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Abstract: This study aims to model the statistical behaviour of extreme maximum temperature values in
Rwanda. To achieve such an objective, the daily temperature data from January 2000 to December 2017
recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two
methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to
model and analyse extreme temperatures in Rwanda. Model parameters were estimated, while the extreme
temperature return periods and confidence intervals were predicted. The model fit suggests that Gumbel
and Beta distributions are the most appropriate for the annual maximum daily temperature. Furthermore,
the results show that the temperature will continue to increase as estimated return levels show it.
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1. Introduction

C limate extremes negatively impact our lives through droughts, floods, landslides and ecological
disturbances, as they affect human activities and the economy. Human beings are weather sensitive.

The weather attracts people’s attention especially unusual or extreme weather events, due to enormous
economic or human impact [1]. The temperature on earth changes as a consequence of human activities such
as burning fossil fuel smokes from industries, deforestation, urbanization due to rapid population growth,
having a lot of plastic bags in the soil, and many others that are the main cause of the extreme temperature of
the climate system [2]. Extreme temperatures provided by increasing concentrations of greenhouse gases are
natural phenomena that affect daily human activities, including damaging agricultural production, causing
drought with hunger as it’s an effect, and loosing lives of people, animals, and different categories of plants
[3–6].

All statistical analyses focused on climate studies in Rwanda have used the mean temperature as
one of the main variables, for example, the study conducted by Hakizimana [7] and Havugimana [8].
However, the statistical behaviour of climate extremes has become increasingly considered in recent years,
and climate extremes are estimated to have more significant negative impacts on human society and the
natural environment than the changes in mean climate. The probabilities for rare events more significant
(or smaller) than previously recorded events are predicted using Extreme Value Theory (EVT), especially the
Peaks Over Threshold method. Under EVT, two approaches are used to model and analyze the data with
extreme values; the block maxima (BM) method, by which minimum or maximum values are distributed as
a Generalized Extreme Value Distribution (GEVD), and the Peaks Over Threshold (POT), by which values
exceeding a high threshold are distributed as a Generalized Pareto distribution (GPD). EVT was developed to
model and assess the risks caused by extreme events [9]. It is now being used in many disciplines, including
engineering, sciences, actuarial sciences, statistics, meteorology, hydrology, ecological disturbances, finance,
and many others. In the past few years, EVT has been used in several types of research concerning extreme
climatic events such as [1,4,10–12] among others. Although some works on climate extremes modelling have
been done, studies related to extreme temperatures in Rwanda have yet to be done. Therefore, the significance
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of this study is based on the fact that the agricultural (e.g., crop productions) and many economic activities
heavily depend on climatic conditions.

2. Problem Statement

In the 21st century, the world has experienced numerous challenges due to global warming and
environmental degradation. Scientists have predicted the excessive diminution of rainfall and global increase
in temperature from 1.40C to 5.80C by the end of the 21st century because of the increase in the concentration
of greenhouse gases [13,14]. This rainfall diminution and increase in temperature have huge effects on the
ecosystems. However, they directly impact felt by communities that depend on rainwater to cultivate and
get agricultural products. It affects crop growth and development, which reduces crop yield and quality. In
addition, extremely high temperatures and prolonged heat waves can increase energy and water consumption,
severely affect human well-being, health, and even cause loss of human lives [1]. Rwanda does not make any
exception to this reality. Rwanda, as a developing country without many natural resources, whose economy
strongly depends on rain-fed agriculture, has been challenged by extremely high temperatures. For example,
1750 cows died in Nyagatare District due to a lack of fodder and water in 2015 [7]. Between 2015 and 2016,
crops on 16,119 hectares of land in Kayonza District, 11,012 hectares in Nyagatare District and 750 hectares in
Kirehe District were affected by drought, resulting in famine throughout the Eastern Province, and more than
47,300 households were affected [15]. Thus, extreme value theory is used to access the results, providing critical
information about Rwanda’s extreme temperatures. The findings will give insight to the farmers, researchers
and local governments, and others who can use them to propose mitigating measures to increase resilience
and prepare the general public for changes due to extreme temperatures in the nearest future.

