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Abstract: In normed spaces, Birkhoff orthogonality and isosceles orthogonality can be used to characterize
space structures, and many scholars have introduced geometric constants to quantitatively describe the
relationship between these two types of orthogonality. This paper introduces a new orthogonal relationship -
Skew orthogonality - and proposes a new geometric constant to measure the "distance" of difference between
skew orthogonality and Birkhoff orthogonality in normed spaces. In the end, we provide some examples of
specific spaces.
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1. Introduction

W e consider a real normed space X with dim X ≥ 2, equipped with the norm ∥ · ∥, the unit ball denoted
by BX , and the unit sphere denoted by SX . In the context of inner product spaces, orthogonality

(x ⊥ y) between elements x and y is defined when their inner product is zero. This concept of orthogonality
has given rise to various related notions. Roberts [1] introduced Roberts orthogonality, denoted by x ⊥R y,
which holds for any x, y ∈ X if

∀λ ∈ R, ∥x + λy∥ = ∥x − λy∥.

Birkhoff [2] introduced Birkhoff orthogonality, denoted by x ⊥B y, which holds for x, y ∈ X if

∀λ ∈ R, ∥x + λy∥ ≥ ∥x∥.

James [3] introduced isosceles orthogonality, denoted by x ⊥I y, which holds for x, y ∈ X if

∥x + y∥ = ∥x − y∥.

Quantifying geometric properties with numerical constants offers an intuitive way to understand these
properties in a given Banach space. Some of the most prominent geometric constants in this context include
von Neumann-Jordan constant

CNJ(X) = sup
{
∥x + y∥2 + ∥x − y∥2

2 (∥x∥2 + ∥y∥2)
: x, y ∈ X, (x, y) ̸= (0, 0)

}
.

James constant

J(X) = sup {min{∥x − y∥, ∥x + y∥} : x, y ∈ SX} .

In addition, building upon various orthogonal relationships, scholars have modified certain classical
constants to investigate the distinctions between two types of orthogonality. For instance, Ji D. and Wu S.
introduced the constants D(X) and D′(X) in [4] to measure the distinction between Birkhoff orthogonality
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and isosceles orthogonality. Moreover, Papini P.L. and Baronti M. [5] explored the J⊥(X) constant within the
context of Birkhoff orthogonal relationships. These constants are listed below:

J⊥(X) = sup {min{∥x − y∥, ∥x + y∥} : x, y ∈ SX , x ⊥B y} ,

D(X) = inf
{

inf
λ∈R

∥x + λy∥ : x, y ∈ SX , x ⊥I y
}

,

D′(X) = sup{∥x + y∥ − ∥x − y∥ : x, y ∈ SX , x ⊥B y}.

Readers interested in the above content can refer to [4–7] and the references therein for detailed
information.

Building upon the existing results, our aim is to delve deeper into the study by introducing a new
asymmetric skew orthogonality relationship, denoted by x ⊥α−β y, defined as:

∥αx + βy∥ = ∥βx − αy∥.

We also propose a related geometric constant Bα−β(X). This constant serves to estimate the difference between
these two orthogonal pairs. In Section 2, we introduce the constant Bα−β(X) and explore some of its basic
properties, along with calculating its values for specific spaces. After that, we compare the relationship
between the modulus of convexity δX(ε) and Bα−β(X). At the end of the article, we present results comparing
other classical constants such as D′(X) and J⊥(X).

2. The Constant Bα−β(X)

In this paper, we will first introduce an orthogonality concept based on Roberts orthogonality [1].

Definition 1. Let X be a real normed linear space of dimension at least two. If x, y ∈ X, then x is said to be
α − β orthogonal to y (denoted by x ⊥α−β y ) if

∀α, β ∈ R, ∥αx + βy∥ = ∥βx − αy∥.
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Figure 1. An example of definition 1

Example 1. Let X = R2 endowed with the norm

∥(x1, x2)∥ = max {|x1| , |x2|} .
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Choose x = (0, 1), y = (1, 0), we have αx + βy = (β, α) and βx − αy = (−α, β). It’s clear that ∥αx + βy∥ =

∥βx − αy∥.

