q̃ + (1̃ − α̃) · w̃ since Q̃ is a soft quasilinear space. Further, we find α̃ · q̃ + (1̃ − α̃) · w̃ ∈ K̃ because of K̃ is a soft
convex subspace of Q̃. Also, we obtain α̃ · ã + (1̃ − α̃) · b̃ ∈ K̃r. This gives α̃ · ã + (1̃ − α̃) · b̃ ∈ FK̃. Now, we will
show that FK̃ is a complete. Let ãn ∈ FK̃ and ãn → ã ∈ Q̃ for n → ∞. If ãn ∈ FK̃, then there exists q̃n ∈ K̃ for
every n ∈ N such that

α̃n⪯̃q̃n. (2)

On the other hand, for every ε̃≥̃0̃ there exists a n0 ∈ N such that for every n > n0, we get

ãn≤̃ã + ãε
1n, ã≤̃ãn + ãε

2n and ∥ãε
in∥ ≤̃ε̃. (3)

From (2) and (3), we have ã≤̃q̃n + ãε
2n and

∥∥ãε
2n
∥∥ ≤̃ε̃ for every n ∈ N. Additionally, we find ã≤̃q̃n for every

n ∈ N from Definition 5. Now, we show that ã ∈ K̃r. Since Q̃ is a soft Hilbert quasilinear space and [25], we
find −ãn → −ã and ãn − ãn → ã − ã for n → ∞. Thus, for every ε̃≥̃0̃ there exists a n0 ∈ N such that for every
n > n0, we get

ãn − ãn≤̃ã − ã + ãε
1n, ã − ã≤̃ãn − ãn + ãε

2n and ∥ãε
in∥ ≤̃ε̃.

From here, we have
0̃≤̃ã − ã + ãε

1n, ã − ã≤̃0̃ + ãε
2n and ∥ãε

in∥ ≤̃ε̃

and
0̃≤̃ã − ã, ã − ã≤̃0̃

since ãn ∈ FK̃ and Q̃ is a soft Hilbert quasilinear space. From [25] Definition 11., we find 0̃ = ã − ã. This gives
ã ∈ K̃r. Therefore, we say that FK̃ is complete.

Remark 3. Here we note that the floor of subspace of a Hilbert quasilinear space is always complete whether
the this subspace is complete or not.

Theorem 9. Let Q̃ be a soft quasilinear inner product space. Then Fw̃ is a closed and bounded for every w̃ ∈ Q̃.

Proof. Let (q̃n) ∈ Fw̃ and q̃n → q̃ ∈ Q̃ for every n → ∞. So, we know that for every ε̃≻̃0̃ there exist a n0 ∈ N
such that for every n ≥ n0, we have

q̃n≤̃q̃ + q̃ε
1n , q̃≤̃q̃n + q̃ε

2n , ∥q̃ε
in∥ ≤̃ε̃1/2.
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Further, for every n ∈ N we find q̃n≤̃w̃ since q̃n ∈ Fw̃. Since Q̃ be a soft inner product quasilinear space, we get

q̃≤̃q̃n≤̃w̃ for q̃≤̃q̃n + q̃ε
2n and ∥q̃ε

2n∥
2 = ∥⟨qε

2n, qε
2n⟩∥ ≤̃ε̃.

Now, we will show that q̃ ∈ Q̃r. If q̃n → q̃, then we have −q̃n → −q̃. So, for every ε̃≻̃0̃ there exist a n0 ∈ N
such that for every n ≥ n0, we have

q̃n≤̃q̃ + q̃ε
1n , q̃≤̃q̃n + q̃ε

2n , ∥q̃ε
in∥ ≤̃

ε1/2

2

−q̃n≤̃ − q̃ + ũε
1n ,−q̃≤̃ − q̃n + ũε

2n , ∥ũε
in∥ ≤̃

ε1/2

2
.

Moreover, since q̃n ∈ Q̃r, we obtain q̃n − q̃n = 0̃. Since Q̃ is a soft quasilinear inner product space, we find

q̃n − q̃n≤̃q̃ − q̃ + q̃ε
1n + ũε

1n and q̃ − q̃≤̃q̃n − q̃n + q̃ε
2n + ũε

2n , ∥q̃ε
in + ũε

in∥ ≤̃ε1/2.