3. Objective

The aim of this study is to model the statistical behaviour of extreme maximum values of temperature in
Rwanda. This aim is achieved through the following objectives:

• To determine the appropriate distribution for the tails of the distributions of temperature under extreme
value theory framework

• To assess the return periods of extreme temperature and their corresponding return levels

4. Literature

4.1. The concept of extreme value analysis

Extreme value analysis (EVA) is a statistical tool to estimate the likelihood of the occurrence of extreme
values based on a few basic assumptions and observed/measured data [16]. It is the branch of statistics
devoted to the inference of extreme events in random processes and differs from most areas of statistics in
modelling rare rather than typical behaviour. It is used to deal with extreme deviations from the median of
probability distributions. To evaluate the risk of extreme events in EVA, extreme value models are formulated
based on fitting a theoretical probability distribution to the observed extreme value series [17]. Under EVA,
two extreme value methods are applied, the block maxima (BM) method and the peak over threshold (POT)
method. Two fundamental distributions in EVA, Generalized Extreme Value distribution (GEVD) by Jenkinson
[18] and Generalized Pareto distribution (GPD) by [19] and [20], were developed. When extreme values are
studied under the BM method, the extreme observations follow the GEVD, and under the POT method, the
exceedances follow a GPD.

Currently, EVA is used in modelling extreme temperature and rainfall events, significant insurance losses,
day-to-day market risk, road safety analysis, wireless communications, structural engineering, finance, earth
sciences, traffic prediction and geological engineering. A common aim is to estimate what future extreme
levels of a process might be expected based on a historical series of observations [21].

4.2. Extreme temperature modelling

Extreme value analysis has been used by different researchers all over the world in modelling extreme
temperatures. Diriba et al., [22] argued that using the generalized Pareto distribution (GPD) found an increase
in extremes of daily maximum temperature and daily minimum temperature in South Africa. Previously
Chikobvu and Sigauke [23] modelled daily minimum temperature in South Africa using the generalized
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extreme value distribution (GEVD). Because GEVD may exclude extensive observations from the analysis,
GPD was recommended. Under the extreme value analysis framework, block maxima and threshold
exceedances were employed in modelling extreme temperatures in Saudi Arabia. The generalized Pareto
distribution model proved better than the generalized extreme value distribution [24]. The study showed
that new records on maximum temperature events could appear within the next 20, 50 and 100 years.

5. Methodology

5.1. Area of the study

Rwanda is a small landlocked nation located in the Great Lakes region of East Africa. It is at 020.00
latitude south and 300.00 longitude East. It borders Burundi (South), Tanzania (East), Uganda (North) and
the Democratic Republic of Congo (DRC) (West). Rwanda has a mild and tropical climate, with temperatures
varying across the year, with two maxima and two minima [25]. The average temperature is about 200C, and
the topography varies. The warmest temperature is found in the eastern plateau and the south-eastern Rusizi
Valley (in the western part of the country) between 200C and 210C. The cooler temperatures are found in higher
elevations of the central plateau between 17.50C and 190C and highlands (< 170C) in the North of the country.
Warner et al., [26] presented in their report the areas in Rwanda mostly facing the risks of droughts.

Areas in Rwanda are particularly vulnerable to the devastating impacts of droughts, which have become
increasingly frequent and severe in recent years. Climate change is exacerbating this problem, as rising
temperatures and changing rainfall patterns are disrupting agricultural productivity, causing water scarcity,
and increasing the risk of wildfires. Urgent action is needed to address this pressing issue and develop effective
strategies to mitigate the impacts of droughts and promote sustainable development in the affected regions,
see Figure 1.

Figure 1. Areas in Rwanda mostly facing the risks of droughts

Rwanda experiences two rainy seasons and two dry seasons the year. Rwanda National Meteorological
Service announced that the minimum temperature has risen by 20C over the last 30 years Warner et al., [26].
Therefore, the year 2005 was indicated as the hottest year, with a minimum temperature of 20.40C and a
maximum temperature of 350C.

