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Abstract: This study employs dynamic modeling and simulation to provide theoretical insights into
the systemic behaviors underlying diphtheria pathogenesis. A Boolean network model was developed
to formalize the hypothesized interactions among eight genes identified in the literature as central
to toxin production, immune response, and disease transmission. Computational exploration of the
state-space dynamics within this model revealed three distinct attractors, each hypothesized to represent
key disease states. Structural analysis of these attractors and their basins of attraction offered insights
into network architectures potentially responsible for bistable switches between chronic infection and
recovery, endogenous inflammatory oscillations reflective of periodic fever cycles, and modular topologies
enabling alternative developmental pathways. These findings demonstrate the utility of Boolean modeling
in uncovering organizing principles—such as periodicity, bistability, and evolvability—that govern disease
emergence in complex systems. The study highlights testable network signatures that could refine our
understanding of diphtheria and similar pathologies, and while preliminary, it underscores the potential
of iterative computational and experimental approaches to inform more effective control strategies.
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1. Introduction

G ene regulation is a fundamental process that guides cell function and differentiation through precisely
orchestrated patterns of gene expression [1–3]. At the core of gene regulation are gene regulatory

networks (GRNs), complex webs of interactions where gene products activate or repress one another’s
transcription [4–7]. Stable states of consistent gene expression are vital for maintaining cell identity and
facilitating appropriate responses to stimuli [8–10]. Perturbations to stable expression patterns have been
implicated in various diseases [11–13], underscoring the importance of characterizing the stable states
attainable within GRNs.

However, the high dimensionality and nonlinearity of real molecular-scale GRNs pose major challenges
to quantitative dynamical analysis [14–16]. Boolean network (BN) models provide a simplified abstract model
that has proven useful in studying qualitative system-level properties like stable expression patterns [17–19].
In Boolean network modeling, genes are represented as network nodes that can be either active/ON or
inactive/OFF [20–23]. Interactions between genes are encoded by edges updated according to logical Boolean
functions [24–26]. While offering a coarse-grained approximation, BNs allow exploring how network structure
and updating schemes influence a system’s long-term attractors [27–29].

Diphtheria is caused by Corynebacterium diphtheriae, which produces a potent exotoxin known to be
the primary virulence factor. The exotoxin works by inhibiting protein synthesis through NAD-dependent
diphtheria toxin-catalyzed ADP-ribosylation of elongation factor 2 (EF-2), leading to cell death [30,31]. The
pathogenesis progresses as the bacteria colonize and create a pseudomembrane in the upper respiratory tract.
Toxin production is initiated upon contact between the bacteria and host epithelial cells. This suggests cell-cell
signaling plays a role in regulating toxin gene (toxT) expression [32].

Open J. Math. Sci. 2024, 8, 167-184; doi:10.30538/oms2024.0234 https://pisrt.org/psr-press/journals/oms

https://pisrt.org/psr-press/journals/oms
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oms


Open J. Math. Sci. 2024, 8, 167-184 168

Toxin production triggers an acute inflammatory response attempting to clear the infection. However,
the pathogen has evolved mechanisms to subvert this. For example, the toxin itself suppresses antigen
presentation and delays neutrophil recruitment, aiding bacterial survival [33].

A complex interplay between host immunity and bacterial virulence factors determines disease outcomes.
Animal models have helped elucidate key cytokine pathways, demonstrating their role in mediating fever
cycles often seen in clinical diphtheria. Adaptive immune responses also contribute to usually long-term
immunity following recovery [34].

Mathematical models provide another lens to study the dynamical interdependencies governing disease
emergence and progression [35]. This work extends such approaches through Boolean modeling to
generate hypotheses reflecting pathogenic mechanisms orchestrated at the systemic network-level scale.
It systematically determines the fixed points and attractor basins achievable within BN models of GRNs
under a synchronous updating scheme, where all nodes update simultaneously at each discrete time
step. Characterizing stable expression patterns in this basic modeling scenario lays foundation for further
refinements incorporating regulatory details on molecule concentrations and timing. Understanding how
fixed points are shaped by network architecture also provides insights applicable to GRN engineering and
control.

2. Preliminaries

In this work, Boolean network (BN) modelling is employed to investigate mechanisms of stable gene
expression patterning within gene regulatory networks (GRNs). BNs provide a simplified discrete abstraction
of GRNs that has proven fruitful for qualitative dynamical analysis despite biological simplifications. In BN
representation, genes are denoted as nodes of a directed network, with binary states zi = 1 (Active/On) or zi =

0 (Inactive/Off) indicating expression levels. Directed edges between nodes encode regulatory interactions,
with an edge from node j to i indicating j helps determine the state of i.

Here are some preliminary definitions to understand the core concepts employed for modelling gene
regulatory networks (GRNs) through Boolean networks (BNs):

1. Boolean network: A boolean network B(V, E) consists of a set of nodes (boolean variables), each variable
can take on one of two values: true (represented by 1) or false (represented by 0), and a set of logical
functions that determine the state of each variable based on the states of other variables. These logical
functions are often defined using logical operators such as AND (∧), OR (∨), and NOT (¬) [23].

2. Boolean Transition Function (Update Function): To formally encapsulate the logical relationships
governing node state dynamics in Boolean network models, a Boolean transition function is defined
for each node (represented by a boolean variable), where the state of variable zi at time step t + 1 is
determined by the logical function gi : {0, 1}k −→ {0, 1}k, which depends on the states of variables
{z1, z2, . . . , zn} at time step t [36]. We can represent this relationship mathematically as:

z1(t + 1) = g1(z1(t), z2(t), . . . , zn(t)),

z2(t + 1) = g2(z1(t), z2(t), . . . , zn(t)),
...

zn(t + 1) = gn(z1(t), z2(t), . . . , zn(t)).

(1)

Here, zn(t + 1) represents the state of variable zi at time step t + 1, and gn(z1(t), z2(t), . . . , zn(t))
represents the logical function that determines the state of zi based on the states of other variables at
time step t.

