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Abstract: This study introduces theorems concerning matrix products, which delineate the transformations of
sequences or series into other sequences or series, ensuring either the preservation of limits or the guarantee
of convergence. Previous literature has explored the properties of matrices facilitating transformations
between sequences, series, and their combinations, with detailed insights available in references [1–3].
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1. Introduction and Preliminaries

I n the early 1800s, the limitations of traditional convergence concepts became evident as numerous
series failed to conform to ordinary convergence criteria (see [4,5]). The clarity in defining convergence

of infinite series emerged with Cauchy’s landmark publication "Cours d’Analyse Algébrique" in 1821,
complemented by Abel’s discovery regarding binomial series in 1826 (see [6]). However, alongside these
advancements, several non-convergent series were identified, yielding nearly accurate results, particularly in
dynamical astronomy. Cesàro’s 1890 study on exponential series development marked the advent of explicit
theory in this domain (see [7]).

The late 19th century witnessed the emergence of rigorous summability notions, spurred by efforts
to analyze series summations previously deemed divergent. This led to the establishment of summability
analysis as a distinct mathematical discipline. With the recognition of convergence’s generalizability, attention
naturally turned to exploring the generalizability of absolute convergence. Indeed, research confirms the
affirmative response to this inquiry.

More specifically, the significance of absolute summability parallels that of convergence knowledge in
shaping various summability methodologies ([8–17]). Similarly, one can conceptualize uniform summability
as an extension of uniform convergence (see [16–22]).

The German word shorthands utilized in this work are as follows:

FF for sequence to sequence

RF for series to sequence

RR for series to series

Let P = (pab) , (a, b = 1, 2, . . .) be a given matrix, and consider the transformation:

un =
∞

∑
k=1

pabvk (1)

Matrix P facilitates FF, RF, or RR transformations to convert a sequence Z = {vb} into the sequence
r = {4a} or the series ∑ va into the series ∑ ua, provided each series (1) is convergent. Correspondingly, FF
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transformations can be adapted, with necessary adjustments, for RF and RR transformations. The concept
of the endpoint of a sequence or series can be generalized using summability transformations, providing
a mechanism to bound even divergent sequences. The optimal classification or selection of adjustment
techniques is determined by two methods:

1. Sequence-to-sequence transformations.
2. Sequence-to-function transformations.

Sequence-to-sequence transformations employ infinite matrices. Given an infinite matrix C =
(

cℓg

)
and

a sequence {Sℓ}, where ℓ = 0, 1, 2, . . ., a new sequence {tℓ} is defined as:

tℓ =
∞

∑
g=0

cℓgsg

We assume the series converges for all ℓ. If {tℓ} converges to t, then t is termed the c-limit of {Sℓ}.
When C does not alter the maximal convergence of sequences, it is not a regular summability transformation.
A standard matrix representation can be employed for this purpose, with the Silverman-Toeplitz theorem
providing necessary and sufficient conditions for its validity. The conditions for a matrix C =

(
cℓg

)
to satisfy

this theorem are:

1. ∑∞
g=0

∣∣∣cℓg

∣∣∣ < N for some N, and ℓ = 0, 1, 2, . . .
2. limℓ→∞ cℓg = 0 for each g = 0, 1, 2, . . .
3. limℓ→∞ ∑∞

g=0 cℓg = 1

2. Main Theorems:

We present theorems on the product of matrices that characterize transformations between sequences
and series, preserving limits and convergence. Building on the work of Dienes, Cooke, Hill, and Vermes
([3,23]), we extend Vermes’s earlier research ([2]) by exploring the pairwise products of matrices resulting
from sequence-to-sequence, series-to-series, and series-to-sequence transformations. Our findings offer new
insights into the properties of these transformations and their applications.

