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Abstract: Squares of odd index Fibonacci polynomials are used to define a new function Φ (10n) to
approximate the number π (10n) of primes less than 10n. Multiple of 4 index Fibonacci polynomials are
further used to define another new function Ψ (10n) to approximate the number ∆ (π (10n)) of primes having
n digits and compared to a third function Ψ′ (10n) defined as the difference of the first function Φ (10n) based
on odd index Fibonacci polynomials. These three functions provide better approximations of π (10n) than
those based on the classical

(
x

log(x)

)
, Gauss’ approximation Li (x), and the Riemann R (x) functions.
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1. Introduction and Preliminaries

T he Prime Number Theorem states (see e.g. [1]) that if π (x) is the number of primes ≤ x (x ∈ Z+), then

lim
x→∞

(
π(x)

x
log(x)

)
= 1 (1)

which means in all generality that the relative error of the approximation of π(x) by
(

x
log(x)

)
approaches 0 as

x approaches infinity. Several better approximations to π(x) are given for example by Gauss’ approximation,
i. e. the offset logarithmic integral or Eulerian logarithmic integral (see e.g. [2])

Li(x) = li (x)− li (2) =
x∫

2

dt
log (t)

(2)

in function of the logarithmic integral li(x) =
∫ x

0
dt

log(t) , or by the Riemann function (see e.g. [3])

R (x) =
∞

∑
i=1

µ (i)
i

li
(

x
1
i

)
(3)

where µ (i) is the Moebius function and i ∈ Z+, or by an even better function

R (x)− 1
log (x)

+
1
π

arctan
(

π

log (x)

)
(4)

Interestingly when looking at the first values of π (10n) for 1 ≤ n ≤ 4 (n ∈ Z+), it appears that they are equal
or close to the square of odd index Fibonacci numbers F2n+1, while the number of prime numbers having n
digits, i.e. the difference π (10n)− π

(
10n−1), is equal or close to Fibonacci numbers F4n of indices multiple of

4.
We propose in this paper new functions giving a better representation of the sequence of π (10n) based

on the square of odd index Fibonacci polynomials of a function ξ of n and two other representations based on
Fibonacci polynomials for the difference π (10n)− π

(
10n−1).
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Table 1. First five values of π (10n), F2
2n+1, ∆ (π (10n)) and F4n

n π (10n) F2
2n+1 ∆ (π (10n)) F4n

1 4 4 4 3
2 25 25 21 21
3 168 169 143 144
4 1229 1156 1061 987
5 9592 7921 8363 6765

Figure 1. δn in function of n

2. Number of primes and Fibonacci numbers

The values of π (10n) are known for 1 ≤ n ≤ 29 (see [4]). The second column of Table 1 gives the first
five values of π (10n). Interestingly,the first two terms of the sequence of π (10n) are integer squares while
following terms are close to squares. With the notation |[x]| = round (x), taking the nearest integer ρn to the
square root of π (10n) for 1 ≤ n ≤ 29

ρn =

∣∣∣∣[√π (10n)

]∣∣∣∣ (5)

yields then the values 2, 5, 13, 35, 98, 280, .... [5].The first values are equal or close to those of odd index
Fibonacci numbers F2n+1, i.e. 2, 5, 13, 34, 89, 233, ... [6](see third column of Table 1). However, they diverge
quite rapidly thereafter and F2n+1 < π (10n) for larger values of n. Fig. 1 shows, for 1 ≤ n ≤ 25, the of the
relative difference

δn =
ρn − F2n+1

ρn
(6)

On the other hand, if the first values of π (10n) can be represented by the square of odd index Fibonacci
numbers F2n+1, and as

F4n = F2
2n+1 − F2

2n−1 (7)

(see e.g. [7]), one can expect that the difference of two successive values of π (10n), i.e.,

∆ (π (10n)) = π (10n)− π
(

10n−1
)