3. Gene Regulatory Network (GRN): A network of interactions between DNA-binding transcription
factors and the genes they regulate [36].

4. Node (Boolean Variable): The representation of a single gene or transcription factor as a basic discrete
variable in a Boolean network model.

5. Edge: A directed connection from one node to another in the network, representing a regulatory
interaction where the source node helps determine the target’s state.

6. Wiring Diagram: The wiring diagram depicts the regulatory interconnections between network nodes
through directed edges. It encodes the topological features and connectivity architecture that dictate
qualitative dynamical constraints [36].
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7. State: The value assumed by a node at any given time step, either ON (1) or OFF (0) in a binary Boolean
system [36].

8. Attractor: A repeating pattern of node state configurations into which the dynamics will eventually
settle, such as a fixed point or limit cycle.

9. Fixed Point: A state configuration constituting an attractor where the system’s state remains constant
under further updates [36]. For an update function g : Gn

2 → Gn
2 the set of fixed points can be formally

expressed as:
Fix(g) = {z ∈ Gn

2 |g(z) = z}. (2)

10. Limit Cycle: A limit cycle can be defined as a closed finite set of state configurations C = {c1, c2, . . . , cn}
such that applying the system’s update rules will cycle sequentially through each configuration in C
indefinitely. That is, beginning from any configuration ck in C, repeated application of the update
functions will lead to configurations ck+1, ck+2, and so on until returning to the initial configuration
and restarting the cycle [36].

11. Basin of Attraction: The set of initial states from which the dynamics will evolve into a given attractor
under repeated updates.

12. State Space: Refers to the set of all possible discrete state configurations the system can take on at any
given time step. For a network with N nodes that can be in either state 0 or 1, the state space contains 2N

elements [37].
13. State Transition Graph: A graphical representation of state space dynamics where nodes denote unique

system states and directed edges indicate possible state transitions under applying the update functions.
The graph structure illuminates attractor structure and basin organization [36].

14. Circuits (feedback loops): This refers to interconnected pathways that regulate cellular processes
and interactions, functioning similarly to electrical circuits in that they transmit signals and feedback
to maintain homeostasis within the system. These feedback loops are crucial for understanding
stability, oscillations, and bistability in biological systems, particularly in the context of diseases such
as diphtheria. While Feedback refers to the process by which the output of a system influences its input,
thereby affecting its future behavior[38].

15. Set of Transient States: One of the important phases in anallyzing a Boolean network model’s dynamics
is characterizing the set of transient states. These represent the states that the network will pass through
before ultimately settling into an attractor cycle or fixed point [36]. Suppose (Z, G) is a Boolean network
having the global update function g : Gn

2 → Gn
2 , then the transient states of g can be expressed as:

Trans(g) = {z ∈ Gn
2 | g(k)(z) ̸= z ∀ k ≥ 1}, (3)

16. Set of Periodic points: The set of periodic points denoted as Per(g), encompasses any states that directly
return to themselves after some number of time steps via the transition function [36]. This includes both
stable limit cycles as well as unstable repeating patterns. It is expressed mathematically as:

Per(g) = {z ∈ Gn
2 | g(k)(z) = z for some k > 1}. (4)

17. Garden of Eden State: A garden-of-Eden state is defined as a network configuration that maps to other
states under iterative application of the function, but is not mapped to itself and cannot be re-derived
through successive updates [36]. Mathematically, it is the set:

GoE(g) = {z ∈ Gn
2 | ∄ w ∈ Gn

2 such that g(w) = z}. (5)

This preliminary definitional paradigm establishes the key modeling abstractions, structural elements and
analytical concepts that will be systematically investigated through BN simulations of GRNs under different
architectural constraints.

Diphtheria infection is initiated upon binding of Corynebacterium diphtheriae toxin (DtxR) to epidermal
growth factor receptors on host cells. This leads to MAPK cascade activation and up-regulation of
pro-inflammatory cytokines like IL-6 and TNFα. Toll-like receptors (TLRs) also sense lipoproteins and
lipopolysaccharides from the bacteria. TLR4 in particular triggers the MyD88-dependent pathway inducing
NF-κB, which drives expression of additional cytokines, costimulatory molecules and interferons [30].

Interferons then signal via JAK-STAT to induce hundreds of antiviral effector genes including Mx
proteins, PKR, and OAS. This helps override DtxR-mediated repression of MHC expression and clear the
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infection. Nrf2 and AP-1 regulate oxidative stress response and coordinately protect cells from reactive
oxygen species accompanying heavy metal dysregulation during illness. They may modulate cytokine
storm severity. While diphtheria pathogenesis has long been observed clinically, quantitative modelling of
the underlying genetic interactions remains under-explored. Previous systems-level analyses have largely
focused on continuous differential equation approaches or data-driven correlations, overlooking the logic of
transcriptional control crucial to dynamical behaviors. To begin investigating dynamical behaviors under
the synchronous update scheme, we propose a 8-node prototype Boolean network model to explore genetic
regulatory dynamics underlying diphtheria pathogenesis progression (see Table 2 and 3).

Figure 1. A 8-node prototype of Diphtheria signal transduction network

The 8-node prototype network (see Figure 1) represents the first attempt to formally conceptualize
how key genetic components in the diphtheria system operate together as an integrated whole according to
combinatorial input rules. By drawing upon current pathway knowledge, we distilled the complexity into a
simplified yet rigorously defined structure upon which hypotheses about disease emergence and progression
can be systematically generated. This innovation sets the stage for new theoretical investigations into
mechanisms of toxin production, host immune responses, and inflammatory feedbacks through simulation.