We consider the constant Bα−β(X) to measure the difference between Birkhoff orthogonality and α − β

orthogonality in the entire space X:
for α, β > 0, let

Bα−β(X) = sup
{
∥αx + βy∥ − ∥βx − αy∥

α
: x, y ∈ SX , x ⊥B y

}
.

Proposition 1. Let X be a Banach space. Then

0 ≤ Bα−β(X) ≤ 1.

Proof. It is trivial that 0 ≤ Bα−β(X). On the other hand,

∥αx + βy∥ − ∥βx − αy∥
α

≤ α + β − β

α
= 1.

Hence we obtain Bα−β(X) ≤ 1.

Before delving into further discussions about the basic properties of Bα−β(X), let’s first introduce two
lemmas.

Lemma 1. [8] A normed space X is an inner product space if and only if ∥x + ty∥ = ∥y + tx∥ for all t ∈ R and
x, y ∈ X with ∥x∥ = ∥y∥.

Lemma 2. [8] A normed space X is an inner product space if and only if x ⊥B y ⇔ x ⊥I y for all x, y ∈ SX .

The two lemmas establish connections between orthogonality and inner product spaces, and use these
connections to prove the following theorem.

Theorem 1. For any α, β > 0, Bα−β(X) = 0 if and only if X is an inner product space.

Proof. If X is an inner product space, according to Lemma 1, we have

∥αx + βy∥ − ∥βx − αy∥ = ∥αx + βy∥ − ∥βx + αy∥ = 0

for all α, β > 0 and x, y ∈ SX , and hence Bα−β(X) = 0.
Conversely, if Bα−β(X) = 0. We can deduce that ∥αx + βy∥ ≤ ∥βx − αy∥ for all α, β > 0, x, y ∈ SX , x ⊥B y.

So
∥αx − βy∥ ≤ ∥βx + αy∥

also hold for all x ⊥B y. This means
∥αx + βy∥ = ∥βx − αy∥

for all α, β > 0, x, y ∈ SX , and x ⊥B y also holds. Assuming we cannot achieve isosceles orthogonality, it would
result in the contradiction shown below:

∥αx + βy∥ ̸= ∥βx − αy∥.

Therefore, we deduce that x ⊥I y. Applying Lemma 2, as desired.

Example 2. Let X = R2, α ≤ β and assign the following ℓ∞ − ℓ1 norm

∥x∥ =

{
∥x∥1, x1x2 ≤ 0,
∥x∥∞, x1x2 ≥ 0.

Then Bα−β(X) = 1.
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Considering the vectors x = (1, 0) and y = (0,−1), we can observe that x, y ∈ SX and x ⊥B y. Then
∥αx + βy∥ = α + β, ∥βx − αy∥ = β, we have

∥αx + βy∥ − ∥βx − αy∥
α

=
α + β − β

α
= 1.

Theorem 2. The upper bound 1 of Bα−β(X) is attained by a pair of points of SX if and only if there exist two points
x, y ∈ SX such that [x, y] and [x, x − 2α

β y] are both contained in SX . In this case, the length of the segment [x, y] is at
least 1 .

Proof. Let exist two points x, y ∈ SX and a real number α > 0 such that x ⊥B y and the following inequality
holds:

∥αx + βy∥ − ∥βx − αy∥
α

= 1.

Since

1 =
∥αx + βy∥ − ∥βx − αy∥

α
≤ α + β − β

α
= 1,

which implies that
∥αx + βy∥ = α + β

and
∥βx − αy∥ = β

holds for α, β > 0.

Then we have
∥∥∥∥ α

α+β x + β
α+β y

∥∥∥∥ = 1 and hence [x, y] ⊂ SX .

