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1. Introduction

L et a and b be two real numbers such that a < b. Let Ω be the open interval (a, b). Let T be a positive real
number. Let u = u(x, t) be a real-valued function defined on Ω × (0, T). Let y = y(x) and z = z(x) be

two real-valued functions that are defined on Ω. Let F1 and F2 be two real-valued functions defined on R. Let
f = f (x, t) be a real-valued function defined on Ω × (0, T). The initial/boundary value problem

utt + F1(ut) + uxxxx + F2(u) = f on Ω × (0, T),

u(a, t) = u(b, t) = 0 for all t ∈ (0, T),

uxx(a, t) = uxx(b, t) = 0 for all t ∈ (0, T),

u(x, 0) = y(x) for all x ∈ Ω,

ut(x, 0) = z(x) for all x ∈ Ω,

(1)

occurs naturally in the study of vibrations in beams that are hinged at both ends. The goal of this paper is to
find conditions on F1, F2, and the data of the above problem that guarantee the existence and uniqueness of
solutions.

Before we state the main result of the paper, we need to define some function spaces. Let H2
∗(Ω) := {u ∈

H2(Ω)|u ∈ H1
0(Ω)}. Let H4

∗(Ω) := {u ∈ H4(Ω)|u ∈ H1
0(Ω) and such that uxx ∈ H1

0(Ω)}. We will endow
H2
∗(Ω) with the inner-product

(u, v)H2∗
=

∫
Ω

uxxvxx dx,

and endow H4
∗(Ω) with the inner-product

(u, v)H4∗
=

∫
Ω

uxxxxvxxxx dx.

We will see later that these inner-products make H2
∗(Ω) and H4

∗(Ω) Hilbert spaces. We will also say that a
function u is a high regularity weak solution of the initial/boundary value problem (1) if

(a) u belongs to
L∞(0, T; H4

∗(Ω)),

W1,∞(0, T; H2
∗(Ω)),

and
W2,∞(0, T; L2(Ω));
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(b) u satisfies the initial conditions and boundary value conditions of (1); and (c) u satisfies the equation

(u′′(t), v)L2 + (u(t), v)H2∗
+ (F1(u′(t)), v)L2 + (F2(u(t)), v)L2 = ( f , v)L2 (2)

for all v ∈ H2
∗(Ω) and for a.e. t ∈ [0, T]. (Here (·, ·)L2 is the standard inner-product on L2(Ω).) Note,

as well, that the initial conditions contained in (1) make sense since u ∈ C([0, T]; H2
∗(Ω)) and ut ∈

C([0, T]; L2(Ω)).

We can now state the main result of the paper.

Theorem 1. Let a and b be two real numbers, with a < b. Let T be a positive real number. Let Ω be the open interval
(a, b). Let f be a C1 map from [0, T] into L2(Ω). Let F1 be a nondecreasing C1 function from R into R, with F1(0) = 0.
Let F2 be a C1 function from R into R such that there exists a non-positive real number c such that

∫ s
0 F2(t)dt ≥ c for

all s ∈ R. Furthermore, let y be an element of H4
∗(Ω) and let z be an element of H2

∗(Ω). Then there exists a unique high
regularity weak solution of the initial/boundary value problem (1).

The method used to prove existence of high regularity weak solutions is the Galerkin method. The main
source of difficulty is the possibility that u′ shows up inside a nonlinear function. We overcome this problem by
obtaining stronger bounds on the Galerkin approximations than usual. This is accomplished by differentiating
the equations that the finite dimensional approximations satisfy and using the fact that F1 is an increasing
function. Uniqueness follows from an application of the mean value theorem and Gronwall’s inequality to the
problem.

The organization of this paper is as follows. §2 consists of remarks and lemmas that will be used in the
proof of Theorem 1. §3 consists of the proof of Theorem 1. The proof has been divided into seven steps to make
it easier to read.

2. Preliminary Material

2.1. Higher order Hilbert spaces

Let a and b be two real numbers such that a < b. Let Ω be the open interval (a, b). Let {λi}∞
i=1 be the set

of eigenvalues for the eigenvalue problem 
−uxx = λu on Ω

u(a) = 0

u(b) = 0,

(3)

ordered in the usual manner. Note that all of the eigenvalues are positive. Let {ei}∞
i=1 be the corresponding set

of eigenfunctions. We will assume that they are normalized with respect to the L2(Ω) norm, || · ||L2 . Due to
the spectral theory of symmetric, compact operators, we can assume that ei is orthogonal with respect to the
L2(Ω) inner-product to ej if i ̸= j. Note as well that all of the eigenfunctions belong to H2

∗(Ω) and H4
∗(Ω). As

we’ll now see we can say a lot more about {ei}∞
i=1, H2

∗(Ω), and H4
∗(Ω).

First, we need the following

Definition 1. Let u be a summable function on the open interval Ω. Then we will let (u)Ω denote the average
of u on Ω.

Lemma 1. Let a and b be two real numbers with a < b. Let Ω be the open interval (a, b). Then (i) there exists a positive
real number C such that for all u ∈ H2

∗(Ω) we have that ||u||2
H2∗

≥ C||u||2L2 . We also have that (ii) there exists a positive

real number C such that for all u ∈ H4
∗(Ω), ||u||2

H4∗
≥ C||u||2L2 .