The figure 1 illustrates the intricate transduction involved in the immune response. Each node represents
a key protein or signaling molecule, including Rep (regulator), Tox (toxin), INF1 and INF2 (interferons), TLR
(Toll-like receptor), TNF (tumor necrosis factor), AP1 (activator protein 1), and IL6 (interleukin 6). Arrows
indicate the direction of activation, with black lines showing direct interactions and a red lines denoting
feedback inhibition from Rep to Tox [31]. In this network, TLR senses pathogen-associated molecular patterns,
leading to the activation of INF1 and INF2 [39], which are crucial for antiviral defense. TNF activates AP1 [40],
that is enhanced by IL6 [41], and AP1 also interacts with INF1 [42] and INF2 [43], which plays a crucial role in
the body’s defense mechanisms by helping to regulate the immune response. Elevated levels of Rep modulate
the network by inhibiting Tox [44], thereby fine-tuning the immune response (see Table 1). This feedback loop
is essential for maintaining homeostasis in immune signaling, allowing the body to respond appropriately to
infections while preventing excessive inflammation.

The model necessarily retains abstraction but establishes a proof-of-principle for discrete modeling
in this under-explored application domain. Phenomena such as multistability, oscillations, and phase
transitions emerging from cooperativity across network elements can now be explored in silico, guiding
wet-lab validation efforts. In proposing this admittedly nascent model, our goal is to spark new conceptual
perspectives and drive future model refinement. With increased biological realism and testing against
time-series data, such efforts may one day support precision diagnostics and therapy. Fundamentally, our
contribution introduces a paradigm for advancing systems-level comprehension of this important infectious
disease.
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3. Materials and Methods

In BNs, each node’s discrete dynamic behavior is encapsulated by an associated Boolean function (BF)
defining its next state based on the present states of incoming regulatory inputs. Synchronous updating [45]
allows all nodes in the network to be updated simultaneously, which generates deterministic dynamics. This
means that from any given state, there is a unique successor state, making it easier to analyze and predict
the system’s behavior over time. In contrast, asynchronous updating introduces stochasticity, leading to
multiple possible successor states depending on the order of updates, which complicates the analysis. While
asynchronous models are often considered more biologically realistic due to their representation of individual
component updates, they can misrepresent timing in biological processes. For instance, if a biological event
takes minutes, an asynchronous model might imply that downstream genes remain inactive for days, which
is unrealistic. Synchronous models can better capture the interdependencies of biological processes where
multiple components influence each other simultaneously. In this study, synchronous updating will be used
as defined by the global state transition function:

Y(z(t), z(t + 1)) =
n∧

i=1

(zi(t + 1) ↔ gi(z1(t), z2(t), . . . , zn(t))) . (6)

The update procedure would involve iterating through the following discrete time steps:

• Determine the current global expression state vector Z(t) consisting of all genes’ expression levels (0 or
1).

• Synchronously update each gene n according to its transition function gn:

zn(t + 1) = gn(z1(t), z2(t), . . . , zn(t)), (7)

where zn(t) refers to the expression levels of genes regulating n at time t.
• Advance the global state:

Z(t + 1) = [z1(t + 1), s2(t + 1), . . . , sn(t + 1)] . (8)

• Record Z(t + 1) and repeat steps 2 − 3, continually updating all genes in unison based on the previous
state.

• Iterate until a fixed point attractor is reached where Z(t + X) = Z(t + X + 1), or a periodic cycle is
detected.

• Repeat for all possible initial conditions to exhaustively explore dynamics.

This simulation-based approach allows investigating how specific network architectures, logical rules,
and perturbations influence long-term expression patterns emerging from synchronous discrete updates.
Moving forward and formally modeling the 8–node diphtheria genetic regulatory network (1) using Boolean
transition function. Let z1(t) represent expression of the toxin gene Tox, z2(t) the repressor gene Rep, z3(t) for
INF1, z4(t) for INF2, z5(t) for TLR, z6(t) for AP1, z7(t) for IL6 and z8(t) for tumor necrosis factor TNF:

z1(t + 1) = ¬z2(t)

z2(t + 1) = ¬z1(t) ∧ (z3(t) ∨ z4(t))

z3(t + 1) = z5(t) ∨ z6(t)

z4(t + 1) = z5(t) ∨ z6(t) ∨ z7(t)

z5(t + 1) = 1

z6(t + 1) = z8(t) ∨ z7(t)

z7(t + 1) = z1(t) ∨ z3(t)

z8(t + 1) = z1(t) ∨ z6(t)

(9)

This captures the system dynamics succinctly in discrete time and logic. Now let, we could also convert
this boolean transition function into a rather polynomial form so that, where h(y, z) = y ∨ z = y + z + y · z,
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h(y, z) = y ∧ z = y · z, h(y) = ¬y = 1 + y, h(y) = y ∧ y = y2 = y and h(y) = α · y = 0 ∀ α ∈ ℜ, then equation
(9), becomes:

z1(t + 1) = 1 + z2(t)

z2(t + 1) = (1 + z1(t)) · (z3(t) + z4(t) + z3(t) · z4(t))

z3(t + 1) = z5(t) + z6(t) + z5(t) · z6(t)

z4(t + 1) = z5(t) + (z6(t) + z7(t) + z6(t) · z7(t)) + z5(t) · (z6(t) + z7(t) + z6(t) · z7(t))

z5(t + 1) = 1

z6(t + 1) = z8(t) + z7(t) + z8(t) · z7(t)

z7(t + 1) = z1(t) + z3(t) + z1(t) · z3(t)

z8(t + 1) = z1(t) + z6(t) + z1(t) · z6(t)

(10)

Then to simulate Eq. (10), synchronously, we begin with a hypothetical scenario where the pathogen has
just entered the host cell and initiated an immune response. This translates to an initial state vector of:
z(0)n =