(8)
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Table 2. First five odd index Fibonacci polynomials F2n+1 (x)

n F2n+1 (x)
1 x2 + 1
2 x4 + 3x2 + 1
3 x6 + 5x4 + 6x2 + 1
4 x8 + 7x6 + 15x4 + 10x2 + 1
5 x10 + 9x8 + 28x6 + 35x4 + 15x2 + 1

Figure 2. Positive real roots x+n and x
′+
n in function of n

can be represented by multiple of 4 index Fibonacci numbers F4n,i.e., 3, 21, 144, 987, 6765, ... . In fact, ∆ (π (10n))

gives the number of primes between 10n and 10n−1 or the number of primes with n digits ([8], see fourth
column of Table 1 (with π (1) = 0), i.e. there are 4 primes between 1 and 10, 21 primes between 11 and
100, 143 primes between 101 and 1000, etc. And these values are indeed equal or close to the first Fibonacci
numbers F4n of indices multiple of 4 (fifth column of Table 1). Again, they diverge quite rapidly thereafter and
F4n < ∆ (π (10n)) for larger values of n.

3. Number of primes and functions of Fibonacci polynomials

Next, we ask whether the square of odd index Fibonacci polynomials F2n+1 (x) (see e.g. [9]) (with now
x ∈ R onward) could approximate better the sequence of values of π (10n). The first odd index Fibonacci
polynomials F2n+1 (x) are given in Table 2. The roots of

F2n+1 (x)−
√

π (10n) = 0 (9)

are then computed1 for 1 ≤ n ≤ 25. All polynomials (9) have two real roots, one positive and one
negative, and 2 (n − 1) complex roots of no interest here. Only the positive real root x+n is considered in each
case and, remarkably, all are close to unity, slowly increasing with increasing n, 1 ≲ x+n ≲ 1.13... (see Fig. 2).

The next step is to find a function that can approximate the sequence of real roots x+n in function of n.
Using a nonlinear regression curve fitting algorithm, such a function is given by

1 using Solve routine of Maple 16.00 with 30 digits precision
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Table 3. First five Fibonacci polynomials F4n (x)

n F4n (x)
1 x3 + 2x
2 x7 + 6x5 + 10x3 + 4x
3 x11 + 10x9 + 36x7 + 56x5 + 35x3 + 6x
4 x15 + 14x13 + 78x11 + 220x9 + 330x7 + 252x5 + 84x3 + 8x
5 x19 + 18x17 + 136x15 + 560x13 + 1365x11 + 2002x9 + 1716x7 + 792x5 + 165x3 + 10x

ξ (n) =
2

∑
i=0

Ci

(
log
(

log
(

A
(

B + n2
))))2i

(10)

where i ∈ Z+, A, B, Ci ∈ R with A = 0.1641239, B = 10.0861, C0 = 0.9976796712309498, C1 = 7.445960495 ×
10−2, C2 = −6.73751166802 × 10−3. Then the distribution of π (10n) can be approximated by

Φ (10n) =
∣∣∣[(F2n+1 (ξ (n)))

2
]∣∣∣ (11)

This function Φ (10n) gives exactly the first four values of π (10n) for 1 ≤ n ≤ 4 and quite closely the following
values (see [10]).

For the difference ∆ (π (10n)), we verify whether similarly Fibonacci polynomials F4n (x) of indices
multiple of 4 could similarly approximate the sequence of values of ∆ (π (10n)). The first Fibonacci
polynomials F4n (x) are shown in Table 3. However, relation (7) does not hold for Fibonacci polynomials.
The correct relation is

xF4n (x) = F2
2n+1 (x)− F2

2n−1 (x) (12)

Therefore we use the product xF4n (x) instead of F4n (x), and the roots of

xF4n (x)− ∆ (π (10n)) = 0 (13)

are computed2 for 1 ≤ n ≤ 25. All polynomials (13) have two real roots, one positive and one negative,
two imaginary roots and 4 (n − 1) complex roots of no interest here. Again, all 25 real positive roots x

