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Abstract: We show that Euler’s relation and the Taxi-Cab relation are both solutions of the same equation.
General solutions of sums of two consecutive cubes equaling the sum of two other cubes are calculated. There
is an infinite number of relations to be found among the sums of two consecutive cubes and the sum of two
other cubes, in the form of two families. Their recursive and parametric equations are calculated.
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1. Introduction and Preliminaries

T he remarkable relation
33 + 43 + 53 = 63 (1)

among the cubes of four successive integers is often attributed to Euler, while in fact it was already known to
P. Bungus in the XVIth century [1,2]. No other similar relation can be found between cubes of four successive
integers. Another well-known relation involving two different sums of two cubes is

1729 = 93 + 103 = 123 + 13 (2)

often call the taxi-cab number or taxi-cab relation and attributed to Indian mathematician Ramanujan after he
mentioned in 1919 to fellow British mathematician Hardy that this number is remarkable in the fact that it is
the smallest integer that can be written as the sum of two positive cubes in two ways (see historical account
in e.g.,[3]). However, this relation was already mentioned by French mathematician Frenicle in the XVIIth
century [2,4]. Nevertheless, we will refer in this paper to (1) and (2) as Euler’s relation and Ramanujan’s
taxi-cab relation. In fact, both relations can be deduced from a same equation, as we show in this paper. It
is simple to see that one can find other taxi-cab numbers smaller than Ramanujan’s by transferring one term
from left to right of (1), introducing negative integers and yielding successively

91 = 33 + 43 = 63 + (−5)3 (3)

152 = 33 + 53 = 63 + (−4)3 (4)

189 = 43 + 53 = 63 + (−3)3 (5)

and so on. Other taxi-cab numbers can be found by multiplying each relations (3) to (5) by k3, i.e., the cube of
any integer k. Sequences A001235 and A051347 in the OEIS [5] list all taxi-cab numbers for respectively only
positive integers and for positive and negative integers. Numerous mathematicians and authors have worked
on sums of cubes and equal sums of cubes. Excellent summaries and numerous results can be found e.g., in
[2,6]. In this paper, our interest is in numbers that can be written as sums of two cubes in at least two ways, one
of them involving two consecutive cubes. In Section, 2 we show first that Euler’s and the Taxi-Cab relations
are solutions of the same equation. We calculate then the general case of the sum of two consecutive cubes
equal to the sum of two other cubes. In Section 3, we characterize two infinite families of solutions of the sum
of two consecutive cubes equaling the sum of two other cubes.
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2. General equation

We show first that (1) and (2) are both solutions of the same equation. If one observes that the first term
on the right-hand side in (2) and (3) is three units larger than the first term on the left-hand side, we can write

N = n3 + (n + 1)3 = (n + 3)3 + (n + α)3 (6)

with α integer and N the positive integer that can be represented in (at least) two ways by sums of two
consecutive cubes and of two other cubes, one of which possibly negative. Equation (6) yields the two general
solutions

n =
−3

(
α2 + 8

)
±

√
−3 (α4 + 8 (α3 − 6α2 + 13α + 2))

6 (α + 2)
(7)

which produces integer solutions for α = −8, giving n+ = 3 and n− = 9. Equation (6) yields then respectively
(3) and (2), showing that (6) yields both Euler’s relation and Ramanujan’s taxi-cab number relation. Let us
consider now the general equation

N = n3 + (n + 1)3 = (n + a)3 + (n + b)3 (8)

with a and b integers, a > 0 and b < 0. Solving for n, the third degree equation defined by the second equality
in (8) reduces to a second degree equation

3n2 (a + b − 1) + 3n
(

a2 + b2 − 1
)
+

(
a3 + b3 − 1

)
= 0 (9)

whose discriminant reads

D = 3
(
(a − b)4 −

(
a4 + b4 + (a − 1)4 + (b − 1)4

)
+ 1

)
(10)

providing two real solutions for D > 0, namely

n =
−3

(
a2 + b2 − 1

)
±

√
3
(
(a − b)4 −

(
a4 + b4 + (a − 1)4 + (b − 1)4

)
+ 1

)
6 (a + b − 1)

(11)

As N must be positive, we limit our search to b < 0 < a < |b| and discrete solutions of (8) or (9) are found, as
shown in Table 1 for n < 1000, and arranged in increasing order of N. Note also that similar relations but with
coefficients having opposite signs are obtained for negative values of a and for a′ = −b + 1, b′ = −a + 1, and
n′ = −n − 1.