Proof. First let us prove assertion (i). Invoking the Poincaré inequality, we have the existence of a positive real
number C such that ∫

Ω
(uxx)

2 dx ≥ C
∫

Ω
(ux − (ux)Ω)2 dx (4)
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for all u ∈ H2
∗(Ω). Since u vanishes on the boundary of Ω the above inequality is equivalent to the existence

of a positive real number C such that ∫
Ω
(uxx)

2 dx ≥ C
∫

Ω
(ux)

2 dx (5)

for all u ∈ H2
∗(Ω). Invoking the Poincaré inequality again, we have the existence of a positive real number C

such that ∫
Ω
(ux)

2 dx ≥ C
∫

Ω
u2 dx (6)

for all u ∈ H1
0(Ω). Combining (5) with (6), we obtain assertion (i).

Now let us prove assertion (ii). Invoking the Poincaré inequality we have the existence of a positive real
number C such that ∫

Ω
(uxxxx)

2 dx ≥ C
∫

Ω
(uxxx − (uxxx)Ω)2 dx (7)

for all u ∈ H4
∗(Ω). Since uxx vanishes on the boundary of Ω the above inequality is equivalent to the existence

of a positive real number C such that ∫
Ω
(uxxxx)

2 dx ≥ C
∫

Ω
(uxxx)

2 dx (8)

for all u ∈ H4
∗(Ω). Invoking the Poincaré inequality again, we have the existence of a positive real number C

such that ∫
Ω
(uxxx)

2 dx ≥ C
∫

Ω
(uxx)

2 dx (9)

for all u ∈ H4
∗(Ω). Combining (8) with (9) we have the existence of a positive real number C such that∫

Ω
(uxxxx)

2 dx ≥ C
∫

Ω
(uxx)

2 dx (10)

for all u ∈ H4
∗(Ω). Recalling assertion (i), we have assertion (ii).

Remark 1. Due to the intermediate derivatives theorem (see Theorem 4.15 of [1]), Lemma 1 implies that the
H2
∗(Ω) norm is equivalent to the usual H2(Ω) norm provided we restrict the latter norm to the linear subspace

H2
∗(Ω). Lemma 1 also implies that the H4

∗(Ω) norm is equivalent to the usual H4(Ω) norm provided that we
restrict the latter norm to the linear subspace H4

∗(Ω). In both cases we have completeness of the respective
inner product spaces.

Lemma 2. (i) {ei}∞
i=1 forms an orthogonal basis for H2

∗(Ω), and (ii) {ei}∞
i=1 forms a orthogonal basis for H4

∗(Ω).

Proof. First let us show that ei is orthogonal to ej if i ̸= j with respect to the H2
∗(Ω) inner product. Recalling

the definition of the sequence {ei}∞
i=1, we have that −(ei)xx = λiei for all i ∈ N. It follows that

(ei, ej)H2∗
= ((ei)xx, (ej)xx)L2

= λiλj(ei, ej)L2

= λiλjδij,

where δij is the Kronecker delta. Thus we have the desired orthogonality property for H2
∗(Ω).

We will now show that the sequence, {ei}∞
i=1 forms a complete basis for H2

∗(Ω). Towards this end it
suffices to show that if there exists an element of H2

∗(Ω) such that (u, ei)H2∗
= 0 for all i ∈ N, then u ≡ 0. So

let us suppose that there exists a function u ∈ H2
∗(Ω) such that (u, ei)H2∗

= 0 for all i ∈ N. Note that this is
equivalent to (uxx, (ei)xx)L2 = 0 for all i ∈ N. Since u ∈ H2

∗(Ω) and ei is in H4
∗(Ω) for all i ∈ N we can integrate

by parts. This gives us (u, (ei)xxxx)L2 = 0 for all i ∈ N. Recalling the definition of the ei we have (u, ei)L2 = 0
for all i ∈ N. Since {ei}∞

i=1 form a complete basis for L2(Ω) we have that u ≡ 0.
Now let us turn our attention to the sequence {ei}∞

i=1 with relation to the H4
∗(Ω) inner-product. We will

now see that this sequence is orthogonal with respect to this inner product. First note that (ei)xxxx = λ2
i ei for
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all i ∈ N. It follows that ((ei)xxxx, (ej)xxxx)L2 = λ2
i λ2

j (ei, ej)L2 , for all (i, j) ∈ N×N. The orthogonality of this

sequence with respect to the L2(Ω) norm then gives us our desired result.
It remains then to show that this sequence forms a complete basis for H4

∗(Ω). Again, it suffices to show
that if there exists an element u ∈ H4

∗(Ω) such that (u, ei)H4∗
= 0 for all i ∈ N then u ≡ 0. So let us suppose

that there exists a function u ∈ H4
∗(Ω) such that (u, ei)H4∗

= 0 for all i ∈ N. Note that this is equivalent
to (uxxxx, (ei)xxxx)L2 = 0 for all i ∈ N. Again, recalling the definition of {ei}∞

i=1 we have (uxxxx, ei)L2 = 0
for all i ∈ N. Since u ∈ H4

∗(Ω) and all of the ei are in H2
∗(Ω) we can integrate by parts. This gives us that

(uxx, (ei)xx)L2 = 0 for all i ∈ N. As is proven above, this is equivalent to (u, ei)L2(Ω) = 0 for all i ∈ N. It follows
that u ≡ 0. Completeness follows.