[
z(0)1 , z(0)2 , z(0)3 , z(0)4 , z(0)5 , z(0)6 , z(0)7 , z(0)8

]
= [1, 0, 0, 0, 1, 0, 0, 0], where z1(t) "Toxin" is activated, representing

presence of the bacteria. z5(t) "TLR" is also ON as it detects microbial signals. Applying the update rules, we
calculate z(1)n : 

z(1)1 = 1 + z(0)2 = 1

z(1)2 = (1 + z(0)1 ) · (z(0)3 + z(0)4 + z(0)3 · z(0)4 ) = 0

z(1)3 = z(0)5 + z(0)6 + z(0)5 · z(0)6 = 1

z(1)4 = z(0)5 +
(

z(0)6 + z(0)7 + z(0)6 · z(0)7

)
+ z(0)5 ·

(
z(0)6 + z(0)7 + z(0)6 · z(0)7

)
= 1

z(1)5 = 1

z(1)6 = z(0)8 + z(0)7 + z(0)8 · z(0)7 = 0

z(1)7 = z(0)1 + z(0)3 + z(0)1 · z(0)3 = 1

z(1)8 = z(0)1 + z(0)6 + z(0)1 · z(0)6 = 1

(11)

For the next iteration, we have;

z(2)1 = 1 + z(1)2 = 1

z(2)2 = (1 · z(1)1 ) · (z(1)3 + z(1)4 + z(1)3 · z(1)4 ) = 0

z(2)3 = z(1)5 + z(1)6 + z(1)5 · z(1)6 = 1

z(2)4 = z(1)5 + (z(1)6 + z(1)7 + z(1)6 · z(1)7 ) + z(1)5 ·
(

z(1)6 + z(1)7 + z(1)6 · z(1)7

)
= 1

z(2)5 = 1

z(2)6 = z(1)8 + z(1)7 + z(1)8 · z(1)7 = 1

z(2)7 = z(1)1 + z(1)3 + z(1)1 · z(1)3 = 1

z(2)8 = z(1)1 + z(1)6 + z(1)1 · z(1)6 = 1

(12)

The next iteration becomes;

z(3)1 = 1 + z(2)2 = 1

z(3)2 = (1 · z(2)1 ) · (z(2)3 + z(2)4 + z(2)3 · z(2)4 ) = 0

z(3)3 = z(2)5 + z(2)6 + z(2)5 · z(2)6 = 1

z(3)4 = z(2)5 + (z(2)6 + z(2)7 + z(2)6 · z(2)7 ) + z(2)5 · (z(2)6 + z(2)7 + z(2)6 · z(2)7 ) = 1

z(3)5 = 1

z(3)6 = z(2)8 + z(2)7 + z(2)8 · z(2)7 = 1

z(3)7 = z(2)1 + z(2)3 + z(2)1 · z(2)3 = 1

z(3)8 = z(2)1 + z(2)6 + z(2)1 · z(2)6 = 1

(13)
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Since iteration 2 and 3 are the same the solution is said to converge and 10111111 is a fixed point of the
system, the transient state of this attractor is seen in Figure (2a). As oppose our first initial state, lets consider a
vector of: z(0)n =

[
z(0)1 , z(0)2 , z(0)3 , z(0)4 , z(0)5 , z(0)6 , z(0)7 , z(0)8

]
= [0, 0, 0, 0, 1, 0, 0, 0], where z1(t) "Toxin" is deactivated,

representing presence of the bacteria. z5(t) "TLR" is only ON as it detects microbial signals, we have:

z(1)1 = 1 + z(0)2 = 1

z(1)2 = (1 + z(0)1 ) · (z(0)3 + z(0)4 + z(0)3 · z(0)4 ) = 0

z(1)3 = z(0)5 + z(0)6 + z(0)5 · z(0)6 = 1

z(1)4 = z(0)5 +
(

z(0)6 + z(0)7 + z(0)6 · z(0)7

)
+ z(0)5 ·

(
z(0)6 + z(0)7 + z(0)6 · z(0)7

)
= 1

z(1)5 = 1

z(1)6 = z(0)8 + z(0)7 + z(0)8 · z(0)7 = 0

z(1)7 = z(0)1 + z(0)3 + z(0)1 · z(0)3 = 0

z(1)8 = z(0)1 + z(0)6 + z(0)1 · z(0)6 = 0

(14)

For the next iteration, we have;

z(2)1 = 1 + z(1)2 = 1

z(2)2 = (1 · z(1)1 ) · (z(1)3 + z(1)4 + z(1)3 · z(1)4 ) = 0

z(2)3 = z(1)5 + z(1)6 + z(1)5 · z(1)6 = 1

z(2)4 = z(1)5 + (z(1)6 + z(1)7 + z(1)6 · z(1)7 ) + z(1)5 ·
(

z(1)6 + z(1)7 + z(1)6 · z(1)7

)
= 1

z(2)5 = 1

z(2)6 = z(1)8 + z(1)7 + z(1)8 · z(1)7 = 0

z(2)7 = z(1)1 + z(1)3 + z(1)1 · z(1)3 = 1

z(2)8 = z(1)1 + z(1)6 + z(1)1 · z(1)6 = 1

(15)

Iterating again gives;

z(3)1 = 1 + z(2)2 = 1

z(3)2 = (1 · z(2)1 ) · (z(2)3 + z(2)4 + z(2)3 · z(2)4 ) = 0

z(3)3 = z(2)5 + z(2)6 + z(2)5 · z(2)6 = 1

z(3)4 = z(2)5 + (z(2)6 + z(2)7 + z(2)6 · z(2)7 ) + z(2)5 · (z(2)6 + z(2)7 + z(2)6 · z(2)7 ) = 1

z(3)5 = 1

z(3)6 = z(2)8 + z(2)7 + z(2)8 · z(2)7 = 1

z(3)7 = z(2)1 + z(2)3 + z(2)1 · z(2)3 = 1

z(3)8 = z(2)1 + z(2)6 + z(2)1 · z(2)6 = 1

(16)

Hence another iteration gives you same state, therefore 10111111 is a fixed point of the system (see Figure
(2a)) for the transient state of the attractor.