′+
n are

close to unity; except for the first value (for n = 1), all values of x
′+
n are slowly increasing with increasing n,

1 ≲ x
′+
n ≲ 1.13... (see Fig. 2). A function approximating the sequence of roots x

′+
n in function of n is found to

be

ξ ′ (n) =
3

∑
i=0

Ci

(
log
(

log
(

A
(

B + n2
))))i

(14)

where i ∈ Z+, A, B, Cj ∈ R with A = 5.55206477803854105 × 10−3, B = 179.5601349965941682, C0 =

1.115263992333283653, C1 = 5.11592774905246001 × 10−2, C2 = 0, C3 = −1.4047014763335134 × 10−3. The
distribution of ∆ (π (10n)) can then be approximated by

Ψ (10n) =
∣∣[ξ ′ (n) F4n

(
ξ ′ (n)

)]∣∣ (15)

This function Ψ (10n) gives exactly the first three values of ∆ (π (10n)) for 1 ≤ n ≤ 3 and quite closely the
following values.

Another function Ψ′ (10n) approximating ∆ (π (10n)) can be obtained by successive values of Φ (10n), i.e.

Ψ′ (10n) = Φ (10n)− Φ
(

10n−1
)
=
∣∣∣[(F2n+1 (ξ (n)))

2
]∣∣∣− ∣∣∣[(F2n−1 (ξ (n − 1)))2

]∣∣∣ (16)

The first value for n = 1 is not well represented as Ψ′ (10) = 3 (with
∣∣∣[(F1 (ξ (0)))

2
]∣∣∣ = 1 and ξ (0) =

1.0311467...) while ∆ (π (10)) = 4. However Ψ′ (10n) gives exactly the following three values of ∆ (π (10n))

2 using Solve routine of Maple 16.00 with 30 digits precision
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Table 4. First ten values of π (10n), the three distributions f (n) and Φ (10n)

n π (10n)
∣∣∣[ 10n

log(10n)

]∣∣∣ |[Li (10n)]| |[R (10n)]| Φ (10n)

1 4 4 5 5 4
2 25 22 29 26 25
3 168 145 177 168 168
4 1229 1086 1245 1227 1229
5 9592 8686 9629 9587 9595
6 78498 72382 78627 78527 78527
7 664579 620421 664917 664667 664408
8 5761455 5428681 5762208 5761552 5759130
9 50847534 48254942 50849234 50847455 50833725

10 455052511 434294482 455055614 455050683 455019102

Table 5. Averages and standard deviations of δ
′
n for the four distributions d′ (n)

d′ (n)
∣∣∣[ 10n

log(10n)

]∣∣∣ |[Li (10n)]| |[R (10n)]| Φ (10n)

µ
(

δ
′
n

)
4.65309 × 10−2 1.93110 × 10−2 1.17069 × 10−2 1.58269 × 10−4

σ
(

δ
′
n

)
3.60695 × 10−2 5.83932 × 10−2 5.02812 × 10−2 1.28997 × 10−4

for 2 ≤ n ≤ 4 and approximates well the following values up to n = 25, much closer than Ψ (10n) (see further
discussion).

4. Discussion

For the distribution of π (10n), it is interesting to compare the values obtained with Φ (10n) to the nearest
integers to those values obtained with the approximating functions of Section 1. Table 4 shows the first ten
values of π (10n),

∣∣∣[ 10n

log(10n)

]∣∣∣ (see [11]), |[Li (10n)]| (from (2), see [12]), |[R (10n)]| (from (3), see [13]), or

f (n) = either
∣∣∣∣[ 10n

log (10n)

]∣∣∣∣ or |[Li (10n)]| or |[R (10n)]| (17)

and Φ (10n) (11). Note that in calculating R (10n), the summation in (3) is made for 1 ≤ i ≤ 1000, as the value
of R (10n) does not change for higher values of i, due mainly to the operation of rounding to the nearest integer.
The function (4) is not considered as the values obtained by rounding to the nearest integer the function (4)
does not differ (except for n = 1) from those obtained by rounding R (10n) for the same reason.