5.2. Data description

The daily temperature data was recorded from 9 weather stations collected by the Rwanda Meteorological
Agency (RMA) between 2000 and 2017. Those stations are randomly distributed with different temperature
patterns and geographical locations due to the area of Rwanda. We analysed the data station by station; the
ones with shorter records or high missing data were left out. Unlike statistical analyses regarding climate
studies in Rwanda that have used the mean temperature as one of the main variables, this study used extreme
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value analysis to model the statistical behaviour of extreme temperature. Therefore, annual extreme values
were extracted from the daily temperature data from 9 stations and new data set was formed. Under this
study uses two methods, the block maxima (BM) method and the Peaks Over Threshold (POT), to model and
analyse extracted extreme values.

5.3. Block maxima (BM) and generalized extreme value distribution (GEVD)

Using the BM method, a sample is divided into equal time intervals [27,28], and a set of
maximum/minimum observations from each interval constitutes a sample of extremes [1,29]. Given a
sequence of independent and identically distributed random variables X1m, X2m, ..., Xnm from a time interval,
the maximum values are defined as Mn = max(X1m, X2m, ..., Xnm) having a joint distribution function F. The
distribution of those maximum values is the Generalized Extreme Value (GEV) distribution:

G(x, µ, δ, ξ) = exp
[
−

(
1 + ξ

(
x − µ

δ

))]−1
ξ

,

where x are the extreme values from the blocks, µ a location parameter; δ a scale parameter; and ξ a shape
parameter.

Referring to the value of shape parameter, the Generalized Extreme Value Distribution has three basic
forms, each corresponding to a limiting distribution of maximum values from a different class of underlying
distributions. If ξ > 0, tails decrease as a polynomial, leading to Fréchet distribution. While ξ < 0, tails are
finite, leading to Weibul distribution. A special case is the Gumbel distribution when ξ → 0:

G(µ, δ) = exp
[
− exp

(
−

(
x − µ

δ

))]
.

5.4. Peak over threshold (POT) and generalized Pareto distribution (GPD)

One of the methods used to analyze the distribution of extreme events is Peak over Threshold (POT),
which considers the maximum variables exceeding a predetermined threshold [20]. In this method, a threshold
u is first fixed, and all data above it are considered extremes. Then, those extreme values of a sample over a
chosen threshold are studied by modelling their tail behaviours using the conditional distribution of these
exceedances. For example, given that the temperature in Rwanda exceeds a high threshold, let us say u,
by how much can u be exceeded? To answer such a question, we need the Excess Distribution, which is
approximated to GPD under Peak Over Threshold (POT) framework. For some sufficiently large threshold u,
the distribution of the excess values approximates a Generalized Pareto Distribution with a shape parameter;
for some sufficiently large threshold u, the distribution of the excess values approximates a Generalized Pareto
Distribution with a shape parameter, ξ and a scale parameter, δu. Let denote the threshold and X be a random
variable with distribution function F. Then, the exceedances distribution function over the threshold u is given
by

Fu(x) =
F(u + x)− F(u)

1 − F(u)
i f X > u, X ≥ 0 . (1)

By letting Yi = Xi − u, then the distribution of the exceedances Y1, Y2, Y3, ..., Ynu can be approximated by a
Generalized Pareto Distribution with a shape parameter, ξ and a scale parameter, δu [20] defined as:

G(x − µ, δu, ξ) = 1 −
[

1 + ξ

(
x − µ

δu

)]−1
ξ

. (2)

Depending on the value of shape parameter, the Generalized Pareto Distribution has three basic forms, each
corresponding to a limiting distribution of excess values from a different class of underlying distributions. A
special case of Eq. (2) for ξ → 0 is the exponential distribution:

G(x − µ, δu) = 1 − exp
[
−

((
x − µ

δu

))]
. (3)