The synchronous update approach described above was used to systematically analyze the long-term
dynamical behavior (see Appendix Table (4)) and attractors exhibited by the disease transmission model. By
iteratively updating the state variables in lockstep according to the defined logic and polynomial equations, the
asymptotic trajectories and basins of attraction was be characterized (see result). This provided insights into
the equilibrium points and cycles representing endemic and disease-free states. However, it is acknowledged
that synchronous updating schemes may yield different attractor structures due to effects not captured under
asynchronization.

4. Result

Upon conducting a thorough investigation of the network dynamics using computational modeling and
Boolean simulation techniques, several noteworthy attractors within the state space were identified. These
stable expression patterns provide important hypotheses about core pathogenic mechanisms and disease
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(a) A transient state transition graph
of the attractor (10111111)

(b) A transient
state transition
graph of
the attractor
(01111111)

(c) A transient
state transition
graph of the limit
cycle attractor
(11111111) and
(00111111)

Figure 2. State transition graph of the three attractors of the system

trajectories which now warrant further exploration. Specifically, the analysis uncovered the existence of three
key attractors that may provide useful insights into diphtheria progression at a system-wide level. The first
attractor (10111111) consisted of a simple fixed point involving repression of key genes associated with toxin
production. A second fixed point attractor (01111111) likewise demonstrated repressed expression, but in
this case without toxin. Most intriguingly, a cyclic attractor (11111111, 00111111) was observed oscillating
between two states of differential inflammation gene expression over time. Such dynamical behavior hints
at underlying periodicity in disease symptoms and immune response modulation. Together, these in silico
predictions represent theoretically grounded proposals for empirically examining diphtheria pathogenesis
through a higher-order network perspective. In the following sections, We aim to characterize each attractor in
detail and discuss their potential biological relevance based on existing knowledge of associated gene functions
and protein interactions. By rendering the model’s emergent properties visible and subject to investigation,
we embark on an promising program of computational validation through experimentation.

The Table 4 (see Appendix) provides insight into the structure and stability of the basin of attraction
for Attractor 1. We can observe that 40 total states map to this fixed point, with the majority (32 states)
transitioning to it in just 1-3 updating steps. This suggests Attractor 1 exerts a strong pulls on the state
space dynamics. States farther from the attractor take slightly longer to converge onto its cycle, like 00001000
requiring 3 transitions. But all reachable states ultimately settle into the stable pathogenic expression profile of
Attractor 1.

Notably, the Attractor 1 state itself 10111111 is also listed, confirming it is an absorbing fixed point
that remains in the basin once entered. Overall, this exploration of the basin portrait reinforces conclusions
about Attractor 1 representing a robust infectious phenotype governed by toxin production. The wide
and topologically concentrated basin endows this configuration with considerable influence over system
trajectories.

Furthermore, examining the basin structure of Attractor 2 (Table 5) provides additional insights into its
dynamical properties and stability. We observe that its basin encompasses 24 total states that map to the fixed
point configuration 01111111. Similar to Attractor 1, most of these states (16 out of 24) converge to the attractor
within just 1-4 timesteps according to the network functions. This suggests Attractor 2 exerts a dominant pull
on a notable region of phase space.

Interestingly, the average number of steps taken to reach Attractor 2 from its basin states appears slightly
greater than for Attractor 1. This could point to Attractor 2 representing a more precarious expression profile
that is slightly more perturbation-sensitive once infections are resolved without toxin.
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Nonetheless, its basin remains reasonably concentrated and topologically close to the fixed point itself,
endowing Attractor 2 with considerable stability against stochastic fluctuations once attained. This accords
with its posited role in modeling disease resolution or asymptomatic carriage upon toxin clearance.

Analyzing the basin structure of Attractor 3 (Table 6 - 7), the dynamical 2-state cyclic attractor, provides
useful insights into its propensity to emerge across trajectories of the disease network model.

We see its basin encompasses the largest region of the phase space at 64 states. Many are centered closely
around the limit cycle itself, transitioning to it within 1-4 timesteps as expected for a dominant emergent
behavior.

However, some states mapped to the cycle require traversing longer paths. For example, 00011000 takes
4 transitions, hinting at how small variations could impact the cyclic inflammation profile. Overall, the cyclic
attractor appears well-embedded within the landscape, influencing a broad domain susceptibly to periodic
oscillations in inflammatory genes over infection timescales. This quantitative portrait lends theoretical
plausibility to Attractor 3 representing a robust and flexible endogenous response mechanism governing
recurring fever cycles etc. Its prominence as a attractor could also explain how innate immune fluctuations may
persist even after adaptive resolution via other fixed points. These analysis further elucidate the postulated
bistability between chronic infection versus recovery/healthy dynamics governed by this network model.
They demonstrate the properties expected of biologically meaningful hypotheses warranting experimental
interrogation.

In all the attractors identified in this Boolean model provide biologically meaningful insights into
diphtheria pathogenesis, though certain caveats regarding the abstraction level apply: Fixed point attractors
likely correlate with stable gene expression profiles achievable in vivo through various molecular interactions.
While overlooking finer dynamics, attractors provide testable global hypotheses about stable disease/healthy
states emergent from network architecture. For example, the robust toxin/infammation fixed points may
reflect bistable switches governed by stabilized feedback at a higher organizational level than single bindings.
However, the model abstracts away details of transcription, translation, protein complexes and real-valued
expression inherent to molecular regulation. Future refinements incorporating such mechanism could garner
closer agreement with wet-lab data.

Notably, the attractors demonstrated resilience within their basins against state perturbations, hinting
at how stabilized expression patterns may withstand internal/external fluctuations in the real system.
Experimental perturbation of specific network nodes mapped in attractor basins could validate such
computational predictions of expression profile robustness conferring pathodynamics. While idealized,
Boolean models offer a complementary perspective to reductionist approaches by focusing on emergent
organizational principles beneath cellular complexity. Their hypotheses warrant testing to iteratively refine
system-level understanding of signalling networks.