It is seen also that three sums of two cubes are found for n = 121, 163, 235, 562. Other relations are given
in OEIS [5] Sequences A352133 to A352136 and cases with three sums of two cubes are given in Sequences
A352220 to A352225.

3. Two Infinite Families

Figure 1 shows a plot of the couples (n, n + a) for 0 < n ≤ 275 (data are from OEIS [5] Sequences A352135,
A352136, A352222, A352223, A352224, A352225). Two families are clearly visible along two curves.

The first top curve (or first family) includes all couples (n, n + a) such that η = (n + a) + (n + b) =

2n + a + b are regularly increasing odd integers as shown in Table 2 for the first twenty cases, while for the
second below curve (or second family), η = 2n + a + b are regularly increasing odd multiples of 3.

3.1. Recursive relations

The values of n, n + a and n + b of both the first and second families can be found by the recurrence
relations

ni = 3ni−1 − 3ni−2 + ni−3 + κ (12)

(n + a)i = 3 (n + a)i−1 − 3 (n + a)i−2 + (n + a)i−3 + λ (13)

(n + b)i = 3 (n + b)i−1 − 3 (n + b)i−2 + (n + b)i−3 − λ (14)
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Table 1. Values of a, b, n+, n−, solutions of (8) for n < 1000 and b < 0 < a < |b|

a b n+ n− N = n3 + (n + 1)3 = (n + a)3 + (n + b)3

3 -8 3 – 91 = 33 + 43 = 63 + (−5)3

2 -7 4 – 189 = 43 + 53 = 63 + (−3)3

3 -8 – 9 1729 = 93 + 103 = 123 + 13

10 -39 18 – 12691 = 183 + 193 = 283 + (−21)3

9 -38 – 32 68705 = 323 + 333 = 413 + (−6)3

10 -39 – 36 97309 = 363 + 373 = 463 + (−3)3

105 -194 46 – 201159 = 463 + 473 = 1513 + (−148)3

32 -127 58 – 400491 = 583 + 593 = 903 + (−69)3

64 -243 107 – 2484755 = 1073 + 1083 = 1713 + (−136)3

73 -258 108 – 2554741 = 1083 + 1093 = 1813 + (−150)3

32 -103 – 121 3587409 = 1213 + 1223 = 1533 + 183

248 -481 121 – 3587409 = 1213 + 1223 = 3693 + (−360)3

37 -192 – 123 3767491 = 1233 + 1243 = 1603 + (−69)3

43 -168 – 163 8741691 = 1633 + 1643 = 2063 + (−5)3

91 -360 163 – 8741691 = 1633 + 1643 = 2543 + (−197)3

819 -1208 197 – 15407765 = 1973 + 1983 = 10163 + (−1011)3

57 -128 – 235 26122131 = 2353 + 2363 = 2923 + 1073

184 -597 235 – 26122131 = 2353 + 2363 = 4193 + (−362)3

77 -208 – 301 54814509 = 3013 + 3023 = 3783 + 933

120 -629 393 – 121861441 = 3933 + 3943 = 5133 + (−236)3

120 -629 – 411 139361059 = 4113 + 4123 = 5313 + (−218)3

393 -1178 438 – 168632191 = 4383 + 4393 = 8313 + (−740)3

152 -793 481 – 223264809 = 4813 + 4823 = 6333 + (−312)3

128 -511 – 490 236019771 = 4903 + 4913 = 6183 + (−21)3

3225 -4274 528 – 295233841 = 5283 + 5293 = 37533 + (−3746)3

148 -687 – 562 355957875 = 5623 + 5633 = 7103 + (−125)3

2258 -3367 562 – 355957875 = 5623 + 5633 = 28203 + (−2805)3

512 -1591 607 – 448404255 = 6073 + 6083 = 11193 + (−984)3

777 -1952 633 – 508476241 = 6333 + 6343 = 14103 + (−1319)3

190 -999 – 640 525518721 = 6403 + 6413 = 8303 + (−359)3

442 -1767 804 – 1041378589 = 8043 + 8053 = 12463 + (−963)3

Figure 1. Plot n + a vs n
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Table 2. Values of n, n + a, n + b, η = 2n + a + b for first and second families

First family Second family
i n n + a n + b η n n + a n + b η

1 3 6 -5 1 4 6 -3 3
2 46 151 -148 3 121 369 -360 9
3 197 1016 -1011 5 562 2820 -2805 15
4 528 3753 -3746 7 1543 10815 -10794 21
5 1111 10090 -10081 9 3280 29538 -29511 27
6 2018 22331 -22320 11 5989 65901 -65868 33
7 3321 43356 -43343 13 9886 128544 -128505 39
8 5092 76621 -76606 15 15187 227835 -227790 45
9 7403 126158 -126141 17 22108 375870 -375819 51