2.2. Spaces involving time

Lemma 3. Let X be a connected, compact topological space. Let {uk}∞
k=1 be a sequence of continuous functions from

X into R. Let F be a continuous function from R into R. Suppose that there exists a positive real number C such that
||uk||C(X) ≤ C for all k ≥ 1. Then there exists a positive real number D such that ||F(uk)||C(X) ≤ D for all k ≥ 1.

Proof. Let C be a positive real number such that ||uk||C(X) ≤ C for all k ≥ 1. Fix k ∈ Z. Then there exists a
positive real number D that can be chosen independent of k such that

||F(uk)||C(X) = max
z∈[min of uk on X,max of uk on X]

|F(z)|

≤ max
z∈[−||uk ||C(X),||uk ||C(X) ]

|F(z)|

≤ max
z∈[−C,C]

|F(z)|

≤ D,

(11)

for all k ≥ 1. The lemma follows.

Remark 2. Let T be a positive real number, and let X be a compact topological space. Let {uk}∞
k=1 be a

sequence of elements of C([0, T]; C(X)). Then the elements of this sequence are also elements of C(X × [0, T]).
Furthermore, the property that {uk}∞

i=1 is bounded with respect to the C([0, T]; C(X)) norm is equivalent to
the property that {uk}∞

k=1 is bounded with respect to the C(X × [0, T]) norm.

Another result that will be useful in the next section of this paper is the following

Lemma 4. Let F be a C1 function from R into R. Let T be a positive real number, and let n be a positive integer. Let U be
a bounded, open subset of Rn with a C1 boundary. Let X be a real Banach space that is compactly embedded into C(U).
Let {uk(t)}∞

k=1 be a sequence of elements of C([0, T]; X). Furthermore, suppose that there exists a positive real number
C such that ||uk(t)||C([0,T];X) ≤ C for all positive integers k. Finally, suppose there exists a C([0, T]; X) function u such
that ||uk − u||C([0,T];X) → 0 as k → ∞. Then we have ||F(uk)− F(u))||C([0,T];L2(U)) → 0 as k → ∞.

Proof. Recalling Remark 2, we put
M := sup

k∈N
||uk||C(U×[0,T]) < ∞. (12)

On the other hand, we know that F is a C1 function, and in particular it is locally Lipschitz continuous. Hence
there exists a positive real number LF such that

|F(s1)− F(s2)| ≤ LF|s1 − s2| for any s1, s2 ∈ [−M, M]. (13)

We can now combine (12) with (13) to see that for all (k, l) ∈ N×N,

||F(uk(t))− F(ul(t))||L2 ≤ LF||uk(t)− ul(t)||L2 , (14)
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for all t ∈ [0, T], and hence

max
t∈[0,T]

||F(uk(t))− F(ul(t))||L2 ≤ LF max
t∈[0,T]

||uk(t)− ul(t)||L2 (15)

for all (k, l) ∈ N×N. Since the right hand side of the above inequality vanishes as k and l go to infinity we have
that the sequence {F(uk(t))}∞

k=1 is a Cauchy sequence with respect to the C([0, T]; L2(U)) norm. It follows that
there exists an element of C([0, T]; L2(U)), Y, such that ||F(uk)− Y||C([0,T];L2(U)) vanishes as k goes to infinity.

Now we’ll show that u(t) ∈ C(U) for all t ∈ [0, T]. First, let t∗ be a real number in [0, T]. Due to our
hypotheses, we know that ||uk(t∗)− u(t∗)||L2(U) → 0 as k → ∞. Due to the compactness of the embedding
of X into C(U), we also have that there exists a subsequence {ukl

(t∗)}∞
l=1 of {uk(t∗)}∞

k=1 and a C(U) function
Z(t∗) such that ||ukl

(t∗)− Z(t∗)||C(U) → 0 as l → ∞. Since ||uk(t∗)− u(t∗)||C(U) → 0 as k goes to ∞, we have
that ||ukl

(t∗) − u(t∗)||C(U) → 0 as l → ∞. It follows that Z(t∗) = u(t∗), and hence u(t∗) ∈ C(U). Since t∗
could be any real number in [0, T], we have that u(t) ∈ C(U) for all t ∈ [0, T].

Now that we know that u(t) ∈ C(U) for all t ∈ [0, T], we can write

||F(uk(t)− F(u(t))||L2 ≤ C||uk(t)− u(t)||L2 , (16)

where C is a positive real number that does not depend on t. It follows that for all t ∈ [0, T], ||F(uk(t) −
F(u(t))||L2(U) → 0 as k → ∞. This in turn allows us to conclude that Y(t) = u(t) for all t ∈ [0, T]. Since
||uk − Y||C([0,T];L2(U)) → 0 as k → ∞, we have the lemma.