Remark 1. The following matrix classes arise from two widely used techniques for determining, by use of an
infinite matrix, the generalized limit of a sequence and the generalized sum of a series, respectively:

A matrix P is called a K-matrix if it satisfies:

1. ∑∞
m=1 |xrm| ≤ E(P) for each r,

2. limr→∞ xrm = xm for each m,
3. ∑∞

m=1 xrm → x as r → ∞.

It follows that:
lim
r→∞

xrm = 0 for each r (2)

∞

∑
m=1

|xm| ≤ E(P). (3)

By hypothesis, equation (2) is immediate from condition 1 in the definition of a K-matrix. Additionally, from
condition 1, ∑s

m=1 xrm ≤ E(P); hence by condition 2,

∞

∑
m=1

|xm| ≤ E(P)

and holds for arbitrarily large r, thereby proving equation (3).

Definition 1. An infinite matrix F ≡ ( fℓ,g) is called a γ-matrix if it satisfies the following conditions (see [3]):

∞

∑
g=1

| fℓ,g − fℓ,g+1| ≤ K, ∀ℓ ≥ 1,

fℓ,g → 1 as ℓ → ∞ for all g.
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Theorem 1. The elements of a γ-matrix are bounded.

Proof. From Definition 1, ∣∣∣ fℓ,g

∣∣∣ = ∣∣∣ fℓ,g − fℓ,1 + fℓ,1

∣∣∣
≤
∣∣∣ fℓ,g − fℓ,1

∣∣∣+ ∣∣ fℓ,1
∣∣

≤ k +
∣∣ fℓ,1

∣∣ ≤ D.

Theorem 2. If F(j) are γ-matrices anda = ∑
q
j=0 ε j ̸= 0, then the matrix B ≡ 1

a ∑
q
j=0 ε jF(j) is a γ-matrix.

Proof. Given the conditions stated in Definition 2, we begin by observing the series representation for t(j)
ℓ,g:

∞

∑
g=1

∣∣∣t(j)
ℓ,g − t(j)

ℓ,g+1

∣∣∣ ≤ Dj.

This inequality directly implies a bound for the difference between consecutive terms of the series t(j)
ℓ,g.

Next, considering the sequence bℓ,g, we similarly obtain:

∞

∑
g=1

∣∣∣bℓ,g − bℓ,g+1

∣∣∣ ≤ 1
|a|

α

∑
j=0

|ε j|.

This bound reflects the influence of each coefficient ε j on the differences between consecutive terms of the
sequence bℓ,g.

For the series g(j)
ℓ,g, the corresponding analysis yields:

∞

∑
g=1

∣∣∣g(j)
ℓ,g − g(j)

ℓ,g+1

∣∣∣ ≤ 1
|a|

α

∑
j=0

|ε j|Dj.

Here, the factor 1
|a| normalizes the cumulative influence of the coefficients ε j scaled by Dj.

Therefore, in each of these cases, the summation conditions required by Definition 2 are satisfied.
Consequently, it follows that the matrix B meets all the criteria set forth in Definition 2.

Definition 2. The matrix B is as α-mean (i.e. λ mean) of matricesF(j).

Theorem 3. Consider a sequence of γ-matrices {F(j)}, where each F(j) = ( f (j)
ℓ,g ). The λ-mean of these matrices remains

a γ-matrix under the following conditions:

(a) For all indices j, ℓ, and g, the absolute value of each matrix element is bounded by a constant D, i.e.,∣∣∣ f (j)
ℓ,g

∣∣∣ ≤ D.

Moreover, the sum of the absolute differences between consecutive elements in each row is uniformly bounded by a
constant k, i.e.,

∞

∑
g=1

∣∣∣ f (j)
ℓ,g − f (j)

ℓ,g+1

∣∣∣ ≤ k for all j and ℓ.

(b) The series of coefficients {aj} satisfies:
∞

∑
j=0

∣∣aj
∣∣ = E,

where E exists and is finite. Additionally, the sum of the series {ε j} equals a non-zero constant a, i.e.,

∞

∑
j=0

ε j = a ̸= 0.
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Under these conditions, the λ-mean of the sequence of γ-matrices is itself a γ-matrix.