The other two cases of Eq. (2) for ξ ̸= 0 are as follow:

• If ξ > 0, tails decrease as a polynomial, leading to Pareto Distribution.
• If ξ < 0, tails are finite, leading to Beta Distribution.
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5.5. Return levels estimation

When the best model for the data is found, the interest is to derive the return levels of maximum
temperature. It is vital to evaluate return levels, XT , for example, the T-year return level, which is exceeded
once every T years. The return level of an extreme event, defined as the value XT , is expected to be exceeded
on average once every T year (T is called the return period, that is, the period expressed in years by which
the annual observation is expected to return). Let YT represent extreme values of a random variable, such that
there is a probability T, that YT is exceeded in any given year. The return level related to the return period 1

T is
the level that, on average, is expected to be exceeded once every 1

T years. Let XT present the level of exceeded
temperature on average only once in T years return level XT = 1 − 1

T [30]. In this paper, return levels for both
GP and GEV models were estimated and compared.

5.5.1. Return levels estimation for generalized Pareto distribution

Once the GPD is selected as a suitable model for exceedances, then the probability of the exceedances of a
variable X over a suitable high threshold u is P(X > x/X > u Applying properties of conditional probability
and let P(X > u) = τu to get P(X > x) = τuP(X > x/X > u) = τu[1 − G(x − u, δu, ξ)] which leads to

P(X > x) = τu

[
1 + ξ

(
x − µ

δu

)]−1
ξ

. (4)

Therefore, the amount by which an event exceeds the threshold u in T-year is obtained by defining xT in Eq.
(4) by P(X > xT) =

1
T and then solve for xT Hence, the T-year return level is defined by:

XT = u + δu
ξ [Tτu]ξ − 1, if ξ ̸= 0 and XT = u + δu log(Tτu), if ξ = 0 with τu,

the probability of the occurrence of an exceedance of a high threshold u .

5.5.2. Return levels estimation for generalised extreme value distribution

The return level for the GEV model with the return period 1
T is given by [4,31],

XT =

{
µ − σ

ξ {1 − [− log(1 − T)]ξ} ξ ̸= 0
µ − δ log[1 − (− log(1 − T))] ξ = 0

The level Xp is expected to be exceeded on average one every 1
T years.

5.6. Parameter estimation

Considering its consistency, efficiency, asymptotic behaviour, this paper used the method of maximum
likelihood estimation (MLE) to estimate GP and GEV parameters. Adaptability of the MLE to changes in
model structure as compared to other parameter estimation techniques makes it preferable.

5.6.1. Parameter estimation of generalised Pareto distribution

Let Y1, Y2, Y3, ..., Ym be a sequence of m excesses of a threshold u. The likelihood function from Eq. (2) is,

L(yi, δu, ξ) = Πn
i=1g(yi, δu, ξ) with g(y, δu, ξ) =

d
dy

G(y, δu, ξ) .

For ξ ̸= 0 , the log-likelihood of GPD is

l(yi, δu, ξ) = −m log δu −
(

1 +
1
ξ

) m

∑
i=1

log
(

1 +
ξyi
δu

)
,

and

l(yi, δu) == −m log δu −
1
δu

m

∑
i=1

(yi) .

For ξ = 0. The values δu and ξ are the estimation parameters which maximize Eq. (2).
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5.6.2. Parameter estimation of generalised extreme value distribution

Let (Y1, Y2, Y3, ..., Yk) be a random sample of the random variable Y taken from a GEVD. The log-likelihood
function for ξ ̸= 0 of observed random sample (Y1, Y2, Y3, ..., Ym) is given by,

l (µ, δ, ξ/X1, . . . , Xm) = −mlogδ −
(

1 +
1
ξ

) m

∑
i=1

log
(

1 + ξ

(
Xi − µ

δ

))
−

m

∑
i=1

(
1 + ξ

(
Xi − µ

δ

))−1
ξ

, (5)

provided that 1 + ξ
(

Xiµ
δ

)
> 0, i = 1, 2, ..., m. However, when ξ = 0 the log-likelihood function becomes

l(µ, δ, ξ/X1, ..., Xm) = −m log δ −
m

∑
i=1

exp
(
−Xi − µ

δ

)
−

m

∑
i=1

(
Xi − µ

δ

)
. (6)

The MLE for the unknown parameters µ, δ, ξ were found by maximizing Eq. (6). Hence, these equations have
been solved by numerical or iteratively methods [32].