3. Proof of Theorem 1

Proof. Step one

Following [3], we proceed as follows. For any k ≥ 1 let us write Wk = span{e1, . . . , ek}, where {ei}∞
i=1 is

the set of eigenfunctions defined in section two of this paper. Let {λi}∞
i=1 be the set of eigenvalues defined in

section two. For any k ≥ 1 let

uk
0 := Σk

i=1(u0, ei)L2 ei = Σk
i=1

(u0, ei)H2∗

λ2
i

ei = Σk
i=1

(u0, ei)H4∗

λ4
i

ei. (17)

Let us also write

uk
1 := Σk

i=1(u1, ei)L2 ei = Σk
i=1

(u1, ei)H2∗

λ2
i

ei. (18)

It follows that uk
0 → u0 in H4

∗(Ω) and uk
1 → u1 in H2

∗(Ω) as k → ∞.
The goal of this step is to establish that for any k ≥ 1 there exists a unique solution u ∈ C3([0, T]; Wk) to

the variational problem{
(u′′(t), v)L2 + (u(t), v)H2∗

+ (F1(u′(t)), v)L2 + (F2(u(t)), v)L2 = ( f (t), v)L2

u(0) = uk
0, u′(0) = uk

1,
(19)

for any v ∈ Wk and t ∈ (0, T).
Towards this end, let us first define H(Ω) to be the dual space of H2

∗(Ω) and let < ·, · > be the
corresponding duality. Now, fix k ∈ N and make the ansatz

uk(t) = Σk
i=1gk

i (t)ei.

Let us also write
gk(t) := (gk

1(t), ..., gk
k(t))

T .
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We want uk to solve (19). It follows that vector-valued function gk must solve{
(gk(t))′′ + Λkgk(t) + Γ1

k((gk(t))′) + Γ2
k(gk(t)) = Gk(t)

gk(0) = uk
0, (gk)

′
(0) = uk

1,
(20)

for all t ∈ (0, T). Here
Λk := diag(λ2

1, . . . , λ2
k),

Γi
k is a map from Rk into Rk for all i ∈ {1, 2} defined by

Γi
k(y1, . . . , yk) := ((Fi(Σk

j=1yjej), e1)L2 , . . . , (Fi(Σk
j=1yjej), ek)L2)T ,

and
Gk(t) := (( f (t), e1)L2 , . . . , ( f (t), ek)L2)T

is a C1 map from [0, T] into Rk.
Since Fi is a C1 map from R into R for all i ∈ {1, 2}, it follows that Γi

k is a C1 map from Rk into Rk for all
i ∈ {1, 2}. This implies that (20) admits a unique local solution. This, in turn, allows us to conclude that uk(t)
is a local solution in some maximal interval of continuation [0, tk), tk ∈ (0, T], of the problem{

u′′
k (t) + L(uk(t)) + PkF1(u′

k(t)) + PkF2(uk(t)) = Pk f (t) for any t ∈ [0, tk)

uk(0) = uk
0, u′

k(0) = uk
1,

(21)

where Pk : L2(Ω) → Wk is the orthogonal projection onto Wk, and where L : H2
∗(Ω) → H(Ω) is defined by the

rule < Lu, v >= (u, v)H2∗
for any u and v in H2

∗(Ω). It follows that we can write

{
(u′′

k (t), ei)L2 + (uk(t), ei)H2∗
+ (F1(u′

k(t)), ei)L2 + (F2(uk(t)), ei)L2 = ( f (t), ei)L2 ,

u(0) = uk
0, u′(0) = uk

1,
(22)

for all t ∈ (0, tk) and for any i ∈ {1, 2, 3, ..., k}. An immediate consequence of the above is that{
(u′′

k (t), v)L2 + (uk(t), v)H2∗
+ (F1(u′

k(t)), v)L2 + (F2(uk(t)), v)L2 = ( f (t), v)L2 ,

u(0) = uk
0, u′(0) = uk

1,
(23)

for all v ∈ Wk and t ∈ (0, tk).

Step two

The goal of this step is to obtain a uniform bound on the sequence {uk}∞
k=1 that is strong enough to

guarantee that the ordinary differential equations defined in step one exist on all of [0, T]. Since u′
k(t) ∈ Wk for

all t ∈ [0, tk) we can use (22) to show that

(u′′
k (t), u′

k(t))L2 + (uk(t), u′
k(t))H2∗

+ (F1(u′
k(t)), u′

k(t))L2 + (F2(uk(t)), u′
k(t))L2 = ( f (t), u′

k(t))L2 (24)

for any t ∈ [0, tk). Now, let f2 : R → R be defined as follows: f2(s) :=
∫ s

0 F2(t)dt. Furthermore, let V :
H2
∗(Ω) → R be defined by the rule u →

∫
Ω f2(u)dx. We can now write

1
2

d
dt
(u′

k(t), u′
k(t))L2 +

1
2

d
dt
(uk(t), uk(t))H2∗

+
d
dt

V(uk(t)) + (F1(u′
k(t)), u′

k(t))L2 = ( f (t), u′
k(t))L2 (25)

for any t ∈ [0, tk). Now, invoking the hypotheses of Theorem 1.1, we see that F1(a)a ≥ 0 for all a ∈ R and
V(u) ≥ c(b − a) for all u ∈ H2