Proof. From Definition 2, consider the inequalities concerning the elements of matrices and series involved:

|a|
∣∣∣bℓ,g

∣∣∣ ≤ ∞

∑
j=0

∣∣ε j
∣∣ ∣∣∣ f (j)

ℓ,g

∣∣∣ ≤ DE.

This relationship asserts that the product of the absolute values of a and bℓ,g is bounded by the product of

constants D and E, derived from the summation of the product series of ε j and f (j)
ℓ,g .

Additionally, we analyze the sum of the absolute differences of consecutive bℓ,g terms:

|a|
∞

∑
g=1

∣∣∣bℓ,g − bℓ,g+1

∣∣∣ ≤ ∞

∑
j=0

∣∣ε j
∣∣ ∞

∑
g=1

∣∣∣ f (j)
ℓ,g − f (j)

ℓ,g+1

∣∣∣ ≤ EK.

The final inequality employs the previously stated conditions, indicating a uniform bound K on the sum over
g, scaled by the summation of ε j.

Next, consider the convergence of the series ∑∞
j=0 ε j f (j)

ℓ,g . By Definition 2, this series converges uniformly.
Therefore, as ℓ → ∞, we have:

lim
ℓ→∞

bℓ,g =
1
a

lim
ℓ→∞

∞

∑
j=0

ε j f (j)
ℓ,g =

1
a

∞

∑
j=0

ε j lim
ℓ→∞

f (j)
ℓ,g = 1.

This final step concludes the proof, showing that the limit of bℓ,g as ℓ approaches infinity equals 1, based on
the convergence properties of the involved series and matrix elements.

Definition 3. Let P =
(

pℓ,g

)
and R =

(
rℓ,g

)
are two matrix. Then the new matrix S =

(
sℓ,g

)
=
(

pℓ,grℓ,g

)
is

known as term product of A and B.

Theorem 4. The elementwise product of two γ-matrices retains the γ-matrix properties.

Proof. Consider two γ-matrices, P and R, whose elements pℓ,g and rℓ,g satisfy the γ-matrix conditions. Define
Sℓ,g = pℓ,grℓ,g as the elementwise product matrix. We need to show that S is also a γ-matrix.

First, examine the difference between adjacent elements in the product matrix:

Sℓ,g − Sℓ,g+1 = pℓ,g(rℓ,g − rℓ,g+1) + rℓ,g+1(pℓ,g − pℓ,g+1).

Using the triangle inequality, we can bound the sum of absolute differences:

∞

∑
g=1

∣∣∣Sℓ,g − Sℓ,g+1

∣∣∣ ≤ ∞

∑
g=1

∣∣∣pℓ,g

∣∣∣ ∣∣∣rℓ,g − rℓ,g+1

∣∣∣+ ∞

∑
g=1

∣∣∣rℓ,g+1

∣∣∣ ∣∣∣pℓ,g − pℓ,g+1

∣∣∣ .

By the properties of γ-matrices, we know:

∞

∑
g=1

∣∣∣rℓ,g − rℓ,g+1

∣∣∣ ≤ D2 and
∞

∑
g=1

∣∣∣pℓ,g − pℓ,g+1

∣∣∣ ≤ D1,

where D1 and D2 are constants, and
∣∣∣pℓ,g

∣∣∣ and
∣∣∣rℓ,g+1

∣∣∣ are bounded by some constants K1 and K2 respectively.
Thus, the inequality becomes:

∞

∑
g=1

∣∣∣Sℓ,g − Sℓ,g+1

∣∣∣ ≤ K1D2 + K2D1.

This shows that the series of absolute differences for S is uniformly bounded, satisfying one of the key
conditions of a γ-matrix.

Furthermore, since pℓ,g and rℓ,g both converge to 1 as ℓ → ∞, their product Sℓ,g = pℓ,grℓ,g also converges
to 1 as ℓ → ∞.
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Therefore, S satisfies the conditions to be a γ-matrix.