6. Numerical results and discussion

This section gives statistical results from the analysis. Table 1 below shows the descriptive measures for
the annual maximum temperature at various stations. First, the annual maximum temperatures were obtained
by extracting the highest value from the daily temperature in a year, then using R software; basic descriptive
statistics were defined.

Table 1. Basic descriptive statistics of annual maximum temperature

N Station Min Mean Max Standard deviation Shapiro-Wilk Test
1 Kigali 30.9 32.43 33.4 2.079 0.92 (0.013)
2 Rwamagana 30.2 32.08 33.4 2.013 0.91 (0.09)
3 Huye 26.7 30.08 32.3 1.978 0.88 (0.036)
4 Ruhango 30.1 32.29 36.2 2.14 0.90 (0.018)
5 Kibungo 30.2 32.11 34.4 2.066 0.91 (0.11)
6 Nyamata 30.1 32 33.4 2.045 0.87 (0.02)
7 Rusumo 30.2 32.31 33.4 2.363 0.88 (0.03)
8 Ngoma 30.6 32.73 36.5 2.291 0.86 (0.01)
9 Kirehe 29.9 32.26 33.4 2.341 0.91 (0.98)

Table 1 shows how the annual maximum average temperatures have varied throughout each station’s
considered period. The p-value of the Shapiro-Wilk Test of normality for the annual maxima temperature fails
to reject the null hypothesis of a normal distribution for Rwamagana, Kirehe and Kibungo stations. In order
words, the null hypothesis for this test is that Rwamagana, Kirehe and Kibungo stations data are normally
distributed. Thus, annual maxima are appropriate for extreme value analysis for Kigali, Ngoma, Rusumo,
Nyamata, Ruhango, and Huye stations. Furthermore, the stationarity test was done using the Augmented
Dickey-Fuller (ADF). Therefore, the null hypothesis that data is nonstationary (has a unit root) is tested in this
test. Table 2 presents the stationarity test for maxima temperature.

Table 2. Unit root augmented Dickey-Fuller test for maxima temperature

Station Test Statistics P-value Conclusion
Kigali -0.53 0.047 Reject null hypothesis
Huye -3.82 0.034 Reject null hypothesis
Ruhango -2.91 0.022 Reject null hypothesis
Nyamata -4.2 0.016 Reject null hypothesis
Rusumo -3.66 0.045 Reject null hypothesis
Ngoma -0.39 0.02 Reject null hypothesis

Based on Table 2, the null hypothesis of nonstationary was rejected for temperature data for all the selected
regions (all p-values are less than 5% level of significance).



Open J. Math. Sci. 2023, 7, 180-195 186

6.1. The block maxima (BM) method

For GEV estimation, the block maxima of daily annual maximum rainfall are extracted for six stations.
Daily temperature observations X1m, X2m, ..., Xnm were divided into equal time intervals (m=12 months) and
set of maximum observations from each interval constitutes a sample of extremes called “Annual maxima”.
The annual maxima Mn = max(X1m, X2m, ..., Xnm) were selected. Annual maxima selected from daily
temperature is shown in Figure 2.