∗(Ω). Note as well that (v, v)H2∗
≥ 0 for all v ∈ H2

∗(Ω). Given these observations,
we can now conclude that for all t ∈ [0, tk)

1
2

d
dt
(u′

k(t), u′
k(t))L2 +

1
2

d
dt
(uk(t), uk(t))H2∗

+
d
dt
(V(uk(t))− c(b − a))

≤ 1
2
( f (t), f (t))L2 + (

1
2
(u′

k(t), u′
k(t))L2 +

1
2
(uk(t), uk(t))H2∗

+ (V(uk(t))− c(b − a)).
(26)
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We can now invoke Gronwall’s inequality and the non-negativity of V(·) − c(b − a) to conclude that for all
t ∈ [0, tk)

1
2
(u′

k(t), u′
k(t))L2 +

1
2
(uk(t), uk(t))H2∗

≤ et(
1
2
(u′

k(0), u′
k(0))L2 +

1
2
(uk(0), uk(0))H2∗

+ (V(uk(0))− c(b − a)) +
1
2

∫ t

0
( f (s), f (s))L2 ds)

≤ eT(
1
2
(u′

k(0), u′
k(0))L2 +

1
2
(uk(0), uk(0))H2∗

+ (V(uk(0))− c(b − a)) +
1
2

∫ T

0
( f (s), f (s))L2 ds)

≤ eT(
1
2
(uk

1, uk
1)L2 +

1
2
(uk

0, uk
0)H2∗

+ (V(uk
0)− c(b − a)) +

1
2

∫ T

0
( f (s), f (s))L2 ds).

(27)

Due to Eqs (17) and (18) we have that (uk
1, uk

1)L2 ≤ (u1, u1)L2 and

(uk
0, uk

0)H2∗
≤ (u0, u0)H2∗

. (28)

for all k ∈ N. Now recall that there exists a continuous embedding of H2
∗(Ω) into C(Ω). We can then use

(28) to conclude that ||uk
0||C(Ω) is bounded with respect to k. Invoking Lemma 3, we have that || f2(uk

0)||C(Ω) is

bounded with respect to k, and hence |V(uk
0)| is bounded with respect to k. It follows that we can use (27) to

conclude that there exists a positive real number C such that

(u′
k(t), u′

k(t))L2 + (uk(t), uk(t))H2∗
≤ C.

for any t ∈ [0, tk) and k ≥ 1. This uniform bound allows us to conclude that the solution uk(t) is globally
defined on [0, T] and the sequence {uk}∞

k=1 is bounded in C([0, T]; H2
∗(Ω)) ∩ C1([0, T]; L2(Ω)).

Step three

The goal of this step is to improve upon the uniform bounds on {uk}∞
k=1 obtained in step two, Since

uk ∈ C3([0, T]; Wk);
f ∈ C1([0, T]; L2(Ω));

and Fi is a C1 map from R into R for all i ∈ {1, 2}, we can differentiate (22) with respect to time. Then, since
u′′

k (t) ∈ Wk for all t ∈ [0, T] we have

(u′′′
k (t), u′′

k (t))L2 + (u′
k(t), u′′

k (t))H2∗
+ (

dF1

du′
k

u′′
k (t), u′′

k (t))L2 +

(
dF2

duk
u′

k(t), u′′
k (t)

)
L2

= ( f ′(t), u′′
k (t))L2 (29)

for any t ∈ [0, T]. Since we are assuming that F1 is a nondecreasing function, we have

dF1

du′
k
≥ 0,

for all values of its argument. Thus, we have

(u′′′
k (t), u′′

k (t))L2 + (u′
k(t), u′′

k (t))H2∗
+ (

dF2

duk
u′

k(t), u′′
k (t))L2 ≤ ( f ′(t), u′′

k (t))L2 . (30)

This, in turn, allows us to write

1
2

d
dt
(u′′

k (t), u′′
k (t))L2 +

1
2

d
dt
(u′

k(t), u′
k(t))H2∗

≤
∣∣∣∣( dF2

duk
u′

k(t), u′′
k (t)

)
L2

∣∣∣∣+ 1
2
( f ′(t), f ′(t))L2 +

1
2
(u′′

k (t), u′′
k (t))L2

(31)

for any t ∈ [0, T].
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In step two we showed that ||uk||C([0,T];H2∗(Ω)) is bounded with respect to k. It follows that ||uk||C([0,T];C(Ω))

is bounded with respect to k. Applying Lemma 3 and Remark 2 to dF2
duk

, we see that || dF2
duk

||C([0,T];C(Ω)) is bounded
with respect to k. It follows that

1
2

d
dt
(u′′

k (t), u′′
k (t))L2 +

1
2

d
dt
(u′

k(t), u′
k(t))H2∗

≤ C
(

1
2
||u′

k(t)||
2
L2 +

1
2
||u′′

k (t)||
2
L2

)
+

1
2
|| f ′(t)||2L2 +

1
2
||u′′

k (t)||
2
L2

(32)

for any t ∈ [0, T] and k ≥ 1 for some constant C independent of k ≥ 1 and t ∈ [0, T].
Now recalling Lemma 1, we know that there exists a positive real number C such that