On the other hand, since ∥βx − αy∥ = β holds for α, β > 0, so∥∥∥∥1
2

x +
1
2

x − 1
2

2α

β
y
∥∥∥∥ = 1,

this means that the middle point of x, x − α
β y which norm is 1. Then we can conclude that [x, x − 2α

β y] ⊂ SX .
Moreover, since x ⊥B y, we have∥x − y∥ ≥ 1.

Conversely, suppose that there exist two points x, y ∈ Sx such that [x, y], [x, x − 2α
β y] ⊂ SX . We have

∥αx + βy∥ = α + β and ∥βx − αy∥ = β.
Hence

∥αx + βy∥ − ∥βx − αy∥
α

=
α + β − β

α
= 1.

Next, we show the relation between Bα−β(X) and the modulus of convexity δX(ε).

Definition 2. [9] Let X be a Banach space. For every ε ∈ [0, 2], the modulus of convexity (or rotundity) of ∥ · ∥
is defined as

δX(ε) = inf
{

1 −
∥∥∥∥ x + y

2

∥∥∥∥ : x, y ∈ BX , ∥x − y∥ ≥ ε

}
.

The norm ∥ · ∥ is called uniformly convex (UC) (or uniformly rotund (UR)) if δX(ε) > 0 for all ε ∈ (0, 2]. The
space (X, ∥ · ∥) is then called a uniformly convex space.

Theorem 3. If Bα−β(X) = 1 then δX(1) = 0,

Proof. If Bα−β(X) = 1, then, for each positive number k ∈ N, there exist two points xk, yk ∈ SX satisfying
xk ⊥B yk and a real number αk > 0 such that

∥αkxk + βkyk∥ − ∥βkxk − αkyk∥
αk

> 1 − 1
k

.

By extracting subsequences if it is necessary we may assume that there exists a number α > 0 such that
α = limk→∞ αk. In the following we distinguish two cases on α.
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Case 1: α ̸= 1. When k is sufficiently large we may assume that 0 < αk ≤ βk. From the following
inequality:

∥αkxk + βkyk∥ ≤ αk∥xk + yk∥+ (βk − αk)∥yk∥

We have:

αk∥xk + yk∥ ≥∥αkxk + βkyk∥ − ∥(βk − αk)yk∥

>(1 − 1
k
)αk + ∥βkxk − αkyk∥ − βk + αk

≥(1 − 1
k
)αk + βk − βk + αk

=(2 − 1
k
)αk.

Hence ∥xk + yk∥ > 2 − 1
k . Therefore

lim
k→∞

(
1 − 1

2
∥xk + yk∥

)
= 0,

which implies that δX(1) = 0.
Case 2: α = 1. In this case we can find a subsequence of {αk}∞

k=1 contained either in [0, 1] or in (1,+∞].
With a similar technique as in the foregoing two cases we can show that δX(1) = 0. This completes the
proof.

Theorem 4. Let X be Banach space with δX(1) > 0. If 0 < α ≤ β, then Bα−β(X) ≤ 1
1+δX(1)

.

Proof. For each pair of points x, y ∈ SX satisfying x ⊥By, we have ∥x − y∥ ≥ 1, and combined with facts, we
have ∥βx − αy∥ ≥ β. According to the definition of δX(1), ∥x + y∥ ≤ 2(1 − δX(1)) hold.

So,
∥αx + βy∥ =∥αx + αy + βy − αy∥

= ∥α(x + y)∥+ ∥(β − α)y∥
≤ α∥x + y∥+ β − α

≤ 2α (1 − δX(1)) + β − α.

Thus
∥αx + βy∥ − ∥βx − α∥

α
≤ α − 2αδX(1) + β − β

α

= 1 − 2δX(1)

< 1 − δX(1)

<
1

1 + δX(1)
.

We will demonstrate the respective connections between J⊥(X), D′(X) and Bα−β(X).

Proposition 2. For any non-trivial Banach space X with dim X ≥ 2, we have

Bα−β(X) ≤ J⊥(X)− 1.