Computing the absolute value of the relative differences

δ
′
n =

∣∣∣∣π (10n)− d′ (n)
π (10n)

∣∣∣∣ (18)

for 1 ≤ n ≤ 25, where d′ (n) is either f (n) (17) or Φ (10n) (11), Fig. 3 shows the , in function of n, of δ
′
n for

these four distributions on a log scale (recall that the first four values of δ
′
n are for Φ (10n)) and Table 5 shows

the averages µ
(

δ
′
n

)
and standard deviations σ

(
δ
′
n

)
of δ

′
n for 1 ≤ n ≤ 25 for the four distributions.

It is seen that the distribution
∣∣∣[ 10n

log(10n)

]∣∣∣ provides a relatively poor approximation for small and large
value (up to n = 25) of π (10n). The distributions |[Li (10n)]| and |[R (10n)]| provide both a relatively poor
approximation of π (10n) for small values of n, but increasingly better with increasing values of n. The
distribution Φ (10n) gives a better approximation of π (10n) for small values of n ≤ 6 but not as good as
|[Li (10n)]| and |[R (10n)]| for larger values of n. However the distribution Φ (10n) gives on average a better
approximation of the 25 values of π (10n) than the

(
x

log(x)

)
function, the Gauss’ approximation Li (x) and the

Riemann function R (x) as shown by the average and standard deviation values given in Table 4 (µ
(

δ
′
n

)
and

σ
(

δ
′
n

)
for Φ (10n) are approximately two orders of magnitude less that the other values), due to the fact that

Φ (10n) gives exactly the first four values of π (10n).
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Figure 3. δ
′
n in function of n

Comparing now the values for the difference ∆ (π (10n)) obtained by subtracting successive values of the
functions of section 1, i.e.

g (n) = f (n)− f (n − 1) = ∆ ( f (n)) (19)

with f (n) (17), to those of Ψ (10n) and Ψ′ (10n), Table 6 gives the first ten values of ∆ (π (10n)), g (n) (19),
Ψ (10n) and Ψ′ (10n). Note that the values of the three distributions g (n) (19) are not defined for n = 1, as
f (n − 1) = f (0) is not defined and, for the sake of the argument, the values of

∣∣∣[ 1
log(1)

]∣∣∣, |[Li (1)]|, |[R (1)]|
have been arbitrarily put equal to 0. Fig. 4 shows the of the absolute value of the relative differences

δ”
n =

∣∣∣∣∆ (π (10n))− d” (n)
∆ (π (10n))

∣∣∣∣ (20)

Table 6. First ten values of ∆ (π (10n)), g (n), Ψ (10n) and Ψ′ (10n)

n ∆ (π (10n)) ∆
(∣∣∣[ 10n

log(10n)

]∣∣∣) ∆ (|[Li (10n)]|) ∆ (|[R (10n)]|) Ψ (10n) Ψ′ (10n)

1 4 4 5 5 4 3
2 21 18 24 21 21 21
3 143 123 148 142 143 143
4 1061 941 1068 1059 1063 1061
5 8363 7600 8384 8360 8385 8366
6 68906 63696 68998 68940 68929 68932
7 586081 548039 586290 586140 584467 585881
8 5096876 4808260 5097291 5096885 5074924 5094722
9 45086079 42826261 45087026 45085903 44885325 45074595

10 404204977 386039540 404206380 404203228 402777151 404185377
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Figure 4. δ”
n in function of n

Table 7. Averages and standard deviations of δ”
n for g (n), Ψ (10n) and Ψ′ (10n)

1 ≤ n ≤ 25 2 ≤ n ≤ 25
d” (n) µ

(
δ”

n
)