Figure 2. Annual maxima selected from daily temperature

The annual maxima values (in red) selected were fitted to a Generalized Extreme Value (GEV)
distribution:

G(x, µ, δ, ξ) = exp

[
−

(
1 + ξ

(
x − µ

δ

))−1
ξ

]
,

and the location parameter,µ ; scale parameter, δ; and shape parameter, ξ ; were estimated using method
of maximum likelihood estimates (MLE). Table 3 presents the parameter estimates and their corresponding
standard errors together with associated confidence interval.
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Table 3. GEV parameter estimate for temperature

Station Parameter Estimates S.E C.I

Kigali
Location (µ) 32.439 0.028 (32.321, 32.518)
Scale (δ) 1.074 0.019 (0.877, 1.271)
Shape (ξ) -1.115 0.006 (-1.312, -0.918)

Huye
Location (µ) 30.116 2.10-08 (30.110, 30.118)
Scale (δ) 2.438 2.10-08 (2.428, 2.448)
Shape (ξ) -1.116 2.10-08 (-1.115, -1.118)

Ruhango
Location (µ) 31.624 0.337 (30.963, 32.285)
Scale (δ) 1.234 0.25 (0.744, 1.725)
Shape (ξ) -0.047 0.207 (-0.453, 0.359)

Nyamata
Location (µ) 32.186 0.28 (31.156, 32.346)
Scale (δ) 1.347 0.098 (0.978, 1.750)
Shape (ξ) -1.11 0.129 (-1.305, -0.978)

Rusumo
Location (µ) 32.337 0.421 (30.476, 33.002)
Scale (δ) 1.064 0.27 (0.997, 1.232)
Shape (ξ) -1.001 0.181 (-1.254, -0.789)

Ngoma
Location (µ) 32.184 0.284 (31.627, 32.742)
Scale (δ) 1.09 0.198 (0.702, 1.479)
Shape (ξ) -0.072 0.142 (-0.350, 0.205)

The shape parameter (ξ) is negative for Rusumo, Nyamata, Huye, and Kigali stations. This suggests that
the underlying distribution belongs to the Weibul family of distribution. In addition, the confidence intervals
of the shape parameter contain zero (0) for Ruhango and Ngoma stations; hence, the Gumbel distribution
could be a more accurate model in the entire GEV family. Since Gumbel is one of the GEV models, we used
the likelihood ratio test to verify its appropriateness. The estimated parameters for Gumbel model are given
in Table 4 while results of likelihood ratio test are given in Table 5.

Table 4. Estimated parameters for Gumbel model

Station Parameter Estimates S.E C.I

Pruhango Location (µ) 31.593 0.301 (31.002, 32.184)
Scale (δ) 1.212 0.225 (0.769, 1.654)

Ngoma Location (µ) 32.141 0.225 (31.617, 32.664)
Scale (δ) 1.073 0.191 (0.696, 1.449)

Table 5. Likelihood ratio test

Station Model Likelihood-ratio Chi-square P-value

Ruhango M0= Gumbel 0.219 3.841 0.639M1=GEV

Ngoma M0= Gumbel 0.047 3.841 0.827M1=GEV

Since GEV and Gumbel are the nested models, we selected the best model on basis of likelihood ration
test which is described below: Null hypothesis ξ = 0 while alternative hypothesis ξ ̸= 0. The likelihood ration
test results show that Gumbel distribution is the best fit for Ruhango and Ngoma stations.

Graphical model checking

Figures below are the diagnostic plots of the fitted GEV and Gumbel model for the maximum temperature
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Figure 3. Huye graphical model checking

Figure 4. Kigali graphical model checking

Figure 5. Nyamata graphical model checking
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Figure 6. Rusumo graphical model checking

From Figure 3-6 above, the Q-Q and PP plots are not approximately linear as the deviations from the
model is very big from the confidence intervals observed on the return level plot for Rusumo, Kigali, Huye
and Nyamata stations. Thus, the goodness-of-fit is not satisfied and therefore the fitted GEV distribution seems
to be not appropriate.

Figure 7. Ruhango graphical model checking

Figure 8. Ngoma graphical model checking
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From Figures 7 and 8 above, the Q-Q and PP plots is approximately linear as the deviations from the
model is very small from the confidence intervals observed on the return level plot for Ruhango and Ngoma
stations. Thus, the goodness-of-fit is satisfied and therefore the fitted Gumbel distribution is appropriate.