Theorem 5. Let fℓg = ∑ℓ
i=1 mig for all ℓ, g ≥ 1. Then the matrix F = ( fℓg) is a γA-matrix if and only if the matrix

M = (mℓg) is an αA-matrix.

Proof. Assume F is a γA-matrix. According to Sahani and Jha [18], we have:

lim
ℓ→∞

(
∞

∑
j=1

mjg

)
= lim

ℓ→∞
fℓg = 1. (4)

Also, the absolute value of each mℓg can be expressed as:

|mℓg| = | fℓg − fℓ−1,g|,

which further satisfies:
|mℓg| ≤ | fℓg|+ | fℓ−1,g| ≤ kℓ−1(F) + kℓ(F) < kℓ(F).

Summing over all ℓ, we have:

∞

∑
ℓ=1

|mℓg| = | fℓg|+
∞

∑
ℓ=2

| fℓg − fℓ−1,g| < D(F),

satisfying the conditions necessary for M to be an αA-matrix.
Conversely, suppose M is an αA-matrix. By definition, we know:

mℓg = fℓg − fℓ−1,g (ℓ, g ≥ 1),

and specifically for ℓ = 1:
m1g = f1g (g ≥ 1).

To prove F is a γA-matrix, consider:

∞

∑
ℓ=1

|mℓg| < D(M) =⇒
∞

∑
ℓ=2

| fℓg − fℓ−1,g| < D(F),

and also, by employing [18]:
| fℓg| = |m1g + m2g + . . . + mℓg| ≤ Kℓ(F).

Thus, we conclude:

lim
ℓ→∞

fℓg =
∞

∑
j=1

mjg = 1,

demonstrating that F is indeed a γA-matrix.

Theorem 6. The product S = FM of a γA-matrix F and an αA-matrix M exists and is a γA-matrix.

Proof. Consider F = ( fℓi) as a γA-matrix. Assume the series ∑ Vj is convergent. Then the F transform of ∑ Vj,
given by ∑∞

i=1 fℓiVi, exists for all ℓ and forms a sequence of bounded variation (according to [18] and preceding
notes).

Select vi = mig where mig are the elements of the αA-matrix M. By the convergence properties and [18], it
follows that

lim
ℓ→∞

∞

∑
i=1

fℓimig =
∞

∑
i=1

mig = 1

for all g. Also, since M is an αA-matrix, we have

∞

∑
i=1

|mig| < D(M).
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If we define S = FM, then for the entries of S, we find

|sℓg| =
∣∣∣∣∣ ∞

∑
i=1

fℓimig

∣∣∣∣∣ ≤ ∞

∑
i=1

| fℓi||mig| < Kℓ(F)D(M),

which implies
|sℓg| < Kℓ(S). (5)

Hence, the product matrix S = (sℓg) exists for all ℓ and g, and

lim
ℓ→∞

sℓg = 1. (6)

Moreover,
∞

∑
ℓ=2

|sℓg − sℓ−1,g| =
∞

∑
ℓ=2

∣∣∣∣∣ ∞

∑
i=1

( fℓi − fℓ−1,i)mig

∣∣∣∣∣ < D(H), (7)

where H is a matrix satisfying the required norm bounds. Therefore, the conditions of a γA-matrix are satisfied
by S = FM, concluding that S is a γA-matrix.

Theorem 7. The product MF of an αA-matrix M and a γA-matrix F may not exist.

Proof. Let us define the matrices M and F as follows:

mℓg =

{
1 for ℓ = 1, g = 1

0 for ℓ > 1

and
fℓg = 1 ∀ ℓ, g ≥ 1. (8)

These matrices M and F, as defined in (7) and (8), are respectively αA-matrices and γA-matrices.
Thus, the product (FM)ℓg = (F)ℓg exists and is the γA-matrix F as given in equation (8). However, the

product (MF)ℓg =
(
∑∞

i=1 mℓi fig
)

becomes:

=
∞

∑
i=1

(1 + 1 + . . .)ℓg,

which does not exist.