5. Discussion

A Boolean network model has been developed to detail the interactions among eight essential genes
involved in toxin production, immune response, and transmission. The model offers a valuable basis
for exploring the systemic behaviors associated with diphtheria pathogenesis. The attractors identified in
this study are encoded in the format Tox, Rep, INF1, INF2, TLR, AP1, IL6, TNF, and each offers unique
contributions to our understanding of diphtheria pathogenesis.

The attractor 10111111 provides a comprehensive view of a significant disease state associated with
active diphtheria infection and a strong immune response. This state is marked by the activation of the
diphtheria toxin gene (Tox) alongside the repression of the toxin repressor gene (Rep), indicating a phase
where toxin production by the bacteria is not regulated. Such unregulated production is a key feature of
active diphtheria infections, leading to symptoms like pseudomembrane formation in the respiratory tract and
systemic toxicity. At the same time, the activation of interferon response genes (INF1 and INF2) suggests that
the host’s immune system is actively engaging with the infection. Interferons are crucial components of the
innate immune response, enhancing antiviral defenses and modulating immune activity, which indicates that
the host is attempting to counteract the bacterial invasion. The activation of toll-like receptors (TLR) further
emphasizes this immune engagement, as TLRs are essential for recognizing pathogen-associated molecular
patterns (PAMPs) and triggering inflammatory responses.

The transcription factor AP1’s activation within this attractor points to ongoing transcriptional activity
related to immune responses and inflammation. AP1 serves as a vital regulator of gene expression, likely
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activated by upstream signals from TLRs and other immune receptors. Additionally, the presence of
interleukin 6 (IL6) and tumor necrosis factor (TNF) reflects a vigorous inflammatory response. IL6 plays a role
in activating immune cells during infections, while TNF is critical for initiating inflammation and activating
various immune responses. This attractor encapsulates a phase of acute infection where the host’s immune
system is actively working to combat the bacterial infection and mitigate toxin effects. The interplay between
the bacterial pathogen and the host’s immune response highlighted by this attractor offers valuable insights
into the systemic behaviors associated with diphtheria pathogenesis. The combination of unchecked toxin
production and a robust immune response illustrates how crucial the host’s defenses are in managing infection.

The second attractor, 01111111, reveals a unique and noteworthy state within the Boolean gene regulation
model of diphtheria pathogenesis. This attractor is defined by the inactivation of the diphtheria toxin gene
(Tox) and the activation of the toxin repressor gene (Rep), indicating that toxin production is effectively
inhibited. This inhibition is a crucial element of the host’s defense strategy, aimed at minimizing the harmful
effects of the diphtheria toxin. Even in the absence of toxin production, immune response genes remain
active. The activation of interferon response genes (INF1 and INF2) suggests that the host’s immune system
continues to be alert and ready to address any potential threats. The toll-like receptor (TLR) is also engaged,
signifying that the immune system is persistently detecting pathogen-associated molecular patterns (PAMPs),
even without active toxin production. This ongoing TLR activity emphasizes the host’s preparedness to initiate
an immune response if necessary. The activation of the transcription factor AP1 indicates that the host cells
are actively transcribing genes related to immune responses and inflammation. This transcriptional activity
helps ensure that the host is ready to combat any potential resurgence of infection. Furthermore, the presence
of interleukin 6 (IL6) and tumor necrosis factor (TNF) signifies a continuous inflammatory state. Both IL6 and
TNF are critical pro-inflammatory cytokines involved in activating immune cells and initiating inflammation,
suggesting that the immune system remains in a heightened state of alertness despite suppressed toxin
production. This attractor likely represents a chronic infection phase or a recovery state where the host has
effectively controlled toxin production while remaining actively engaged in immune defense. The persistent
activation of immune response genes and inflammatory cytokines indicates that the host is still prepared to
respond to any potential resurgence of infection. This scenario illustrates the bistable nature of the network
architecture, allowing for transitions between chronic infection and recovery.

The third attractor, (11111111, 00111111), introduces an oscillatory and dynamic state within the Boolean
gene regulation model of diphtheria pathogenesis. This attractor is defined by periodic transitions between
two different states, each exhibiting distinct gene activation patterns. These oscillations offer significant
insights into the temporal dynamics of gene expression and the immune response during diphtheria infections.
In the first state (11111111), both the diphtheria toxin gene (Tox) and the toxin repressor gene (Rep) are active.
This simultaneous activation indicates a temporary phase in which the bacterial pathogen is producing toxin
while the host’s regulatory mechanisms are working to suppress it. The active interferon response genes
(INF1 and INF2), toll-like receptor (TLR), transcription factor AP1, interleukin 6 (IL6), and tumor necrosis
factor (TNF) signify a strong immune response. This state likely corresponds to an active infection phase
where the host’s immune system is vigorously combating toxin production. In contrast, the second state
(00111111) shows both the toxin gene (Tox) and the repressor gene (Rep) inactive. Despite this lack of toxin
production, immune response genes remain engaged. The continued activation of INF1, INF2, TLR, AP1, IL6,
and TNF suggests that the host’s immune system is in a heightened state of readiness, prepared to respond to
any potential resurgence of infection. This state likely represents a phase of immune surveillance, where the
immune system remains vigilant even without active toxin production. The cyclic nature of this attractor
mirrors the endogenous inflammatory oscillations and periodic fever cycles often seen in patients with
diphtheria. The transitions between states of high and low inflammation illustrate the dynamic relationship
between toxin production and the host’s immune response. This periodic behavior indicates that the immune
system is continuously adapting to the presence of the bacterial pathogen, alternating between active responses
and surveillance.