σ
(
δ”

n
)

µ
(
δ”

n
)

σ
(
δ”

n
)

∆
(∣∣∣[ 10n

log(10n)

]∣∣∣) 4.69094 × 10−2 3.80699 × 10−2 4.88640 × 10−2 3.75855 × 10−2

∆ (|[Li (10n)]|) 1.75493 × 10−2 5.64517 × 10−2 7.86383 × 10−3 2.96342 × 10−2

∆ (|[R (10n)]|) 1.03936 × 10−2 4.99384 × 10−2 4.10042 × 10−4 1.45666 × 10−3

Ψ (10n) 3.75342 × 10−3 3.32007 × 10−3 3.90981 × 10−3 3.29607 × 10−3

Ψ′ (10n) 1.01657 × 10−2 4.99657 × 10−2 1.72564 × 10−4 1.36990 × 10−4

in function of n for 1 ≤ n ≤ 25, where d” (n) is either g (n) = ∆ ( f (n)), or Ψ (10n) or Ψ′ (10n), and Table 7
shows the averages µ

(
δ”

n
)

and standard deviations σ
(
δ”

n
)

of δ”
n for the five distributions with and without the

first value for n = 1 (i.e. respectively for 1 ≤ n ≤ 25 and for 2 ≤ n ≤ 25).
Again, both functions based on Fibonacci polynomials of a function of n approximate on average better

the distribution of the number of primes of n digits, mainly because the first values of ∆ (π (10n)) are exactly
or closely represented. If the first value for n = 1 is included, the representation of ∆ (π (10n)) by the function
Ψ (10n) of Fibonacci polynomials (ξ ′ (n) F4n (ξ

′ (n))) of a function ξ ′ (n) of n (with ξ ′ (n) ≈ 1) is better than by
the

(
x

log(x)

)
function, the Gauss’ approximation Li (x) and the Riemann function R (x), with an average µ

(
δ”

n
)

and a standard deviation σ
(
δ”

n
)

for Ψ (10n) approximately one order of magnitude less than those for the other
functions. If the first value for n = 1 is discarded, the representation of ∆ (π (10n)) by the function Ψ′ (10n)

of the difference of the square of odd index Fibonacci polynomials F2n+1 (ξ (n)) of a function ξ (n) of n (with
ξ (n) ≈ 1) is better than by the

(
x

log(x)

)
function, the Gauss’ approximation Li (x) and the Riemann function

R (x) (with µ
(
δ”

n
)

and σ
(
δ”

n
)

for Ψ′ (10n) approximately two orders of magnitude less than for
(

x
log(x)

)
and

Li (x) and µ
(
δ”

n
)

and σ
(
δ”

n
)

for Ψ′ (10n) respectively less than and one order of magnitude less than for R (x)).



Open J. Math. Sci. 2024, 8, 31-38 38

5. Conclusions

A function Φ (10n) of odd index Fibonacci polynomials F2n+1 (ξ (n)) of a function ξ (n) of n was found
to approximate the distribution of the number π (10n) of primes less than 10n. Two functions Ψ (10n) and
Ψ′ (10n) were found to approximate the distribution of the number ∆ (π (10n)) of primes having n digits,
where Ψ (10n) is a function of multiple of 4 index Fibonacci polynomials (ξ ′ (n) F4n (ξ

′ (n))) of a function ξ ′ (n)
of n and Ψ′ (10n) = Φ (10n) − Φ

(
10n−1) is a function of the difference of odd index Fibonacci polynomials

F2n+1 (ξ (n)) for successive values of n.
On average these three functions provide better approximations of one or two orders of magnitude in

the averages of relative absolute differences of the exact and calculated values than classical functions, i.e. the(
x

log(x)

)
function, the Gauss’ approximation Li (x) and the Riemann function R (x).

Note that these results do not disprove the Prime Number Theorem, but provide better representations of
π (10n) and ∆ (π (10n)).
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