6.2. The peaks over threshold (POT) method

Under the peak-over threshold method, the daily temperature is considered extreme if it exceeds a high
threshold u. The excesses over the threshold are approximately distributed by following the Generalized
Pareto (GP) distribution. In this study, a generalized Pareto model was fitted to the values exceeding a high
threshold and model parameters were estimated using the method of maximum likelihood estimates (MLE).
The mean residual life plot and threshold stability were used to choose an appropriate threshold.

Figure 9. The mean residual plot

Based on Figure 9, we conclude that the best choice of threshold is approximately u = 28oC for Kigali,
u = 25oC for Huye, u = 28oC for Ruhango, u = 27oC for Nyamata, u = 28oC for Rusumo, and u = 27oC
for Ngoma for the assumptions of the extreme value approach to be valid. See Table 6 for the GPD parameter
estimate for temperature.
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Table 6. GPD parameter estimate for temperature

N Station Threshold Parameter Estimates SE CI

1 Kigali 28 Scale (δu) 2.104 0.049 (1.998, 2.209)
Shape (ξ) -0.329 0.012 (-0.364, -0.293)

2 Huye 25 Scale (δu) 4.98 0.047 (1.718, 1.903)
Shape (ξ) -0.115 0.018 (-0.152, -0.079)

3 Ruhango 28 Scale (δu) 1.926 0.041 (1.845, 2.007)
Shape (ξ) -0.216 0.011 (-0.237, -0.194)

4 Nyamata 27 Scale (δu) 2.139 0.046 (2.049, 2.229)
Shape (ξ) -0.253 0.014 (-0.282, -0.233)

5 Rusumo 28 Scale (δu) 2.521 0.057 (2.407, 2.634)
Shape (ξ) -0.450 0.015 (-0.479 -0.420)

6 Ngoma 27 Scale (δu) 2.614 0.037 (2.541, 2.686)
Shape (ξ) -0.271 0.004 (-0.279, -0.263)

The shape parameter (ξ) is negative for all six stations. This suggests that the underlying distribution
belongs to the Beta family of distribution. In addition, all confidence intervals of the shape parameter do not
contain zero (0).

Graphical model checking

Figures below are the diagnostic plots of the fitted GP model for the maximum temperature.
From Figures 10, the Q-Q and PP plots are approximately linear as the deviations from the model is very

small from the confidence intervals observed on the return level plot for all stations. Thus, the goodness-of-fit
is satisfied and therefore the fitted GP distribution is appropriate.

They are comparing return levels estimated by Generalized Extreme Values (GEV) with the results of
Generalized Pareto Distribution (GPD) in Table 7. No significant differences exist for all periods (T=10, 20, 30,
40, 50, 100) and for all six stations (Kigali, Huye, Ruhango, Nyamata, Rusumo, Ngoma), the predicted return
values and the confidence intervals are very close in both GEV and GPD. Return levels show that in Kigali and
Ruhango, the temperature will continue to increase within the time period until the temperature goes beyond
the current maximum in Table 1 after 100 years. The temperature is predicted to increase in Ngoma, Huye
and Rusumo but will not exceed the current maximum temperature highlighted in Table 1. Nyamata, the
return level shows that after 30 years for GEV and 100 years for GPD, the temperature will exceed the current
maximum temperature, which is 33.4oC as highlighted in Table 1.

7. Conclusion and recommendation

Temperature plays an essential role in various aspects of human life and the environment, including
plant growth, rainfall formation, and atmospheric pressure. This study investigated the extreme temperature
behavior using the Generalized Extreme Value distribution (GEV) and Generalized Pareto Distribution (GPD)
models. The model fit suggests that the Gumbel and Beta distributions are the most appropriate for the annual
maximum daily temperature, indicating the probability of extreme temperature events.

Return level estimates and their confidence intervals for the return periods of 10, 20, 30, 40, 50, and
100 years showed that the temperature is projected to increase significantly and may even surpass current
maximum temperatures. This finding is concerning and highlights the urgent need for policymakers to take
proactive measures to manage the issue of global warming.