Theorem 8. The product matrix L=FM exists and is a γA-matrix for every γA-matrix F iff M is an αA-matrix MF is
an αA-matrix.

Proof. we consider a γA-matrix F which is defined as

fℓg
= 1 f or g ≤ ℓ

= 0 f or g > ℓ

}
(9)

Then the product matrix S = (FM) is

sℓg =
∞

∑
i=1

fℓimig =
∞

∑
i=1

mig (10)

Hence, by theorem 1, the matrix S =
(

sℓg

)
in equation (10) is γA-matrix, only if F is an αA-matrix.

Theorem 9. The product of two αA-matrices is an αA-matrix.

Proof. Let P and Q be two αA-matrices. Define a new matrix F = ( fℓg) as follows:

fℓg = p1g + p2g + . . . + pℓg (ℓ, g ≥ 1). (11)

By Theorem 1, ( fℓg) is a γA-matrix, and by Definition 3, the product (S)ℓg = (FQ)ℓg is a γA-matrix.
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Now, define:
eℓg = sℓg − sℓ−1,g (ℓ > 1, g ≥ 1). (12)

Then, eℓg = sℓg. Hence, E = (eℓg) is a γA-matrix, and

eℓg =
∞

∑
i=1

fℓiqig −
∞

∑
j=1

fℓ−1,i.

This simplifies to:

=
∞

∑
i=1

( fℓi − fℓ−1,i) · qig =
∞

∑
j=1

pℓi · qig.

Hence, (E)ℓg = (PQ)ℓg by our assumption (11) of the matrix F.

Theorem 10. The product of two γA-matrices is not necessarily a γA-matrix.

Proof. Consider a γA-matrix F = (Fℓg), as defined in equation (7), and another γA-matrix S = (Sℓg) where:

Sℓg = 1 ∀ ℓ, g ≥ 1. (13)

Define the product matrix T = FS such that its elements are given by:

tℓg =
∞

∑
i=1

fℓisig.

Given that Sig = 1 for all i and g, the elements of T simplify to:

tℓg =
∞

∑
i=1

fℓi = ℓ,

assuming Fℓi = 1 for all i up to ℓ. However, this leads to:

lim
ℓ→∞

tℓg = ∞,

which does not conform to the definition of a γA-matrix, as it should possess a finite limit as ℓ approaches
infinity. Hence, we conclude that T is not a γA-matrix.

3. Conclusion:

The Silverman-Treplitz theorem establishes both necessary and sufficient conditions for matrices. It
ensures the correct summation of every convergent series. Similar properties akin to the Silverman-Treplitz
theorem were demonstrated by Carmichael, Perron, and Bosanquet’s theorem.

In this note, we establish that matrix structures describing sequence-to-series operations with sustained
convergence form a Banach algebra under a specific norm.

The known methods for summing divergent series are particular cases of sequence transformations using
T-matrices or series transformations using γ-matrices. The utilization of γ-matrices offers several advantages:

1. γ-matrices are defined by two conditions, whereas T-matrices are defined by three conditions.
2. γ-matrices operate directly on the terms of the series, while T-matrices require the formation of partial

sums.
3. γ-matrices, as demonstrated by Dienes, possess greater generality, as each T-matrix corresponds to an

equivalent γ-matrix, while there exist γ-matrices without an equivalent T-matrix.

Understanding why infinite matrices were among the earliest tools considered in function space operator
studies presents a challenge. The initial spaces examined consisted of sets of infinite sequences of numbers,
naturally viewed as generalizations of n-tuples. Since finite matrices correspond to natural linear operators on
finite-dimensional spaces, it is reasonable to conceive of infinite matrices as analogous extensions, serving as
natural linear operators defined on sequence spaces.
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