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Abstract: We provide a semi-local convergence analysis of a seventh order four step method for solving
nonlinear problems. Using majorizing sequences and under conditions on the first derivative, we provide
sufficient convergence criteria, error bounds on the distances involved and uniqueness. Earlier convergence
results have used the eighth derivative not on this method to show convergence. Hence, limiting its
applicability.
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1. Introduction and Preliminaries

m n this study we are interested in finding an approximation for the solution ¥ of the equation

F:DCX—Y FX =0 1)

where X and Y are Banach spaces and D is an open subset of X. Seventh order method defined forn =0,1,2,...
by

Ty = Tu— OF (%) 'F(Ta)

zy = yn_F/(yn)ill—:(y”)’

B =z (2FE) - FE) )G @
S = W= (25,7 F(5) ) F@)

is considered for approximating ¥.

In this paper we study the semi-local convergence. Moreover, we use condition only on the first derivative
appearing on (2). Hence, we extend its applicability. The local convergence of this method was shown [1] using
conditions reaching the fifth derivative which is not on (2).

But these restrictions limit the applicability of the method (2) although it may converge.

For example: Let X =Y = R, D = [-0.5,1.5]. Define ¥ on D by

() = { Plog? + 15—t if t £0
0 if t=0.
Then, we get t* =1, and
¥ (t) = 6log t* + 60> — 24t + 22.
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Obviously ¥"/(t) is not bounded on D, so the analysis in [1] cannot guarantee convergence. In this paper we
examine the more interesting semi-local case using conditions only on the first derivative which is on method
(2). Hence, we extend the applicability of this method.

The analysis is given in Section 2 and the examples in Section 3.

2. Convergence

Let Ko, K, K7 and ¢ be positive parameters. Define scalar sequences by

xo=0,y0 =19
Zn -
w,; =
Xn+1 =
Yn+1 =
where
and

KiK(yn — x2) -1
y”((l—ioxn)(l—Koyn)*' o ')W”"‘”)

K(yn _xn)> Pn

1-— Koxn 1-— Koyn

K(yn — xn) qn
w”+<l+ 1—Koxn ) 1— Koyn
_|_

K(xy41 — xn)z + 2Ky (X1 — Yn) +2K1[1 — %K]/n — Xn)

A 2(1 — Koxy41)

1
qﬂ:Kl<wn_Zn+2n_yn+(l_M)(yn—xn)>.

Next, a sufficient convergence criterion is presented for these sequences.

Lemma 1. Suppose

Koyn <1,Kgxyq1 <1

foreachn =0,1,2,- - . Then, the following assertions hold

and

1
xnﬁynéznswnﬁxn+1§yn+1<Kfo

1

n—oo

7

)

@

®)

4)

Proof. Using definition (1) and condition (2) we deduce that (3). So, sequence {y, } is non decreasing and

bounded from above by K%) Hence, it converges to its unique least upper bound y*.

The semilocal convergence of method (2) uses conditions (H) : Suppose:

(Hy) There exists Xg € D, > 0 such that F/(Xy)~! € £(Y, X) and ||F'(%o) ' F(%)|||Q] < 4.

(Hp) ||F'(x0)~ ! (F'(7) — F'(%0))|| < Ko||Z — %o for each @ € D for some Kq > 0.

Consider D1 = U | Xy, Kio N D.

|

(H3) ||F'(xo)~ (F'(7) — F'(w))|| < K||o — | and ||F'(Xo) ' F'(7)|| < Ky forall® € Dy and @ = o —

F'(o)~' F(7).

(Hy) Conditions of Lemma 1 hold,

and
(Hs) U[xo,y*] C D.