(w, w)L2 ≤ C(w, w)H2∗

for all w ∈ H2
∗(Ω). It follows that

1
2

d
dt
||u′′

k (t)||
2
L2 +

1
2

d
dt
||u′

k(t)||
2
H2∗

≤ C
(

1
2
||u′′

k (t)||
2
L2 +

1
2
||u′

k(t)||
2
H2∗

)
+

1
2
|| f ′(t)||2L2 (33)

for any t ∈ [0, T] and k ≥ 1 for some constant C independent of k ≥ 1 and t ∈ [0, T]. Invoking Gronwall’s
inequality, we see that there exists a positive real number C such that for all t ∈ [0, T] and k ≥ 1

1
2
||u′′

k (t)||
2
L2 +

1
2
||u′

k(t)||
2
H2∗

≤ eCt
(

1
2
||u′′

k (0)||
2
L2 +

1
2
||u′

k(0)||
2
H2∗

+
∫ t

0
|| f ′(s)||2L2 ds

)
≤ eCT

(
1
2
||u′′

k (0)||
2
L2 +

1
2
||uk

1||2H2∗
+

∫ T

0
|| f ′(s)||2L2 ds

)
≤ eCT

(
1
2
||u′′

k (0)||
2
L2 +

1
2
||u1||2H2∗

+
∫ T

0
|| f ′(s)||2L2 ds

)
.

(34)

An immediate consequence of (34) is that there exists two positive real numbers C1 and C2 such that for all
t ∈ [0, T] and k ≥ 1

1
2
||u′′

k (t)||
2
L2 +

1
2
||u′

k(t)||
2
H2∗

≤ eC1T
(

C2 +

(
1
2
||u′′

k (0)||
2
L2

))
. (35)

(35) tells us that all we need to do to obtain uniform bounds on ||u′′
k (t)||L2 and ||u′

k(t)||H2∗
is to show that

||u′′
k (0)||L2 is bounded with respect to k. Towards this end let us recall (21) and write

||u′′
k (0)||

2
L2 = || − L(uk(0))− PkF1(uk

1)− PkF2(uk
0) + Pk f (0)||2L2

≤ 2(||L(uk(0))||2L2 + ||PkF1(uk
1)||2L2 + ||PkF2(uk

0)||2L2 + ||Pk f (0)||2L2)

≤ 2(||L(uk(0))||2L2 + ||F1(uk
1)||2L2 + ||F2(uk

0)||2L2 + || f (0)||2L2)

≤ 2(||uk(0)||2H4∗
+ ||F1(uk

1)||2L2 + ||F2(uk
0)||2L2 + || f (0)||2L2)

≤ 2(||uk
0||2H4∗

+ ||F1(uk
1)||2L2 + ||F2(uk

0)||2L2 + || f (0)||2L2)

≤ 2(||u0||2H4∗
+ ||F1(uk

1)||2L2 + ||F2(uk
0)||2L2 + || f (0)||2L2)

≤ C + 2||F1(uk
1)||2L2 + 2||F2(uk

0)||2L2

(36)

for any k ≥ 1, where C is a positive real number that does not depend on k ≥ 1. Here we used (17) to establish
the next to last inequality in the above string of inequalities. It follows that all we need to do is to show that
the second and third terms in the last line in the above string of inequalities are bounded with respect to k. To
show that this is the case, let us recall again (17) and (18). They imply that there exists a positive real number
C such that for all k ≥ 1, ||uk

0||H4∗
+ ||uk

1||H2∗
≤ C. Since there exists a continuous embedding of H4

∗(Ω) and
H2
∗(Ω) into C(Ω), we know that ||uk

0||C(Ω) + ||uk
1||C(Ω) is bounded with respect to k. Then Lemma 3 gives us

that there exists a positive real number C such that for all k ≥ 1

||F2
1 (u

k
1)||C(Ω) + ||F2

2 (u
k
0)||C(Ω) ≤ C, (37)
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Combining (36) and (37), we see that there exists a positive real number C such that for all k ≥ 1

||u′′
k (0)||L2 ≤ C. (38)

Recalling inequality (35), we can conclude that

||u′′
k (t)||L2 + ||u′

k(t)||H2∗
≤ C (39)

for any t ∈ [0, T] and k ≥ 1, where C is a positive real number that does not depend on t ∈ [0, T] or k ≥ 1.