Proof. We may assume without loss of generality that α ≤ β, then

∥αx + βy∥ − ∥βx − αy∥
α

≤ α∥x + y∥+ |α − β|∥y∥ − β

α

=
α∥x + y∥+ β − α − β

α

= ∥x + y∥ − 1.
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Similarly,

∥αx + βy∥ − ∥βx − αy∥
α

≤ ∥x − y∥ − 1.

So,
Bα−β(X) ≤ J⊥(X)− 1.

Theorem 5. Let X be Banach space, then

(α + β)D′(X)− 2|β − α|
2α

≤ Bα−β(X) ≤ βD′(X) + 2|α − β|
α

.

Proof. Consider the following relationships,

∥αx + βy∥ − ∥βx − αy∥
α

≤ (β∥x + y∥+ |α − β|∥x∥)− (β∥x − y∥ − |α − β|∥y∥)
α

=
(β∥x + y∥+ |α − β|)− (β∥x − y∥ − |α − β|)

α

=
β(∥x + y∥ − ∥x − y∥) + 2|α − β|

α
.

So,

sup
{
∥αx + βy∥ − ∥βx − αy∥

α

}
≤ sup

{
β(∥x + y∥ − ∥x − y∥) + 2|α − β|

α

}
.

On the other hand,

∥αx + βy∥ − ∥βx − αy∥
α

≥

(∥∥∥ α+β
2 (x + y)

∥∥∥− ∥∥∥ α−β
2 (x − y)

∥∥∥)− (α∥x − y∥+ |β − α|∥x∥)
α

=
α+β

2 ∥x + y∥ − α+β
2 ∥x − y∥ − |β − α|

α
.

Hence,

Bα−β(X) ≥α + β

2α
sup{(∥x + y∥ − ∥x − y∥)} − |β − α|

α

≥α + β

2α
D′(X)− |β − α|

α
.

In summary, we have

(α + β)D′(X)− 2|β − α|
2α

≤ Bα−β(X) ≤ βD′(X) + 2|α − β|
α

.

Definition 3. Let U be an ultrafilter on N. A sequence {xn} in X converges to x with respect to U , denoted as
limU xn = x, if for every neighborhood U of x, the set {i ∈ N : xi ∈ U} ∈ U . The ultrapower of X, denoted as
X̃, is formed as the quotient space l∞(X)/NU (X) equipped with the quotient norm, where:

l∞(X) =

{
(xn) ⊂ X : ∥(xn)∥ = sup

n∈N
∥xn∥ < ∞

}
,

NU (X) =

{
(xn) ∈ l∞(X) : lim

U
∥xn∥ = 0

}
,

and ∥x̃∥ = limU ∥xn∥ for x̃ = (xn)U ∈ X̃.



Open J. Math. Sci. 2024, 8, 1-7 7

In this definition, for more information about ultra-techniques in Banach space theorem, please refer to
[11].
The following lemma has been proven by Papini and Wu in [10].

Lemma 3. Let X be a uniformly convex Banach space, x̃ = (xn) and ỹ = (yn) be two unit vectors in X̃ satisfying
x̃ ⊥B ŷ Then there exist two sequences {un}∞

n=1, {vn}∞
n=1 ⊂ SX such that un ⊥B vn holds for each n ∈ N and that

x̃ = (un) and ỹ = (vn).

Theorem 6. If X is a uniformly convex space then Bα−β(X) = Bα−β(X̃) .

Proof. Because X is isometric to a subspace of X̃, we only need to prove that Bα−β(X) ≤ Bα−β(X̃).
By Lemma 3, there exist two sequences {un}∞

n=1 and {vn}∞
n=1 of unit vectors such that un ⊥B vn for each

n ∈ N and that x̃ = (un) and ỹ = (vn). Then

Bα−β(X̃)− ε <
∥αx̃ + βỹ∥ − ∥βx̃ − αỹ∥

α

= lim
U

∥αun + βvn∥ − ∥βun − αvn∥
α

≤ Bα−β(X).
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