Next, we present the semilocal convergence result for method (2).
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converge to a solution x* € U[xo, y*| of equation F(x) = 0. Moreover, the following error estimate holds
1" =Xl < y* = xm. ©)

Proof. Mathematical induction on m is utilized to show assertions

||]7m —Xm| < Ym — Xm, (6)

Hzm - ym” < Zm—VYm, ||wm *Em” < Wy — Zm (7)
and

||fm+l - wm” < X1 — Wi 8)

In view of condition (H;), we have
%o —%oll <6 =yo—x0 <y,

so Y, € U[xp,y*] and (6) holds for m = 0.
Consider b € U(%y, y*). Then, by condition (H;), we get

IF' (%) ™} (F'(b) — F(%o))I| < Kollb — o]l < Koy* < 1. ©)

By (9) and a lemma on linear operators with inverses attributed to Banach [2-10] it follows F'(b)~! € L(Y, X)

and
1

FO)'F(F| < ——— .
| F'(b) (o)||—1_1<o||b—xo||

(10)

Iterates Zo, Wy, ¥ are well defined by the second substep of method (2) and (10) for b = yo, since y, € U(Xo, y*).
Suppose estimates (6) — (8) hold for all values of m smaller or equal to n. Then, we obtain by method (2) and
the induction hypotheses in turn that

Zm = Xm— QF (X)) 'F(Xm) + QF (%) "F(Xm) — F'(7,,) ' F(Xm)
= U+ F @) " (F@,) —F @) F@,) 'F©,) "F(Xn)
+O = 1|F (%) ' F(%m)
1Zm =Tl < IF@m) " F' o) IIF (x0)  (F(¥,,) — F' ()|l
<|[F'(7,,) " F'(xo) | I1F'(%0) "' F () ||
Q= 1| F () P F (@) |
KiK|7,, — %m*
(1 = Kol[xm —xol) (1 — Ko ||y, — ol
Zm —ym,

IN

1, _
1 1T~ ol

IN

and
1Zm — x0ll < 1Zm = Gpll + 17, — %oll < zn — Ym +Ym — X0 = zm < y*.

So z,, € U[xp,y*] and (6) hold.
Define

Am

(F(zm) — F(y,,)) + (F(¥,,) — F(Xm)) + F(Xm)

[+ 00— 5,000 5,

1
+/0 F/(fm + Q(ym —Ym))de(ym — Xm)

—%F’(Ym)(ym —%). (1)
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Then, by induction hypotheses, (Hz) and (11), we get
1z -1 = = - = Lo =
1 Go)™ Anll < K | WZm = Gl + 190 = |+ 757 7y = o

1
Ky (Zm —Ym+Ym — Xm + @(ym xm)) = Pm-

<
(12)
Then, by the third substep of method (2) we can write
Do —Zm = —F (7)) " Am = F (@) " (F' @) = F (7)) F ()~ A (13)
In view of (1), (10), (12) and (13), we have in turn that
Wy — Z < —— t —= —
=2l = TRy, —woll - Kol — ol (1~ Kol — ol
< Wm— Zm,
and
[@n =Tl < M[@m = Zmll + [1Zm = T | + 1[5, = ol
< Ww—Zm+Zm — Ym + Ym — X0 = Wy Sy*,
s0 Wy, € U[Xp,y*] and (7) holds.
Define
Bu = (F(@Wm)—F(zm))+ (F(zm) — F(ym)) + (F@m) — F(Xm)) + F(xXm)
1 1
_ /O F'(Z + (T — ) )A0(Ts — Z) +/0 F'(§, + 0(Zm — 7,,))d0
1 1
+ [P G+ 07, — %) d0(7,, — %) = ' (3) (T — o).
(14)
So
o N - — = 1 .-
IF'(%o) 'Bull < Ki (me = Zull + 1Zm = Gl + ([ = T ]| + @Hym - xm|l>.
< K| wm —zm+zm — Ym + 1—0—L (Ym — Xm) | = Gm. (15)
[9]
By the third substep of method (2), we can write
Tyt = O = —F (7)) B = F(§) " (F' () = F'(§)) F' (%) (16)

Hence we get

= = dk Kqm|[y,, — %m||
X1 —Wm|l < ——+ — —
" " 1—=Kolly,, — %ol (1= Koll7,,, — Xol[) (1 — Ko[Xm — Xol|)
< Xyl — Wiy
and
[Xm+1 —Xoll < [ %ms1 = Ol + [ @m — Zmll + |1Zm — T, || + |7, — %ol
< Xyl — W+ Wiy — Zm + Zm — Y + Ym — X0 = X1 S]/*/
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SO Xp4+1 € U[Xp, y*] and (8) holds. We can write in turn by the first substep of method (2)