10 10326 196575 -196556 19 30865 586473 -586416 57
11 13933 293056 -293035 21 41674 875196 -875133 63
12 18296 421361 -421338 23 54751 1259319 -1259250 69
13 23487 587826 -587801 25 70312 1757850 -1757775 75
14 29578 799363 -799336 27 88573 2391525 -2391444 81
15 36641 1063460 -1063431 29 109750 3182808 -3182721 87
16 44748 1388181 -1388150 31 134059 4155891 -4155798 93
17 53971 1782166 -1782133 33 161716 5336694 -5336595 99
18 64382 2254631 -2254596 35 192937 6752865 -6752760 105
19 76053 2815368 -2815331 37 227938 8433780 -8433669 111
20 89056 3474745 -3474706 39 266935 10410543 -10410426 117

with κ = 72 and 216 and λ = 576 (i − 2) and 1728 (i − 2) for respectively the first and second families, and the
first three values of ni, (n + a)i and (n + b)i from Table 2.

3.2. Parametric relations

We see from Table 2 that the fourth term n+ b of (8) is negative and is decreasing regularly with increasing
n. So, let us pose n + b = − (n + a) + β, yielding from (8)

N = n3 + (n + 1)3 = (n + a)3 − (n + a − β)3 (15)

For specific relations between a and n, one obtains two infinite families of solutions as shown in the following
two theorems, giving parametric solutions for n, N, n + a and n + b.

Theorem 1. For ∀i ∈ Z+
0 , ∃n, a, β ∈ Z+

0 , such that

a = (β − 1) n + β2 + β + 1 (16)

and an infinite family of solutions of (15) exists for β odd,

β = 2i − 1 (17)

yielding

n =
(2i − 1)

(
3 (2i − 1)2 + 4

)
− 1

2
(18)

N =

(2i − 1)
(

3 (2i − 1)2 + 4
)(

(2i − 1)2
(

3 (2i − 1)2 + 4
)2

+ 3
)

4
(19)

n + a =
3 (2i − 1)2

(
(2i − 1)2 + 2

)
+ 2i + 1

2
(20)

n + b = −
3 (2i − 1)2

(
(2i − 1)2 + 2

)
− 2i + 3

2
(21)



Open J. Math. Sci. 2024, 8, 25-30 29

Proof. Let n, a, β, i ∈ Z+
0 , and let a, n and β satisfy (16). Relation (15) yields then the third degree equation

n3 + (n + 1)3 −
(

βn + β2 + β + 1
)3

+
(

βn + β2 + 1
)3

= 0 (22)

that simplifies immediately in the product of a linear and a quadratic relations(
2n − β

(
3β2 + 4

)
+ 1

) (
n2 + (2β + 1) n + β2 + β + 1

)
= 0 (23)

As the discriminant of the right quadratic polynomial is always negative, the quadratic equation yields two
complex solutions of no interest here. The right linear equation yield the only real solution

n =
β
(
3β2 + 4

)
+ 1

2
(24)

As n must be integer, β cannot be even and must be odd, β = 2i − 1, yielding (18) to (21).

Theorem 2. For ∀i ∈ Z+
0 , ∃n, a, β ∈ Z+

0 , such that

a =
(β − 3) n + 2β

3
(25)

and an infinite family of solutions of (15) exists for β ≡ 3mod6,

β = 3 (2i − 1) (26)

yielding

n =
9 (2i − 1)3 − 1

2
(27)

N =
27 (2i − 1)3

(
27 (2i − 1)6 + 1

)
4

(28)

n + a =
3 (2i − 1)

(
3 (2i − 1)3 + 1

)
2

(29)

n + b = −
3 (2i − 1)

(
3 (2i − 1)3 − 1

)
2

(30)

Proof. Let n, a, β, i ∈ Z+
0 , and let a, n and β satisfy (25). Relation (15) yields then the third degree equation

n3 + (n + 1)3 −
(

β

3
(n + 2)

)3
+

(
β

3
(n − 1)

)3
= 0 (31)

that simplifies immediately in the product of a linear and a quadratic relations(
6n − β3 + 3

) (
n2 + n + 1

)
3

= 0 (32)

The right quadratic equation yields two complex solutions of no interest here. The right linear equation yield
the only real solution

n =
β3 − 3

6
(33)

As n must be integer, β must 3mod6, β = 3 (2i − 1), yielding (27) to (30).
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