Step four

The goal of this step is to obtain a bound on

(uk(t), uk(t))H4∗

that is independent of t ∈ [0, T] and k ≥ 1. Since L(uk(t)) is in Wk for all t ∈ [0, T] and k ≥ 1, we can invoke
(22) and write

(uk(t), L(uk(t)))H2∗
= ( f (t)− F1(u′

k(t))− F2(uk(t))− u′′
k (t), L(uk(t)))L2 , (40)

for all t ∈ [0, T]. Now recall (3). It implies that all of the elements of the sequence {ei}∞
i=1 have the property

that their second and fourth derivatives with respect to x vanish on the boundary of Ω. Since uk is in Wk for
all t ∈ [0, T] and for all k ∈ N, it follows that its second and fourth derivatives with respect to x vanish on the
boundary, for all t ∈ [0, T] and for all k ∈ N. We can now integrate by parts and obtain the following equation:

(uk(t), uk(t))H4∗
= ( f (t)− F1(u′

k(t))− F2(uk(t))− u′′
k (t), L(uk(t)))L2 , (41)

for all t ∈ [0, T]. Applying the Hölder inequality to the right-hand side of the above equation, we have

||uk(t)||H4∗
≤ || f (t)− F1(u′

k(t))− F2(uk(t))− u′′
k (t)||L2 , (42)

for all t ∈ [0, T] and k ≥ 1. Now we can conclude that

||uk(t)||2H4∗
≤ 2(|| f (t)||2L2 + ||F1(u′

k(t))||
2
L2 + ||F2(uk(t))||2L2 + ||u′′

k (t)||
2
L2), (43)

for all t ∈ [0, T] and k ≥ 1.
Now recall that in steps 2 and 3 we showed that there exists a positive real number C such that for all

k ≥ 1

||uk||C([0,T];H2∗(Ω)) + ||u′
k||C([0,T];H2∗(Ω)) + ||u′′

k ||C([0,T];L2(Ω)) ≤ C. (44)

Since there exists a continuous embedding of H2
∗(Ω) into C(Ω), we also have that there exists a positive real

number C such that for all k ≥ 1

||uk||C([0,T];C(Ω)) + ||u′
k||C([0,T];C(Ω)) + ||u′′

k ||C([0,T];L2(Ω)) ≤ C. (45)

We can now invoke Lemma 3 and Remark 2 and see that there exists a positive real number C such that for all
k ≥ 1

||F2
1 (u

′
k)||C([0,T];C(Ω)) + ||F2

2 ((uk)||C([0,T];C(Ω)) + ||u′′
k ||C([0,T];L2(Ω)) ≤ C. (46)

Combining (46) with (43), we can conclude that there exists a positive real number C such that for all k ≥ 1

||uk||C([0,T];H4∗(Ω)) ≤ C. (47)
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Step five

In steps 2-4 we obtained the existence of a positive real number C such that

||uk||C([0,T];H4∗(Ω)) + ||u′
k||C([0,T];H2∗(Ω)) + ||u′′

k ||C([0,T];L2(Ω)) ≤ C (48)

for all k ≥ 1. It follows that there exists a subsequence {ukl
}∞

l=1 of {uk}∞
k=1 and a function u that is in

W2,∞(0, T; L2(Ω)), W1,∞(0, T; H2
∗(Ω)), and L∞(0, T; H4

∗(Ω)) such that
(a)ukl

converges weakly to u with respect to the L2(0, T; H4
∗(Ω)) norm as l → ∞.

(b)u′
kl

converges weakly to u′ with respect to the L2(0, T; H2
∗(Ω)) norm as l → ∞.

(c)u′′
kl

converges weakly to u′′ with respect to the L2(0, T; L2(Ω)) norm as l → ∞.

(49)

A consequence of the above is that we can assume without loss of generality that the above subsequence
has the property that{

(a)ukl
converges to u with respect to the C([0, T]; L2(Ω)) norm as l → ∞.

(b)u′
kl

converges to u′ with respect to the C([0, T]; L2(Ω)) norm as l → ∞.
(50)

Let us now observe that (48) also implies that there exists a constant C such that for all l ≥ 1

||ukl
||C([0,T];C(Ω)) + ||u′

kl
||C([0,T];C(Ω)) ≤ C. (51)

We can now combine (50) and (51) with Lemma 4 to obtain{
(a)F1(u′

kl
) → F1(u′) with respect to the C([0, T]; L2(Ω)) norm as l → ∞.

(b)F2(ukl
) → F2(u) with respect to the C([0, T]; L2(Ω)) norm as l → ∞.

(52)

Step six

In this step we show that the function u(t), which is defined in step five, is a high regularity weak solution
of (1). Proceeding as in §7.2 of [2], we fix a positive integer N and choose a function v ∈ C1([0, T]; H2

∗(Ω) of
the form

v(t) = ΣN
i=1di(t)ei, (53)

where {di}N
i=1 are smooth functions. We select k ≥ N, multiply (22) by di(t), sum i = 1, . . . , N, and then

integrate with respect to t, to discover

∫ T

0
((u′′

k (t), v(t))L2 + (uk(t), v(t))H2∗
+ (F1(u′

k(t)), v(t))L2 + (F2(uk(t)), v(t))L2) dt =
∫ T

0
( f (t), v(t))L2 dt. (54)

Next we set k = kl and use (49), (50), and (52) to see that the function u defined in step five satisfies the
following equation:

∫ T

0
((u′′(t), v(t))L2 + (u(t), v(t))H2∗

+ (F1(u′(t)), v(t))L2 + (F2(u(t)), v(t))L2) dt =
∫ T

0
( f (t), v(t))L2 dt. (55)

This equation then holds for all v ∈ L2(0, T; H2
∗(Ω)), since functions of the form (53) are dense in this space.