Boolean modeling is a powerful tool for studying diphtheria pathogenesis, but it has several limitations
that must be understood to accurately interpret results and guide future research. One significant limitation
of Boolean modeling is its oversimplification of biological complexity. These models represent gene activities
in binary terms—either "on" (1) or "off" (0)—which fails to capture the nuanced and continuous nature of gene
expression. In reality, gene expression occurs at varying levels rather than in a strict on/off manner, meaning
that important regulatory details may be overlooked. Another drawback is that Boolean models typically
do not incorporate the temporal dynamics of gene expression and regulatory processes. Biological systems
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are inherently dynamic, with gene expression levels fluctuating over time in response to various stimuli.
Since Boolean models often assume synchronous updates of gene states, they may not accurately reflect
the asynchronous and stochastic nature of biological processes, which is particularly important in infectious
diseases like diphtheria.

Biological systems are influenced by stochastic effects, where random fluctuations can impact gene
expression and regulatory outcomes. Boolean models are deterministic and do not account for these random
variations, potentially leading to an incomplete understanding of the variability seen in biological systems.
In diphtheria pathogenesis, such stochastic effects can significantly affect both the host’s immune response
and the behavior of the bacterial pathogen. Boolean models often simplify the complex interactions among
genes and proteins. In reality, these interactions involve feedback loops, cross-talk between pathways, and
context-dependent regulation. Boolean models may fail to capture these intricate relationships, resulting in
an oversimplified view of the regulatory network. For example, the relationship between the diphtheria toxin
gene (Tox) and its repressor gene (Rep) is likely influenced by multiple factors that a Boolean model may
not fully represent. Boolean models generally assume homogeneity within cell populations, neglecting the
variability that exists among different cells. Cells within a population can exhibit diverse gene expression
patterns and regulatory behaviors, which can influence the overall response to infection. This heterogeneity is
not accounted for in Boolean models, potentially leading to an incomplete understanding of system behavior.
Biological regulation is often context-dependent; genes and proteins can behave differently under varying
conditions. Boolean models may not adequately capture this variability since they typically apply a fixed
set of rules without considering the biological context. This limitation is particularly relevant in infectious
diseases, where both the host’s immune response and the pathogen’s behavior can vary significantly based on
circumstances.

Boolean models rely on hypothesized interactions and rules derived from existing literature, which may
not always be experimentally validated. The absence of direct validation can limit the reliability of predictions
made by these models. Integrating Boolean modeling with experimental data is crucial for confirming
assumptions and refining predictions, though this process can be challenging and requires iterative cycles
of modeling and experimentation.

6. Conclusion

In closing, this paper has demonstrated the utility of applying Boolean modeling and dynamical systems
analysis to generate testable insights into the system-level behavior governing diphtheria pathogenesis.
Through simulating the hypothesized gene regulatory network, our computational exploration uncovered
three distinct attractors hypothesized to capture key disease states and endogenous dynamics. Analyzing
aspects such as basin structures associated with attractors provided quantitative characterizations of their
postulated roles and influences over systemic trajectories. Though, further research is still required
to rigorously validate these in silico predictions. Experimental confirmation or refinement of attractor
configurations, stabilization of hypothesized expression profiles under perturbation, and reconstruction of
alternative trajectories corresponding to Garden of Eden states represent crucial next steps. Dynamical
modeling must also be integrated with ongoing advancement of molecular-scale regulatory mechanisms.
Nonetheless, even at this early stage, our work has illuminated potential organizational blueprints within
the disease network topology that warrant targeted investigation. It establishes this Boolean model as a
valuable tool for generating new hypotheses regarding bistability, cyclic behaviors, evolutionary flexibility and
other emergent phenomena beyond traditional reductionist views. Continuing this iterative dialogue between
computational abstraction and wet-lab experimentation holds promise to transform our understanding of
diphtheria and other pathologies at a higher network level. With refinement, such approaches may eventually
inform disease subtyping, control strategies, and therapeutic interventions. Overall, this paper demonstrates
the nascent power of dynamical modeling to open new theoretical windows into intrinsic organizational
capacities encoded within biological regulatory network. It is recommended that future studies consider
incorporating perturbation analyses, such as gain-of-function or loss-of-function studies, to enhance the
understanding of the model’s dynamics. While this work focused on determining fixed points and attractors
within a deterministic basis, the introduction of perturbation analyses could provide valuable insights, despite
the potential complexity and additional variables they may introduce. Furthermore, acknowledging the
limitations inherent in the current Boolean model, subsequent research could explore how these perturbations
might impact the core dynamics. By integrating such analyses, future researchers could uncover how
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manipulating gene functions influences the behavior of the system. This approach would contribute to a more
comprehensive understanding of synchronously updated fixed points and attractors, ultimately enriching the
interpretability and robustness of the findings within the broader context of the model.
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Appendix

Boolean network model and its function according to the proposed transition rules:

• Tox: Represents expression of the diphtheria toxin gene. Self-represses based on interaction with Rep.
• Rep: Encodes the toxin repressor protein. Activated indirectly by INF1/INF2 and directly represses Tox.

Provides negative feedback on toxin production.
• INF1/INF2 : Capture interferon response genes, which help clear the infection. INF1 activates in response

to TLR signaling or inflammatory AP1 pathway. INF2 further induced by IL6 in positive feedback.
• TLR : Toll-like receptor sensor of PAMPs that triggers innate immunity cascade. Functionally fixed "on"

in this simplified model.
• AP1 : Inflammatory transcription factor complex. Upregulated cooperatively by TNF/IL6 signals in

positive feedback loop amplifying inflammation.
• IL6/TNF: Pro-inflammatory cytokine genes in later response. IL6 induced directly by toxin or INF1. TNF

activated by toxin or AP1 pathways.

Together, these rules aim to distill the key genetic interactions governing progression from bacterial toxin
initiation, to host defense, and resolution versus hyper-inflammation (see Table (3)).