Furthermore, the study demonstrated that the goodness-of-fit is satisfied, and the fitted General Pareto
Distribution is appropriate compared to the Generalized Extreme Value Distribution. Policymakers must take
appropriate measures to address global warming, such as reducing carbon emissions, promoting renewable
energy sources, and enhancing energy efficiency.

The findings of this study can help policymakers to make informed decisions that can prevent the adverse
impacts of climate change, such as sea-level rise, extreme weather events, and loss of biodiversity. Therefore,
it is essential to take proactive measures to manage the issue of global warming, given the forecasted rise in
temperature in the years to come.

Further research can explore the regional variations in temperature trends and investigate the underlying
mechanisms driving extreme temperature events. The results of this study can help policymakers to create
effective policies that mitigate the impacts of climate change and protect human life and the environment.
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Figure 10. Diagnostic plots
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Table 7. Return level estimation

Under BM Approach Under POT Approach
Station Period Return level CI Return level CI

Kigali

10 33.321 (30.398, 36.245) 33.33 (30.408, 36.252)
20 33.364 (29.101, 37.610) 33.362 (29.105, 37.619)
30 33.377 (28.060, 38.680) 33.376 (28.071, 38.682)
40 33.384 (27.178, 39.578) 33.385 (27.182, 39.587)
50 33.387 (26.370, 40.390) 33.39 (26.389, 40.392)

100 33.394 (23.200, 43.601) 33.404 (23.202, 43.605)

Huye

10 32.122 (32.121, 32.123) 32.089 (31.147, 33.032)
20 32.221 (32.22, 32.223) 32.159 (30.864, 33.454)
30 32.251 (32.250, 32.252) 32.19 (30.630, 33.750)
40 32.264 (32.263, 32.265) 32.209 (30.429, 33.989)
50 32.271 (32.270, 32.272) 32.222 (30.251, 34.194)

100 32. 287 (32.286, 32.288) 32.255 (29.545, 34.966)

Ruhango

10 34.259 (32.967, 35.551) 35.346 (34.915, 35.777)
20 35.045 (33.200, 36.890) 35.519 (34.990, 36.049)
30 35.484 (33.210, 37.759) 35.605 (35.007, 36.203)
40 35.789 (33.166, 38.413) 35.66 (35.008, 36.311)
50 36.022 (33.105, 38.940) 35.699 (35.002, 36.396)

100 36.727 (32.775, 40.679) 35.805 (34.947, 36.663)

Nyamata

10 34.259 (31.926, 41.437) 33.368 (28.263, 38.473)
20 35.045 (30.535, 42.147) 33.386 (25.355, 41.417)
30 35.484 (29.325, 43.681) 33.393 (22.925, 43.862)
40 35.789 (29.143, 44.021) 33.397 (20.763, 46.032)
50 36.022 (28.782, 45.129) 33.4 (18.782, 48.019)

100 36.727 (27.940, 46.443) 33.406 (10.409, 56.404)

Rusumo

10 33.288 (24.421, 50.862) 33.389 (14.492, 52.286)
20 33.345 (23.473, 65.325) 33.394 (14.852, 67.532)
30 33.364 (22.978, 60.185) 33.396 (13.743, 81.644)
40 33.373 (22.092, 80.127) 33.397 (28.274, 95.068)
50 33.378 (21.839, 82.003) 33.398 (41.207, 108.003)

100 33.389 (20.791, 85.572) 33.398 (101.378, 168.175)

Ngoma

10 34.45 (33.413, 35.486) 36.144 (35.085, 37.203)
20 35.1 (33.738, 36.462) 36.24 (34.810, 37.669)
30 35.459 (33.858, 37.061) 36.284 (34.580, 37.987)
40 35.706 (33.914, 37.498) 36.31 (34.381, 38.240)
50 35.893 (33.942, 37.845) 36.329 (34.204, 38.454)

100 36.454 (33.948, 38.959) 36.376 (33.508, 39.245)
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