This in turn allows us to conclude that u satisfies (2). Finally, recalling (17) and (18), we see that uk
0 → u0

with respect to the H4
∗(Ω) norm and uk

1 → u1 with respect to the H2
∗(Ω) norm. It follows that u(0) = u0 and

u′(0) = u1. We can now conclude that u is a high regularity weak solution of (1).

Step seven

In this step, we will show that the high regularity weak solution of (1) constructed in step five is the
unique high regularity weak solution of (1). Fix t ∈ [0, T]. Following arguments given in step six of this paper,
we see that a high regularity weak solution u of (1) has the property that

∫ t

0
((u′′(s), w(s))L2 + (u(s), w(s))H2∗

+ (F1(u′(s)), w(s))L2 + (F2(u(s)), w(s))L2) ds =
∫ t

0
( f (s), w(s))L2 ds (56)
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for every w ∈ L2(0, t; H2
∗(Ω)). Now, let u and v be high regularity weak solutions of (1). Then we have

∫ t

0
((u′′(s)− v′′(s), w(s))L2 + (u(s)− v(s), w(s))H2∗

+ (F1(u′(s))− F1(v′(s)), w(s)))L2 + (F2(u(s))− F2(v(s)), w(s))L2) ds = 0,
(57)

for all w ∈ L2(0, t; H2
∗(Ω)).

We will now show that u ≡ v. Set w = u′ − v′. Then we have∫ t

0
((u′′(s)− v′′(s), u′(s)− v′(s))L2 + (u(s)− v(s), u′(s)− v′(s))H2∗

+ (F1(u′(s))− F1(v′(s)), u′(s)− v′(s))L2 + (F2(u(s))− F2(v(s)), u′(s)− v′(s))L2) ds = 0.
(58)

Calculus then gives us

∫ t

0

(
1
2

d
ds

||u′(s)− v′(s)||2L2 +
1
2

d
ds

||u(s)− v(s)||2H2∗
+ (F1(u′(s))− F1(v′(s)), u′(s)− v′(s))L2

+(F2(u(s))− F2(v(s)), u′(s)− v′(s))L2
)

ds = 0.
(59)

Now, since F1 is a nondecreasing function, we have

∫ t

0

(
1
2

d
ds

||u′(s)− v′(s)||2L2 +
1
2

d
ds

||u(s)− v(s)||2H2∗
+ (F2(u(s))− F2(v(s)), u′(s)− v′(s))L2

)
ds ≤ 0. (60)

This in turn allows us to conclude that∫ t

0

(
1
2

d
ds

||u′(s)− v′(s)||2L2 +
1
2

d
ds

||u(s)− v(s)||2H2∗

)
ds

≤ 1
2

∫ t

0
||F2(u(s))− F2(v(s))||2L2 ds +

1
2

∫ t

0
||u′(s)− v′(s)||2L2 ds.

(61)

An immediate consequence of the above is that

1
2
||u′(t)− v′(t)||2L2 +

1
2
||u(t)− v(t)||2H2∗

≤ 1
2

∫ t

0
||F2(u(s))− F2(v(s))||2L2 ds +

1
2

∫ t

0
||u′(s)− v′(s)||2L2 ds.

(62)

Now, recall that F2 is a C1 function from R into R. It follows that there exists a positive real number LF2

such that
|F2(s1)− F2(s2)| ≤ LF2 |s1 − s2|, (63)

for all s1, s2 ∈ [−M, M], where M is the maximum of the elements of the set

{||u(t)||C([0,T];C(Ω)), ||v(t)||C([0,T];C(Ω))}.

The definition of M, on the other hand, allows us to conclude that there exists a positive real number C such
that

||F2(u(t))− F2(v(t))||2L2 ≤ C||u(t)− v(t)||2L2 (64)

for all t ∈ [0, T]. Note that we can assume without loss of generality that C ≥ 1, so let us assume that this is
the case. We now have

1
2
||u′(t)− v′(t)||2L2 +

1
2
||u(t)− v(t)||2H2∗

≤
∫ t

0

1
2

C||u(s)− v(s)||2L2 ds +
∫ t

0

1
2

C||u′(s)− v′(s))||2L2 ds (65)

for all t ∈ [0, T]. We can now invoke Lemma 1 to conclude that there exists a positive constant C such that

||u(t)− v(t)||2H2∗
≥ C||u(t)− v(t)||2L2 , (66)
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for all t ∈ [0, T]. Again, we can assume that C is greater than one, so let us do so. It follows that there exists a
positive constant C such that

1
2
||u′(t)− v′(t)||2L2 +

1
2
||u(t)− v(t)||2H2∗

≤
∫ t

0

1
2

C||u′(s)− v′(s))||2L2 ds +
∫ t

0

1
2

C||u(s)− v(s)||2H2∗
ds

(67)

for all t ∈ [0, T]. We can now invoke Gronwall’s inequality to conclude that u(t) ≡ v(t) for all t ∈ [0, T].
Uniqueness of high regularity weak solutions of (1) follows.
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