Open J. Math. Sci. 2024, 8, 167-184 181

Table 1. Interactions between nodes in the diphtheria pathogenesis network

Source Node Target Node Interaction Type Reference
Tox Rep Inhibition Boyd et. al., 1990 [44]
Rep Tox Inhibition Holmes, 2000[31]
Tox TNF Activation Morimoto et al., 1991[46]
TNF AP1 Activation Westwick et al., 1994[40]
AP1 TNF Activation Granet et al., 2004[47]
Tox IL6 Activation Kashiwagi et al., 2014 [48]
IL6 AP1 Activation Hungness et al., 2000 [41]
AP1 INF1 Activation Atsaves et al., 2019[42]
AP1 INF2 Activation Bartolini et al., 2016[43]
IL6 INF2 Activation Moehring et al., 1971[49]

INF1 IL6 Activation Nash et al., 2023[50]
INF1 Rep Activation Schmitt et al., 1992[51]
TLR INF1 Activation Severa & Fitzgerald., 2007[52]
TLR INF2 Activation Kawai & Akira, 2010[39]
INF2 Rep Activation Fourel et al., 1989[53]

Table 2. Nodes and their corresponding gene names

Node Gene Name
Tox Diphtheria toxin gene
Rep Tox repressor gene
INF1 Interferon response gene 1
INF2 Interferon response gene 2
TLR Toll-like receptor, immune sensor
AP1 Transcription factor activating pro-inflammatory genes
IL6 Interleukin 6 cytokine gene

TNF Tumor necrosis factor cytokine gene

Table 3. Boolean rules for the network

Node Boolean Transition Rules
Tox NOT Rep
Rep NOT Tox AND (INF1 OR INF2)
INF1 TLR OR AP1
INF2 TLR OR AP1 OR IL6
TLR 1
AP1 TNF OR IL6
IL6 Tox OR INF1

TNF Tox OR AP1
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Table 4. Transients states that leads to attractor 1 (attractor basin for attractor 3)

State Next state Attr. basin # trans. to attr.
10001000 10111011 1 2
10101000 10111011 1 2
10011000 10111011 1 2
10111000 10111011 1 2
10001100 10111011 1 2
10101100 10111011 1 2
10011100 10111011 1 2
10111100 10111011 1 2
10001111 10111111 1 1
10101111 10111111 1 1
10011111 10111111 1 1
10111111 10111111 1 0
10001011 10111111 1 1
10101011 10111111 1 1
10011011 10111111 1 1
10111011 10111111 1 1
10001101 10111111 1 1
10101101 10111111 1 1
10011101 10111111 1 1
10111101 10111111 1 1
10001001 10111111 1 1
10101001 10111111 1 1
10011001 10111111 1 1
10111001 10111111 1 1
10001110 10111111 1 1
10101110 10111111 1 1
10011110 10111111 1 1
10111110 10111111 1 1
10001010 10111111 1 1
10101010 10111111 1 1
10011010 10111111 1 1
10111010 10111111 1 1
00001010 10111100 1 3
00001001 10111100 1 3
00001011 10111100 1 3
00001110 10111101 1 2
00001101 10111101 1 2
00001111 10111101 1 2
00001100 10111001 1 2
00001000 10111000 1 3
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Table 5. Transients states that leads to attractor 2 (attractor basin for attractor 3)

State Next state Attr. basin # trans. to attr.
01101000 01111010 2 3
01111000 01111010 2 3
01101100 01111011 2 3
01111100 01111011 2 3
01101010 01111110 2 2
01101001 01111110 2 2
01111001 01111110 2 2
01101011 01111110 2 2
01111011 01111110 2 2
01111010 01111110 2 2
01101110 01111111 2 1
01111110 01111111 2 1
01101101 01111111 2 1
01111101 01111111 2 1
01101111 01111111 2 1
01111111 01111111 2 0
01011111 01111101 2 2
01011101 01111101 2 2
01011110 01111101 2 2
01011010 01111100 2 4
01011001 01111100 2 4
01011011 01111100 2 4
01011100 01111001 2 3
01011000 01111000 2 4

Table 6. Transients states that leads to attractor 3 (attractor basin for attractor 3)

State Next state Attr. basin # trans. to attr.
00011101 11111101 3 2
00011111 11111101 3 2
00011110 11111101 3 2
01001110 00111101 3 2
01001101 00111101 3 2
01001111 00111101 3 2
01001000 00111000 3 3
00011000 11111000 3 4
01001100 00111001 3 3
00011100 11111001 3 2
00101110 11111111 3 1
00111110 11111111 3 1
00101101 11111111 3 1
00111101 11111111 3 1
00101111 11111111 3 1
00111111 11111111 3 0
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Table 7. Attractor basin for attractor 3 continuation

State Next state Attr. basin # trans. to attr.
11001000 00111011 3 3
11101000 00111011 3 3
11011000 00111011 3 3
11111000 00111011 3 3
11001100 00111011 3 3
11101100 00111011 3 3
11011100 00111011 3 3
11111100 00111011 3 3
00101100 11111011 3 2
00111100 11111011 3 2
11001010 00111111 3 1
11101010 00111111 3 1
11011010 00111111 3 1
11111010 00111111 3 1
11001110 00111111 3 1
11101110 00111111 3 1
11011110 00111111 3 1
11111110 00111111 3 1
11001001 00111111 3 1
11101001 00111111 3 1
11011001 00111111 3 1
11111001 00111111 3 1
11001101 00111111 3 1
11101101 00111111 3 1
11011101 00111111 3 1
11111101 00111111 3 1
11001011 00111111 3 1
11101011 00111111 3 1
11011011 00111111 3 1
11111011 00111111 3 1
11001111 00111111 3 1
11101111 00111111 3 1
11011111 00111111 3 1
11111111 00111111 3 0
01001010 00111100 3 3
01001001 00111100 3 3
01001011 00111100 3 3
00101010 11111110 3 2
00111010 11111110 3 2
00101001 11111110 3 2
00111001 11111110 3 2
00101011 11111110 3 2
00111011 11111110 3 2
00101000 11111010 3 2
00111000 11111010 3 2
00011011 11111100 3 4
00011001 11111100 3 4
00011010 11111100 3 4
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