1) = F(nr) ~ F@n) — & F (on) (T — T)
= (FGns) ~ F(n) — F' (%) (T1) — T)
P (o) (1 — ) — 5 F' () (B — )
= (F@ne) ~ F(n) — F'(Tn) (B1) — T)
o) (ot — ) + (1= & ) F () — )

- K _ - - _
IF @) FCem) | < 5 [Fosr = Fnl® + Kal[Fus1 = Tl

1 _
1= & K7, —

K
< E(xm+1 - xm)z + Kj (merl - ]/m)
1
1= S 1K (ym — xm), (17)
S0
Vi1 — Tmsall < NF Fgr) ™ F' @) 1|1 F'(%0) ™" F(Xura) |

< [F'(%o) ' FEnra) | < [F'(%o) ' F(Fmrn) | < Yrr1 — X

~  1—KolXpus1 —xol ~ 1 — Koxpm41 = Jmil T Am
and

Y s1 — xoll 1Fms1 — Xmra |l + 1 Xmi1 — %ol

<
< Yl = X1+ X1 — X0 = Y1 < Y5

$0Y,,+1 € U[xo,y*] and (6) hold. By letting m — oo in 17 and using the continuity of F we deduce F(x*) = 0.
Finally, to show (2.5), let i be an integer. We can write

[Zmti = Xmll < Xonsi — X (18)
Then, by letting i — oo, we conclude (5). O

Proposition 1. Suppose that there exists a simple solution x* € U(%y, po) C D of equation F(x) = 0, and (H3) holds.
Set Dy = U(x*,p) N D. Moreover, suppose there exist p > pg such that %(po +p) < 1. Then, the element x* is the
only solution of equation F(x) = 0 in the region D5.

Proof. Consider ¥ € D, with F(%¥) = 0.Set Q = fol F/(x* 4+ 6(% — x*))d6. Then, by (H2)

IF(20) Q= DI < € [ (81 %ol + (1= 6) " — 50lld8 < Doy +p) <1,

Hence, ¥ = x* is implied by the inverse of Q and the approximation Q(% — x*) = F(%¥) — F(x*) =0—-0=0.

O
Remark 1. (1) Condition (H3z) can be replaced by stronger
(H3)" |F'(%o) "' (F'(v) — F'(w))|| < K||o — w|| for each 7, € D;.
or even stronger
(H3)" ||F'(%0) "' (F'(7) — F'(w))|| < IZHE—@H foreach,w € D.
Notice however that since
D1 CD, (19)

we have . ;
K<K<K and Ky<K (20)



Open J. Math. Sci. 2024, 8, 39-45 44

Similar observations can be made for the second condition in (H3).

(2) Condition (Hs) can be replaced by

(Hs)' U {xo, KLO} , since K% is obviously in closed form.

(3) Lipschitz constants can be smaller if we define S = U (yo, K%) - (5) provided that Ko 6 < 1. Moreover,
suppose that S C D, then we have S C D;.

Hence, the Lipschitz constants on S are at least as tight. Notice that we are still using initial data, since
Yo = Xo — QF'(%0) " F(%o)-

Example 1. Defined the real function f on D = B[xg,1 —w], xo =1, w € (0,1) by

f(s) =5 —w.

Then, the definitions are satisfied for ) =1, § = PTW, Ko=3—w, Ky =2, K=2(1+ ﬁ) Then for w = 0.98,
we have

Table 1. Sequence (1) and condition (2)

n 1 2 3 4 5 6
Xp41 | 0.0092 | 0.0162 | 0.0205 | 0.0224 | 0.0228 | 0.0228
Yn 0.0067 | 0.0145 | 0.0197 | 0.0222 | 0.0227 | 0.0228
Koy, | 0.0067 | 0.0145 | 0.0197 | 0.0222 | 0.0227 | 0.0228
Kox,4+1 | 0.0186 | 0.0327 | 0.0415 | 0.0452 | 0.0460 | 0.0460

Hence, the conditions of Lemma 1 hold.

3. Conclusion

The technique of recurrent functions has been utilized to extend the application of method (2). The
convergence uses conditions on the derivative of the method and not the eighth derivative as in earlier studies.
The technique is very general rendering it useful to extend the usage of other iterative methods [11-20].
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