From Definition 9, we get

0̃≤̃q̃ − q̃ + q̃ε
1n + ũε

1n and ∥q̃ε
in + ũε

in∥
2 = ∥⟨q̃ε

1n + ũε
1n, q̃ε

1n + ũε
1n⟩∥Ω(R) ≤̃ε ⇒ 0̃≤̃q̃ − q̃

and
q̃ − q̃≤̃0̃ + q̃ε

2n + ũε
2n and ∥q̃ε

2n + ũε
2n∥

2 = ∥⟨q̃ε
2n + ũε

2n, q̃ε
2n + ũε

2n⟩∥Ω(R) ≤̃ε ⇒ q̃ − q̃≤̃0̃.

So, we obtain q̃ − q̃ = 0̃. This gives q̃ ∈ Q̃r. Thus we get that Fw̃ is closed.
Moreover, we know that w̃≤̃q̃ for every w̃ ∈ Fq̃ and w̃ ∈ Q̃r. Since Q̃ is a soft quasilinear inner product

space, we get ∥w̃∥ ≤ ∥q̃∥. This gives us that Fq̃ is bounded.

Theorem 10. In a soft quasilinear inner product space, the floor of any soft quasi vector may not be a subspace. But, the
orthogonal complement set of the floor of a soft quasi vector is always a subspace of space.

Proof. Let Q̃ be a soft quasilinear inner product space. For a q̃ ∈ Q̃, we have Fq̃ =
{

ã ∈ Q̃r : ã≤̃q̃
}

. If ã, b̃ ∈ Fq̃,

then ã≤̃q̃ and b̃≤̃q̃. Since Q̃ be a soft quasilinear space, we get

α̃ · ã≤̃α̃ · q̃ and β̃ · b̃≤̃β̃ · q̃

for soft scalars α̃, β̃. Since Q̃ is a soft quasilinear space, we get α̃ · ã + β̃ · b̃≤̃α̃ · q̃ + β̃ · q̃. But, because of the
inequality α̃ · ã + β̃ · b̃≤̃q̃ may not be satisfy for every soft scalars α̃, β̃, we obtain α̃ · ã + β̃ · b̃≰̃q̃. So, the floor of
a soft vector of a quasilinear space Q̃ may not be subspace.

Now, we will show that F⊥
q̃ is a subspace of a soft quasilinear space Q̃. Let c̃, d̃ ∈ F⊥

q̃ and z̃ ∈ Fq̃. For soft

scalars α̃, β̃, we find∥∥∥〈z̃, α̃ · c̃ + β̃ · d̃
〉∥∥∥ ≤̃ ∥⟨z̃, α̃ · c̃⟩∥+

∥∥∥〈z̃, β̃ · d̃
〉∥∥∥ = α̃ ∥⟨z̃, c̃⟩∥+ β̃

∥∥∥〈z̃, d̃
〉∥∥∥ = 0̃.

This gives α̃ · c̃ + β̃ · d̃ ∈ F⊥
q̃ . So, we obtain Fq̃ is a subspace of quasilinear space Q̃ for every q̃ ∈ Q̃.

Example 3. Let Q̃ = Ω̃C (R) and we take a soft quasi vector q̃ ∈ Q̃ such that q̃(λ) = [1, 3] for every parameter
λ. If q̃1(λ) = {1} and q̃2(λ) = {3} then we find q̃1(λ) + q̃2(λ) = {4} for q̃1, q̃2 ∈ Fq̃ and λ parameter. But
{4} /∈ Fq̃(λ). So, Fq̃ is a not subspace of Q̃.

4. Conclusions and Future Works

In our study, a special type of soft quasilinear spaces, which are homogenized soft quasilinear spaces have
been introduced. Moreover, some related properties and examples of homogenized soft quasilinear spaces
have been given. Lastly, related theorems including floor of soft quasilinear theory and many conclusions
are researched. Some algebraic properties of soft normed quasilinear spaces such as basis, dimensions and
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properness will be studied in further investigations depending on the descriptions of homogenized soft
quasilinear space given in this research.
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